Theory of Anisotropic Thin-Walled
Beams

V. V. Volovoi Asymptotically_correc;, linear _theory is _presented for thin-walled prismatic bee_lms_. m_ade

. of generally anisotropic materials. Consistent use of small parameters that are intrinsic to
the problem permits a natural description of all thin-walled beams within a common
D. H Hodges framework, _regardless_of wh_ether crqss-sectional_geome_try is open, closc_ed, or strip-like.

o Four “classical” one-dimensional variables associated with extension, twist, and bend-
ing in two orthogonal directions are employed. Analytical formulas are obtained for the
resulting 4x4 cross-sectional stiffness matrix (which, in general, is fully populated and
includes all elastic couplings) as well as for the strain field. Prior to this work no
analytical theories for beams with closed cross sections were able to consistently include
shell bending strain measures. Corrections stemming from those measures are shown to
be important for certain cases. Contrary to widespread belief, it is demonstrated that for
such “classical” theories, a cross section is not rigid in its own plane. Vlasov's correc-
tion is shown to be unimportant for closed sections, while for open cross sections asymp-
totically correct formulas for this effect are provided. The latter result is an extension to
a general contour of a result for |-beams previously published by the authors.
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1 Introduction two-dimensional equations on a cross section. A development of a
The following discussion is restricted to the theory of prismati%%rggeggg] solution of this problem is presented in Cesnik and
e .

giesarlgie";’nh;:? rtehlZtig]rzgﬁi_démci\nngggaéocnosrilsteltr:?jvﬁnlge\:\? a:g sg:amApplying the variational-asymptotic procedure to thin-walled
P P - ANY DERLSS Sections where another small parameter exists, namely

theory is associated with introduction of variables which depend : . :

only on the coordinate along the beam axis. For a general typeaof L (Whereh is a wall thicknesk allows one to start with shell
deformation at least four such one-dimensional variables have!f&Ory rather than three-dimensional elasticity. Rather than having
be introduced: extensional, torsional, and two bending variabl& Solve a two-dimensional problem over the cross-sectional
(corresponding to deformation along two orthogonal directiong?/@€, one instead solves a one-dimensional problem over the
The corresponding one-dimensional governing equations are (f9th of the thin walls. This dimensional reduction can be also
coupled for isotropic beams with doubly symmetric cross sectioﬁQE‘d”Cted in another way: the asymptotic procedure with respect
and are given by Euler-Bernoulli theory for extension and bendirl§ a ¢an be applied directly to the two-dimensional cross-sectional
and St. Venant theory for torsion. If one wishes to extend thryoblem that results when starting with three-dimensional elastic-
theory to Composite beams, the governing equations becoiﬁé Both approaches lead tO_ the Sa.me final results, but the latter
coupled due to the appearance of off-diagonal terms in the crog§ocedure is more computationally involved.

sectional stiffness matrix. This»44 stiffness matrixC,, charac- ~ The former procedure was used in Berdichevsky ef4l.to
terizes elastic properties of the beam. Then, the strain energy pBfain analytical solutions for closed sections. The resulting con-

unit length is expressed in terms of the four one-dimensionggnient cross-sectional stiffness formulas published in that paper
strain measures as are presently widely used in engineering community. Although

shell bending strain measures were neglected in that paper, these
2F gassica @aCapap Where a"={U;,U%,U5,6'}. (1) for most practical purposes do not affect final stiffness results.
However, as shown below, for certain material properties the de-
For thin-walled beams this problem was first posed in Reissngation of their results from the asymptotically correct results
and Tsai[1]. However, the approach employed therein led to might be significant.
complicated set of equations, especially in the case of closed crosgoncerning the application of the variational-asymptotic
sections. The solution of those equations was presented only fafnathod to beams with open cross sections, an I-beam was viewed
special type of three-dimensional constitutive equations. as an assembly of strips in Volovoi et E]. Asymptotically cor-

The introduction of the variational-asymptotic method in conrect formulas were obtained therein which account for Vlasov’s
text of anisotropic beams Berdichevs}g] allowed the treatment correction. Those results are generalized here for beams with ar-
of this problem from a different perspective: beam theory casitrary open contours.
obtain three-dimensional elasticity without making aay hoc
assumptions using the small parameterl, wherea is a charac-
teristic dimension of the cross section drid a the wavelength of
deformation along the beam reference line. For a geributlnot 2  present Approach

f

thin-walled cross section the problem is reduced to a system o . ) . )
Beams are considered thin wallechi<a,R whereR is a char-
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E/J.333E)\333
where H = E+33— —gTE

Eaﬁ33Ep,333

GPr=E*Pr3— T (7)

For the following derivation it is convenient to rewrite E&)
as
2E ghei= 41Qi b+ 20 S; b+ ¢iPij b5 8

where 'PTE{Vllthll:hPlz}v and ¢T={y12,722,hp22; i
=1...3 and X3 matricesQ;;, S;;, andP;; are corresponding

combinations oEZA?, ESLY®, andEfPY?,

X4, Uq, Vyq In the derivation below it is the axial coordinatg that is
distinct from the other two, so it is now convenient for Greek
Fig. 1 Configuration and coordinate system indices to vary from 2 to 3. The variational-asymptotic method

Berdichevsky[2,8] is used in what follows. While we avoid a
detailed discussion of this method, sufficient information is pro-
vided here to facilitate understanding of the derivation. We are
using the term “asymptotically correct” concerning an approxi-
()= E ()= & mate solution to denote its agreement with the expansion of the
ds dx, exact solution to a specified order in terms of a specific small
. . parameter. It is clear that any theory which is not asymptotically
T=T= XX F X3Xg correct will certainly fail to achieve the accuracy of one which is.
N=7XX1=X3Xy ™ XoX3 @) Setting up the Problem.Since only statics is considered, only
the strain energy and work of external forces are present in the
total functional. External forces are considered slowly varying so
Fa=nN-r=XsX3—X3X that our minimization is not affected by those forces. This leads to
o Lo minimization of the strain energy density given in Eg). with the
R=Xz/Xs=—X3/%;. strains given by Eqs(4). Next, this functional is represented in
Curvilinear displacements; are expressed in terms of Cartesiaefms of a series with respect to small parameters. A recursive
displacementsi; as procedure is invoked when perturbation of the previous approxi-
mation is used to obtain the following approximation. From this
v1=Up point of view “classical” approximation corresponds to the first
3) (main) nonvanishing terms in that series.
In our case there are two small parametérsand E These
U3= UyX3—UzX, parameters are considered independent: for a given order of terms

Shell strain measures are taken from the works of Kdigr with respect to? we sort out the terms with respect ioas well.

and Sander§7], which for cylindrical shells yields The small parametef enters the problem from the observation
thatX,le)T< and X,2~§ for any quantityX.

I’T= T'r:).(2X2+X3).(3

Vo= UZ).(2+ U3)'(3

Y11=V11 P117=U311
“Zeroth” Approximation. This is a starting point of the recur-
%) sive procedure. All terms that contain the small paramgiarthe
functional are set to zero. The resulting functional is degenerate
v v anc_I the gener_al solytion for _its kern@lull space is fo_und. This _
Yor=Up ot —  Poy=Ug 29— (_2) . defines one-dimensional variables. In our case setting all terms in
“ R ’ R 2 Egs. (4) containing derivatives with respect to a “slow” axial

Here y,z and p,z are the extensiondimembrang and bending ;ﬁ;g%ﬁ;ﬁggzrfob;n expression for nonzero strains of “zeroth
0

strain measures, respectively. Then, the strain energy density
the shell has the form 1
2y1=v 12 P12= IR U12

1
27157015 V21 p12=U3 10T IR (v12=3v29)

2Eshe|l= h EZB)@’)’aﬂ‘}/'yé—i_ h3EgBYé‘paﬁp75+ 2h2EgbBY§‘Y¢xﬁp75

U3 %]
where Greek indices vary from 1 to Ez#?° andEZ#”’ are two- Y22= V22t B P22T U322 E) - ©)
dimensional material constants corresponding to membrane and 2
bending deformation, respectively, aﬁggvﬁ corresponds to cou- Since Eq.(5) is a positive-definite quadratic form of strains, for a
pling between these two types of deformation. These twélisplacement field to belong to the kernel of “zeroth” functional,
dimensional material constants are obtained from the reduc@istrains in Eq.(9) must vanish. It can be directly checked that
three-dimensional material constalt&?”? by use of the relations the general solution of this problem has the form

v1=U; v=UX,+0r,

h/2

1 £[&\2
EeBYd papyd paByd_ — f Daﬁy&{ 1,_’(_) ]d (6 _ . (20)
{ e eb b } h o h'lh g ( ) U3=U2X3_ U3X2_ erT
These constants are, in turn, obtained from the regular threwhereU; and 6=v,/R—uv3, are arbitrary functions ok, . It is
dimensional constants as easy to sedusing Eqgs.(3)) that these one-dimensional variables
EaB33E 033 correspond to motion of a cross section as a rigid badiyx;)
DBy = paBys_ —H . GeBrGYN trans_latlon of a cross sgctlon in tlkedirection, andf(x,) is the
E3333 p rotation of a cross section abox.
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Asymptotic Re_cursion.Perturbati_on of the o_IispIacement fieldsimilar term in Yo, but multiplied by 2. So retaining only the
which was obtained at the previous step is now introducegbaging terms with respect b allows us to discard terms from

namely, Pap- The most obvious “phantom” terms of ordef)(* are
vi=U;+Wy present iny;, which defines the orders for the warping, written
) ) ~ underneath the individual terms in Eq42), and the solution for
U2:U2X2+U3X3+ 0I’n+W2 (11) 6)12

03:U2)'(3—U3)'(2—0I’T+\7V3. R ;.

. . . . . . . Wi o= — Uaxa . (13)

Substituting this displacement field, Ed1), into the strains, Egs. '

(4), and, in turn, substituting the strains into Ef), one obtains There might be, however, some other “phantom” terms which

an energy functional. Only the leading terms with respect to small 0 _— Y

parameters are retained at this step, and a minimization with pie of order €)% but still “too large” due to the presence of

spect toa; is conducted. As a result of this procedure the pertugnother small paramete}. In other words they are of order

bations @; are found as functions of one-dimensional variables(g)’l. The presence of one of this type of terms is related to a

and their derivatives. fundamental difference between open and closed cross sections. A
In the most general case, deformations due to all four oneenstraint of single-valuedness has to be satisfied around the

dimensional strain measures are of the same ddroted bye, closed contours of closed sections for certain variables; these con-

a nondimensional constant of the order of the maximum strain étraints do not apply for open cross sections. In particular, this

the beam If this were not the case, any smaller deformationapplies to the single-valuedness ®f. For open cross sections

could be simply neglected in the main approximation. The one;¢’ in y,, is a “phantom” since this term is killed by adding

dimensional strain measures are given in 8g. The only prob- term —r ¢’ to the right-hand side in Eq13). In this case the

lem is to determine appropriate dimensional constants that neeqdest nonzero terms in the functional that are proportiona! to

multiply these measures to prowdg aterm of the okdehis does | come from the py, and 6’ ~ £ Integration with respect to

not affectU; which is already nondimensionaAs shown below, circumferential coordinate of Eq13) yields

this constant must be eitharor h, depending on the geometry of

the contour. One can calculate the appropriate order using the s

expression for the one-dimensional energy for the isotropic case, Wy=—U.X,~ e’f r,ds (14)

since all material properties are assumed to be of the same mag- So

nitude, so the order of the one-dimensional strain measures is not o . . .

affected. However, these orders will naturally fall out of our derihere the coefficient fod" is called the “sectorial coordinate”

vation. Let us emphasize that the order of perturbations is n@td is given byz(s)=/¢ rnds. The sectorial coordinate is, in

assumed but determined during the minimization. In fact, it i&ct, a solution of a classical St. Venant torsional problem in the

easily estimated prior to the minimization by reckoning that leaghell approximation. To avoid redefining,, embedded ins,

ing quadratic and linear terms in the functional with respect to th@nstant of integration should be chosen such flaatds=0. It is

unknown perturbation are of the same order. obviously convenient to choose the origin of the Cartesian coor-

21 Phantom Step. There are some terms in the straini‘natei in the_ geometric center of the cross section, so that
X,0ds= [X3ds=0.

which are larger in magnitude than the corresponding strain co P .
ponent itself. Those terms are balanced by equally large terms, sg?n the Oth?r hand, fo_r a closed Cross sectigd, in g, is not
that their combination is of a smaller order. We call such ternfs_Phantom™ The requirement of smgle-valu.ednes.s foy pre-
“phantom” ones. Since at each step of asymptotic procedure ojfgms the possibility of d|sp|ac.emen,t f'e.ld as in E); only the
the leading terms are considered, it means that those “phantorfst térm creates a problem, sinf, 6" ds s not zero. As a resul,
terms are minimized to zero. This procedure is often referred {§ms proportional ta,¢" do enter the functional, which implies
somewhat cruelly, as “killing” excessively large terms in thethatag’~e. Then the terms witl®’ in p;, will be of ordere(g)
energy. Substituting the displacement field of Edd) into Egs. and can be neglected. Therefore, for the closed sections the
(4), one obtains equivalent of the last term in E§14) belongs to the next step of
approximation.

There is another “phantom” term that is also of the form

e(2)~1. If a~R then

yu=Ui+Wy,
€ €
2’)/12: X2Ué + X3Ué +rn0/+ \I/\Vl’z +V\A/2’1
(all)"te (al)"le € (a/lh~le (all)e

-1
W3 7’22(\7V27VAV3)*(5 hp2o(Wo ,W3). (15)
722:W2,2+ﬁ
‘ e Thus, minimization of the main terms in the functional simply
. . renders
hp11=h[X3U;—X,U5—6"r .+ W3 1]

€ € (all)e (a/|)2€ \;V

~ 3
Y22=Wp ot R 0. (16)

1 3
hp1o= h[ﬁ{xauly"‘ 01— Wyt — 6 +W3,12_ﬁ (W5,
However, each individual term in E¢16) is not zero, but rather
(all)~te e (@l le e (alle (all)e of order 5(2)’1 and is undetermined at this step. The second
equation for these unknowns stems frpp and due to Eq(15)

- W, will be provided in the next approximation. & andR are not of
hp22_h(w3’2_ﬁ) : 12)  the same order, then orders §, and p,, for a given displace-
2 ment field are uncoupled, and no “phantom” terms are present. In
€ € particular this is the case when no curvature is preseat R

At this step, terms withp,, 5 do not enter the minimization proce- =«). However, formulas for classical stiffnesses will have the
dure. The reason for this is that, for each ternpjg, there is a same form in both cases, as shown below.
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2.2 Classical Approximation. At this step terms of order $= _pilg E (19)
€2 in the functional are recovered. Displacement field obtained at ' Tk
the previous step is perturbed again. Denoting these perturbati§tstituting the result into Eqe8), we obtain the final expression
asw;, one can write for the classical strain energy, given by

Ul=U1*XaUQ*M+W1 C:J'TT(Q_SFrlS)TdS (20)

v=U X+ O+ Wotw 17 o _ o
2 o nt 22 (a7 whereT is eitherT g, or Ty, depending on the cross section in
U3:U2).(3_U3).(2_ 0r7.+\iV3+W3. ques“on.

This is the most general form of the perturbed displacement field.2.4 Closed Cross Sections.As described abovey;, con-
As described above, the underlined term is present only for optins nonzero terms of ordef’ neglected so thaw'={U;
cross sections, whil,, are present only ii~R. The latter terms  —x, U’ —x,;U3%,0,0}. Here the 34 matrix T, which connects)
are still unknown, but connected by H36). Substitution of Egs. and «, effectively becomes a column matrif={1,—x,,
(17) into Eqgs.(4) leads to the following expressions for strains: —X3,0}; thea are not arbitrary and proper constraints have to be
imposed if the minimization is conducted in terms of these un-

=U;—x,U’"— 0'n +w . ;
LR AR K 1.1 knowns. Forn-celled sections there arex such constraints—

€ € NTRP™Y /1) . . .
(@Mean (D¢ four constraints per each cell. Single-cell formulas are derived
2915= 0 + Wy o+ Wy below, but the procedure is equally applicable for multiple cells as
s e (all)ealh well. _
Let us consider most general case witena (the other cases
B W3 are analogous with obvious simplifications and lead to the same
7’22_W2,2+E constraints We denoteE=hW;,—hW,/R, so thatZ= ,=¢3.
€ -\ — .
€ Clearly $ p3ds=¢E= ,ds=0. Three other constraints stem from
, R R the requirement of single-valuedness of displacements in Carte-
hp11=h[XgUz—xU5— 6"r -+ W3 13+ W3 1] sian coordinates, such thé; ,ds=0. Note the analogy between
€ e (alle (alh)?e the imposed constraints and the introduction of one-dimensional
Or oWy, 3(Wy 1+ W, ) variables Eqs(10). First, OzgSulyzd.s:gSWl,zds, so thatgﬁdbl.ds
hpi,=h| — 0’+?+w3,12+w31127T =40'¢r,ds. The other two constraints are a bit less straightfor-
ward. Using Egs(3) the following relations can be written for
€ € (all)e (all)2e Wa:
R Wy Wy N e A o A
hpyo=h| | Wao— —| +|Wg,— = |. (18) [Wy Ko+ Woko+ Wg X3+ WsXg]ds=0
' R ' R
2 2 (21)
€ € . .
. . [W2 X3+ WoKg— W3 X — W3Xp]ds=0.
Note that the still unknownv, are present along wittv,—they 3€ ’ ’
are distinct, so thaf\v,~w,. This allows one to neglect the Taking advantage of Eq$2) this can be rewritten as
latter with respect to former ip,,z . Of course, when terms due to W W
W, vanish, terms due tw, have to be retained—this is the case f xz(wz o+ = +x3(w3 — _2) ds=0
for y,, (or for p, s whenw, themselves vanish—see the previous “ R “ R (22)
step. Underlined terms exist only for open sections while double- W W
underlined term only for closed cross sections. Let us keep in Egs. 3g 5(3(\7\,2 o+ _3) +>'<2(\iv3 ”— _2) ds=0.
i 2 R 2 R
(18) only terms of ordere, denote them with bars and sort the

result into two arrays: those containing the one-dimensional Str%calling Eq.(16), one finds that
measures " ={y;,,hp11,p12) and those with only unknown
quantities which will be found in the process of minimization
(¢"={712,722.hp22}). This provides the motivation for writing
stral_n_the energy density in the form E@) and_ resembles thg Therefore, for a single-cell cross section functional to be mini-
semi-inversion procedure that was used in Reissner and[Tkai mized has the form

Depending on the geometry of the cross section, the following
distinct cases can be identified.

%)‘(C,Eds:o or §XQ¢3d5:O.

2A= % YPQu1t 2 S+ diPyi i+ 2N, (b +6'1,)
2.3 Strips and Open Cross Sections. Ironically, strips rep- [41Qut265uds+ P &, 141 i

resent the only case where all three componenig afe needed. Y
If we align the larger dimension of the strip along with then T2¢3(A Xyt hg)]ds (23)
X3=0 andU; drops from they,,, therefore the largest term with where\ , are Lagrange multipliers; here and belew 1, . . . 4.

Uz comes fromp,;. The double-underlined term in Eq48) is  For multiple-cell cross sections, such a set of four Lagrange mul-
absent(no constraint of single-valuedngsso the largest terms tipliers has to be introduced for each cell, while minimization
with @ comes frompy,. The resulting orders follow aaUj should be conducted over the whole cross section.
~hUj=~ho'~e, s0 ¢ ={U]—x,Uj,hUj,—he'}, or in matrix ~ Then the solution is given by
form = Tguin(S) @, WhereTgy, is a 3X4 matrix. o~ -1 _p-1

Forwope;m?:(rc?ss sections;zmgoes not drop out from the;; so $i=~Ciga= Pyt where =Py 7S;y. (24)
p11can be neglected arJ;~ €. Thus, the known strains dependHere t™={X\;,0,(\ ,X, + A)}=T(S)\. We can rewrite Eqs(24)
on the one-dimensional strain measures fS={U;—x,U}; explicitly in terms ofa and\, yielding

—x3U3,0,—h@'}, or in matrix form,=T,pe(S)a. - _15

! Lo Sy open i=—CiTaa— P Tjaks. 2
There is no constraint og, so minimization is straightforward, ¢ CiTaa™Pij"Tiaka (25)
yielding Substituting Eqs(25) into expressions for constraints, we obtain
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—a, jg [c;Ta—Ealds=\, 3@ [Py Tjalds
— @y é [{1vxa}C3Ta]dS

=\, 3@ [{1x,}P5'Tialds  (26)

hereE={0,0,0r,}. These are four linear equations foin terms
of the one-dimensional strain measuréx=Ja, \=F Ya.

Substituting the result into Eq&24) we obtain the solution for
as

$=—(cT+P TF L)a=Y(s)a. (27)

Finally, substituting Eq.27) into Eq. (23) yields the stiffness
matrix:

Cc= jg T'QT-Y'PY+LE (28)

wherelL ,=F}J,. (LE corresponds to the teri, 6'r ).

From the present point of view, the derivation in Berdichevsky

et al.[4] is equivalent to settingb to zero. It can be shown using
Eqgs.(24) and(26) that this assumption is appropriate for so-calle
circumferentially uniform sectiongCUS) (i.e., when material

constants can be taken outside the integral and satisfying th
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Fig. 2 Torsional rigidity, antisymmetric layup h=0.03in

d

tee results of Berdichevsky et di4] and those of the present

constraints onp, renders it zerp However, there are some case@symptotically correct theory is practically independent of thick-
that the influence of this term does make a difference. To demd#eSS, as can be seen Fig. 4. _
strate this let us consider a box-beam with geometry and materialt has to be emphasized that while the cases where the theory

properties taken from Smith and Chop#d. Two following con-
figurations are considered:

outer dimensions: heighb=0.53in.

width a=0.953in.
wall thickness: h=0.03in.
material properties: E,=20.6x 1C° psi
E,=1.42x 10° psi
G, =8.7x10° psi
Gy, =6.96X 10° psi
v = v, =0.42
antisymmetric: right and upper wall layup:(©);/(—0)3

antisymmetric: left and lower wall layup: (—©)3/(0);
(29)
symmetric: right and left wall layup: (0)3/(—6);

symmetric: upper and lower wall layup:(—0)3/(0);.

Both antisymmetric and symmetric layups exhibit essentially r
elastic coupling, and the one-dimensional stiffness matrices ¢
diagonal. .

The torsional rigidity can be significantly overestimateeifis
disregarded. This can be observed by comparing the results
Berdichevsky et al.4] with the present ones and with the numeri-
cal results obtained from VABS Cesnik and Hod¢gs The re-
sults of Berdichevsky et aJ4] are far too stiff in torsion relative
to VABS results while the present theory exhibits excellent agre
ment with VABS. Indeed, foh=0.03 the difference is less than
three percentsee Figs. 2 and)3With decreasing thicknegkeav-
ing the other dimensions the sananalytical results converge to
the numerical results. In fact by=0.006 in the analytical, results
exceed the precision of 1000 six-noded finite elements in VAB:

from Berdichevsky et al4] breaks down are quite rare, it might
actually create a false sense of security: For the considered sym-
metric case torsional rigidity is overpredicted by a factor of two!
On the other hand, another quite obvious approximation would be
to set the hoop bending moment to zero. This can be interpreted as
a thin-walled equivalent of the so-called “uniaxial stress” as-
sumption(when all stresses in the cross-sectional plane are set to
zerg that is quite common in beam theories, e.g., RE@ and

Kim and White[11]. As can be observed from Figs. 2 and 3, this
assumption leads to an underprediction of their torsional rigidity.
It has to be added that for the specific cases considered in Ber-
dichevsky et al[4], the differences between our results and theirs
are negligible. Thus, for the sake of brevity, the excellent corre-
lations published therein with experimental and numerical data
need not be repeated here.
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One should recall here that finite elements with large aspect ratios

are notoriously fickle. We also note that the difference between
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Fig. 3 Torsional rigidity, symmetric layup h=0.03in
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w

ZFVIasov: aaCabab+ 2M aaaH"+ F 0”2 (30)
e whereC,y, is given by Eq.(20) for open cross sections and

IS
V=
ez aaans ann

|}
|}
1}
A
A

(=}

T
\

L\

.- Ma:f 7S1i Tiads
(31)

RN W W
(=R
T

r= f 7%(Q%,—ciPiy)ds.

Note thatM , does not have a contribution frof, , since terms

of order e are correctly obtained using only classical warping.

This generalizes the formulas provided in Volovoi et[&].where

I-beams were treated as an assembly of strips rather than as a

WS DEUTE FURUS IS P P S S contour, and the results were extensively correlated with three-

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 dimensional simulations. For isotropy the formulas obtained re-
Wall thickness, in duce to Vlasov theory.

- - Berdichevsky et al. Finally, let us consider the terw,, from vy,,, which is of

— Present order e(%)(§) if R~a. If the cross section is open, there is no

constraint orii, so by choosingi; ;= ¢; — W, ; (hereg, refers to
Fig. 4 Difference in torsional rigidity, =~ ©=60deg the solution for Vlasov correctionthis term can be killed. Theo-
retically, for closed sections this is not truefifv, ;ds is not zero.
Value of this integral depends on the constraints imposed on clas-
sical warping. Using constraints that are chosen so that warping
The general conclusion can be drawn that, while for mosioes not affect the definition of one-dimensional variables, it can
layups either “no bending shell strain measures” or “no hoofppe shown that for a closed contour of a constant curvature
moment” might work quite satisfactorily, only the present theor$Ww, ;ds=0. For a general geometry this is not so, but constraints
can insure correct results for all the cases. can be adjusted appropriately. Therefore, this term is not expected

N . to play a significant role.
Strain Field. Let us emphasize that for all types of cross

sections—even in “classical” approximation—the cross section
is notrigid in its own plane! The in-plane strains are not zero b3 Conclusions
are given by Egs(19) and (27). By the same token, unless one ) N ) ) )
deals with isotropy or similarly restricted case, the shear syygin ~ Using small parameterg and 3, which are inherent to thin-
is nonzero and essential to the analysis, even without resortingwelled beams, and without appeal to aag hoc geometric as-
Timoshenko-like theories. On the other hand, within the precisi@umptions whatsoever, asymptotically correct theories are derived
of this approximationy;;, p11, andp,, have very simple expres- for thin-walled anisotropic beams. These theories include closed-
sions, since they are given by appropriate components. of form expressions for cross-sectional stiffness constants as well as
__.recovering relations for straiand displacement when possible
Recovering DisplacementsWhen there is no curvature' It is noted that the term “asymptotical correctness” concerning
={wy,,W;5,,hwz 5, SO onceg is obtained this relationship canan approximate solution denotes its agreement to a specified order
be integrated. In order to preserve the definition of onéa a small parameter with an asymptotic expansion of the exact
dimensional variables one has to eliminate rigid-body motiorsblution in that parameter. Asymptotical correctness is the most
from this warping(i.e., fw;ds= [(w,X3—Ws3X,)ds=0), this al- important characteristic of any approximate solution.
lows one to definav; uniquely which then should be substituted The resulting Vlasov-like theory for beams with open cross
into Egs. (17) to obtain the full displacement field. However,sections is a generalization of the previously published theory for
whenR~a only W;, andw; can be obtained, whereas knowingl-beams in Volovoi et all5]. However, unlike any existing theory
¢, is not sufficient to recovew, andws individually. Thus, the for closed sections, the effects of shell-bending strain measures
full displacement field cannot be recovered in this case. The lat@ie included herein and their importance is demonstrated. It is
situation is similar to the one described in Berdichevsky arghown that the Viasov effect for strips and beams with closed
Misyura[12]. cross section is negligible.
. Unlike most treatments of thin-walled beams in the literature,
2.5 Second-Order Terms. The next step of the asymptoticihe present results are simultaneously obtained for open and
procedure allows us to obtain terms in the strain energy up {fsed-section anisotropic beams, including strip-beams. The sig-
€2(%)2. While generally this is a cumbersome procedure, it turgficant differences entailed by these different geometries are
out that sometimes these terms are very significant—and easiiyown to be naturally resolved within the same asymptotic frame-
calculated. This can be clearly seen from EG$). There are two Work. Now that an asymptotically correct theory is in place for
terms present iny;; and ;, which are of ordere(2)(2). While thin-walled beams, one can undertake critical assessment of pre-

we neglected those terms in the “classical” approximation, the\{/lously published theories of thin-walled beams.

clearly can be quite large. We perturb the “classical” displace-
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