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Abstract—Numerical simulations are used to guide the devel-
opment of a simple analytical theory for ballistic field-effect tran-
sistors. When two-dimensional (2-D) electrostatic effects are small
(and when the insulator capacitance is much less than the semi-
conductor (quantum) capacitance), the model reduces to Natori’s
theory of the ballistic MOSFET. The model also treats 2-D elec-
trostatics and the quantum capacitance limit where the semicon-
ductor quantum capacitance is much less than the insulator ca-
pacitance. This new model provides insights into the performance
of MOSFETs near the scaling limit and a unified framework for
assessing and comparing a variety of novel transistors.

Index Terms—Ballistic MOSFET, device simulation, double-
gate MOSFETs, quantum effects, semiconductor device modeling,
ultra-thin body.

I. INTRODUCTION

M OSFET channel lengths continue to shrink rapidly
toward the sub-10 nm dimensions called for by the

International Technology Roadmap for Semiconductors [1],
[2]. Coupled with the use of high-mobility channel materials
[3]–[9], nanoscale channel lengths open up the possibility
of near-ballistic MOSFET operation. As MOSFET scaling
continues, molecular transistors that could replace them are
also being explored. Carbon nanotube transistors, for example,
are especially interesting because their one-dimensional band-
structure suppresses backscattering and makes near-ballistic
operation a possibility [10], [11]. Per unit width on-currents
significantly higher than those of MOSFETs have already been
reported [10 ], [12]. For these reasons, it is important to under-
stand ballistic operation—both in conventional MOSFETs and
in unconventional transistors. Our objectives in this paper are
to present a simple analytical theory for ballistic transistors and
to explore its application to MOSFETS and to unconventional
field-effect transistors.

The operation of MOSFETs in the ballistic regime has
recently been explored by simple, analytical models [13]–[16]
as well as by detailed numerical simulations [17]–[22]. In
Section II, we review our understanding of the device physics
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Fig. 1. Structure of the model device: a double-gate MOSFET. A body
thickness of 1.5 nm and an oxide thickness of 1.5 nm were assumed. Both the
source and drain regions were doped at 10/cm . The gate workfunction was
set to 4.25 eV, which produced an off-current of 1.6 nA/�m.

of ballistic MOSFETs as developed in previous publications
[23]–[25]. In Section III, we present a simple, analytical model,
and in Section IV, we show that it agrees with two-dimensional
(2-D) numerical simulations of ballistic MOSFETs. In Sec-
tion V, we apply the new model to ideal carbon nanotube FETs
and discuss the interesting effects that occur in the quantum
capacitance limit [26]. Finally, in Section VI, we discuss
why the model developed here does not describe devices like
Schottky barrier FETs before concluding in Section VII.

II. DEVICE PHYSICS OFBALLISTIC MOSFETS

Numerical simulations provide detailed information on the
operation of nanoscale devices. Two transport models have
proven to be especially useful in our work. The first is a nu-
merical solution of the ballistic Boltzmann equation [19], [25],
and the second is the nonequilibrium Greens function (NEGF)
formalism for quantum transport [27], [28]. Fig. 1 shows
a model 10-nm MOSFET, and Fig. 2 shows the computed
ballistic distribution function within the device under on-state
conditions [25]. The results show that two distinct carrier
populations exist: one due to source injection and another due
to drain injection (scattering would mix these two populations).
Deep within the channel, the drain-injected population retains
a near-equilibrium shape, but the source-injected population
is strongly distorted. Fig. 3 is an NEGF simulation of the
energy-resolved electron density under on-state conditions.
Although quantum interference effects are seen as well as
tunneling of carriers beneath the source-channel barrier,
NEGF simulations of the terminal – characteristics of
well-designed MOSFETs agree rather well with semi-classical
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Fig. 2. Ballistic distribution function within the model device under on-state
conditions as computed by solving the ballistic BTE. (From [25].)

(a)

(b)

Fig. 3. Energy-resolved (a) density-of-states versus position and (b) electron
density versus positions with the model device as computed using the ballistic
NEGF formalism.

simulations—even at the 10-nm scale (when the strong effects
of quantum confinement are included in both simulations) [18],

(a)

(b)

Fig. 4. Computed energy band diagrams under (a) low drain bias and (b) high
drain bias. The parameter is the gate voltage.

[19]. Both the quantum and classical simulations show rich,
complex phenomena within the device, but it turns out that a
simple description of the current versus voltage characteristics
is possible [24].

Fig. 4 shows the computed self-consistent potentials within
the model nanoscale MOSFET under low and high drain bias
with gate voltage as a parameter. (What is plotted is actually the
bottom of the first subband versus position.) At low gate volt-
ages, the energy barrier between the source and drain is high,
and the device is off. A high drain bias lowers the energy in
the drain, and when a high gate voltage lowers the potential en-
ergy barrier, electrons flow from source to drain. This picture
of the MOSFET is essentially that of the bipolar transistor [29];
transistor action occurs by modulating the height of an energy
barrier. It is more common to think of MOSFETs in terms of
the gate modulating the charge in the channel, but the charge
in the channel is controlled by the height of the barrier. MOS-
FETs and bipolar transistors operate by similar principles (both
below and above threshold); in the bipolar transistor, the height
of the energy barrier is controlled directly by the base-emitter
voltage, whereas in the MOSFET, it is controlled indirectly by
the voltage on the gate [29]. As will be discussed in Section VI,
not all transistors operate by this charge (or barrier height) mod-
ulation principle.

Current is the product of charge and velocity, which we plot
separately in Fig. 5. In this figure, the gate voltage is high, and
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(a)

(b)

Fig. 5. Computed behavior at the top of the source to channel barrier. (a)
Electron chargeQ (0) at the top of the barrier versusV . (b) Average electron
velocity at the top of the barrier versusV .

we plot the two quantities as a function of . Fig. 5(a) shows
that the charge at the top of the barrier is nearly independent
of for a well-designed MOSFET, and for operation above
threshold, it is given by MOS electrostatics as

(1)

We will show in a later section that the initial dip in (0)
and the subsequent rise can also be explained. Fig. 5(b) shows
that the average electron velocity at the top of the barrier in-
creases with and then saturates. The saturated velocity at
the top of the barrier is simply the velocity of the thermal equi-
librium hemi-Fermi–Dirac distribution shown in Fig. 2. (Note
that above threshold, the electron gas is degenerate, and the
magnitude of this injection velocity depends on the gate voltage
[13], [15].) It is interesting to note that velocity saturation oc-
curs in a ballistic MOSFET, but it occurs at the top of the barrier
where the field is zero rather than at the drain end where the field
is high [24]

Because the top of the barrier has special significance, it is the
starting point for our analytical model. For a ballistic transistor,
the states at the top of the barrier are filled from either the source
or the drain. For a quantum transport model, the local density of
states fillable by the source and drain can be evaluated directly
from the spectral function [27], [28]. In a semiclassical model,

Fig. 6. Illustration of how the k-states at the top of the barrier are filled by the
two Fermi levels.

the local density of states is determined by the relation
for the semiconductor shifted by the self-consistent potential at
the top of the barrier. Fig. 6 shows how the states at the top of
the barrier are filled for a simple bandstructure. The positive
velocity states are populated according to the Fermi level of the
source and the negative velocity states by the Fermi level of
the drain. Our key task in developing an analytical model will
be to devise a simple approach to determine the self-consistent
potential at the top of the barrier.

Finally, we mention one subtle point. A careful examination
of Fig. 4(b) indicates that the conduction band in the source
region actually floats down by about 10 mV as the gate voltage
increases. This unfamiliar behavior is a consequence of trans-
port at the ballistic limit. The source Fermi level is fixed at 0 eV
and represents the Fermi level of the equilibrium source reser-
voir/contact. Under low gate bias, most of the positive velocity
electrons injected from the contact reflect from the energy bar-
rier so that both positive and negative velocity states in the source
extension are filled. When the gate voltage is high, however,
the barrier decreases, and fewer of the injected electrons reflect
from the barrier so that it is mainly positive-velocity states in the
source that are occupied. To achieve space-charge neutrality in
the highly doped source extension, the conduction band must
float down so that more electrons are injected from the source
contact. When strong scattering is present inside the source
extension, electrons occupy both positive and negative velocity
states, and this effect is absent. For a more complete discussion
of boundary conditions for ballistic MOSFETs, see [30].

In the following section, we introduce a simple, analytical
model, and in Section IV, we show that it accurately describes
the physics of ballistic nanoscale MOSFETs.

III. M ODEL

A simple 2-D model for the ballistic MOSFET is shown in
Fig. 7. It consists of three capacitors, which represent the effect
of the three terminals on the potential at the top of the barrier.
As also indicated by the shaded region in Fig. 7, mobile charge
can be placed at the top of the barrier. The mobile charge is de-
termined by the local density of states at the top of the barrier,
the location of the source and drain Fermi levels and ,
and by the self-consistent potential at the top of the barrier.
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Fig. 7. Two-dimensional circuit model for ballistic transistors. The potential at
the top of the barrier,U , is controlled by the gate, drain, and source potentials
through the three capacitors shown. The mobile charge at the top of the barrier
is determined byU and by the location of the two Fermi levels. The nonlinear
semiconductor (or quantum) capacitance is not shown explicitly but is implicit
in the treatment of band filling.

Because there is a relation between the local potential and the
charge, this effect can be described by a nonlinear quantum ca-
pacitance [26]. In equilibrium

(2)

which, since is sharply peaked about the Fermi en-
ergy, is times the density of states near the Fermi energy.
Solomonet al.have pointed out [31] that Natoris analytical bal-
listic model [13] does not include this nongeometric, quantum
(or degeneracy) capacitance. Neglecting the quantum capaci-
tance is justified for thick gate insulators (i.e., when );
however, it fails to describe gate electrostatics when the insu-
lator capacitance is large compared with the quantum capaci-
tance (i.e., when ( ), which occurs when the electrical
thickness is small or when the quantum capacitance is small, as
in a one-dimensional (1-D) conductor. Our model does not treat
the quantum capacitance explicitly; however, it is included natu-
rally through the treatment of self-consistent gate electrostatics.

When the terminal biases are zero, the equilibrium electron
density at the top of the barrier is

(3)

where is the local density of states at the top of the barrier,
and is the equilibrium Fermi function. The function

is nonzero for positive values of its argument only, which
represents the minimum of the density of states and is specified
as in equilibrium. When a bias is applied to the gate and
drain terminals (the source terminal is always grounded in this
work), two things happen: i) The self-consistent potential at the
top of the barrier becomes , and ii) the states at the top of
the barrier are now populated by two different Fermi levels. The
positive velocity states are filled by the source, according to

(4a)

and the negative velocity states are filled by the drain according
to

(4b)

where , and . A change of
variables can be used to re-express these equations as

(5a)

(5b)

where

(6a)

and

(6b)

Given an arbitrary density of states and the location of
the source and drain Fermi levels, we can evaluate the electron
density at the top of the barrier if the self-con-
sistent potential is known.

Finding the self-consistent potential involves solving the two-
dimensional Poisson equation as represented by the three capac-
itors in Fig. 7 with the bias induced charge

at their common terminal. We obtain the solution by super-
position. First, ignoring the presence of the mobile charge in the
channel, we calculate the Laplace potential at the top of the bar-
rier due to terminal biases, which is

(7a)

In this equation, the threes describe how the gate, drain, and
source control the Laplace solution and are given by

(7b)

where is the parallel combination of the three capacitors in
Fig. 7.

For a so-called, well-tempered MOSFET, the gate controls
the potential, and and . The second part
of the solution consists of grounding the three terminals and
computing the potential due to the mobile charge, at the top of
the barrier , from

(7c)

Physically, a positive bias applied to the drain and gate terminals
pushes down the potential energy at the top of the barrier as de-
scribed by , but because of the charge, the potential floats up,
as described by . The complete solution is obtain by adding
the two contributions to obtain

(8a)
where

(8b)

is the charging energy.
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Equations (5) and (8a) represent two, coupled nonlinear equa-
tions for the two unknowns and . These equations can be
solved iteratively to find the carrier density and self-consistent
potential at the top of the barrier. Finally, the drain current is
evaluated from

(9)

where is the “current-density-of-states” defined in the Ap-
pendix.

In summary, the procedure for computing con-
sists of the following steps.

i) Specify the semiconductor carrier and current-densi-
ties-of-states and either analytically or by
a numerical table.

ii) Specify , , , and .
iii) Iteratively solve (5) and (8a) for and .
iv) Evaluate the current from (9) for the assumed and

.

We have defined the model in terms of two densi-
ties-of-states—one for the carrier density and one
for the current density —which can be determined
directly from the semiconductor bandstructure. In general, the
integrals in (5) and (9) must be done numerically, but for simple
bandstructures, they can be done analytically. In the Appendix,
we evaluate these expression for 2-D carriers in a simple band
and discuss how to use more general bandstructures.

IV. A PPLICATION TO BALLISTIC MOSFETS

To illustrate the use of the model, we apply it to the double
gate MOSFET presented in Fig. 1 and compare the results to 2-D
numerical simulations with nanoMOS 2.0 [22]. Although the
expressions for thes given in (7b) are exact, they are difficult
to evaluate in practice because they depend on the 2-D structure
of the device. We will, therefore, treat them as fitting parameters
and present a step-by-step procedure for determining the three
parameters , , and . The results show that this simple,
three-parameter model does a good job of fitting the simulated
– characteristics over the full range of operation.

A. Parameters for the Analytical Model

The first step is to set the Fermi level for the
correct threshold voltage, which is equivalent to setting the cor-
rect gate work function. Alternatively, setting the Fermi level is
equivalent to setting the correct equilibrium carrier density at the
top of the barrier as given by (3). For a well-designed MOSFET
at low gate and drain bias, , , and are all small so

, and (3) for depends on a single parameter .
In practice, we adjust the Fermi level in the analytical model so
that the current matches that of the simulator for and

mV.
Next, after setting , we adjust the gate control param-

eter until the analytical model gives the same low sub-
threshold swing as does the simulation. We do this for

(a)

(b)

Fig. 8. Comparison of the analytical model to numerical simulations for the
ballistic MOSFET of Fig. 1. (a) Transfer characteristics under both low and high
drain bias. (b) Output characteristics. In both cases, the solid lines are from the
analytical modes and the points are from nanoMOS simulations.

and for mV. The induced charge at the top of the bar-
rier is very small so that the gate controls the position of
the top of the barrier through . For complete gate con-
trol ( ), the subthreshold swing is ideal, i.e.,
mV/dec at room temperature. For our model device, we obtained

.
Finally, having specified and , the drain control

parameter was obtained by horizontal shift of the
versus characteristics in the subthreshold regime [i.e., by
matching the drain-induced barrier lowering (DIBL) of the
simple model to the detailed numerical model]. This parameter
describes the additional change of the potential at the top of the
barrier due to the drain bias. For our model device, we found

.
Fig. 8(a) and (b) compare the– characteristics from the

analytical to those obtained by numerical simulation. From
the versus plot of Fig. 8(a), we see that the
subthreshold characteristics match very well both for low and
high . From the linear plot in the same figure, we also see
that at low and high , the characteristics match very
well. However, when both and are high, the match
is poor, and the analytical model underestimates . This
mismatch is also clear in the output characteristics presented
in Fig. 8(b), where we can see that for above threshold, the
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Fig. 9. Comparison of the analytical model to numerical simulations for the
ballistic MOSFET of Fig. 1. In this case, the floating source potential was
treated. In addition to good agreement at low gate and drain biases and as low
gate and high drain biases, this plot shows that the agreement at high gate and
drain biases is also good.

drain current from the analytical model saturates at a lower
value than numerical simulation. The reason for this mismatch
under high and and a way to treat it are discussed next.

B. Treatment of the Floating Source Potential

The discrepancy between the analytical and numerical
models under high gate and drain biases is related to the
floating source potential, which was discussed briefly in Sec-
tion II. This phenomenon, which is important only in ballistic
devices, is correctly implemented in the numerical simulator
but has yet to be considered in our analytical model.

As discussed in Section II (and, at greater length, in [30]),
for ballistic transport, a floating source potential is necessary to
maintain charge neutrality in the highly doped source and the
drain region under high bias conditions. As the gate voltage in-
creases, fewer electrons are reflected from the barrier; the source
potential must drop, so that enough additional electrons are in-
jected to restore space-charge neutrality in the source. When the
source potential decreases, so does at the top of the barrier.
The result is that this floating source effect increases the carrier
density at the top of the barrier, which explains the discrepancy
observed in Fig. 8 under high gate and drain biases.

With regard to the simulation procedure, the floating source
potential means that the source Fermi level cannot
be fixed at the beginning to produce a given since it is both
gate and drain bias dependent. As discussed in the Appendix,
one can readily extend the iterative procedure so that the Fermi
level is iteratively adjusted to maintain space charge neutrality
in the source under all bias conditions. Fig. 9 compares the

plots from the ballistic numerical simulation to the an-
alytical model with the floating source treated, as discussed in
the Appendix. Fig. 9 shows that when the floating source effect
is included, the analytical model reproduces the full, numerical
simulation quite well. The agreement is very good under high

and (where ignoring the floating source potential pro-
duced serious errors) but not quite as good under highand
low , where the model without floating source correction
worked better.

(a)

(b)

Fig. 10. Behavior at the top of the source to channel barrier as obtained from
the analytical model. (a) Electron chargeQ (0) at the top of the barrier versus
V . (b) Average electron velocity at the top of the barrier versusV

C. Charge and Velocity at the Top of the Barrier

Finally, we examine the charge density

(10a)

and the carrier velocity

(10b)

at the top of the barrier. Recall that the nanoMOS simulation of
Fig. 5 shows that these quantities had a simple behavior at the
top of the barrier. In Fig. 10(a) and (b), we plot these two quan-
tities from the analytical model. Fig. 10(a) shows, in agreement
with Fig. 5(a), that the charge at the top of the barrier is nearly
independent of the drain bias. The initial dip and subsequent
rise are also seen, although not as pronounced as in the full, nu-
merical model. (The simpler model, which ignores the floating
sources, actually does better in this regime.) The initial rise and
subsequent saturation of the velocity at the top of the barrier
is well-described by the simple model. These results show that
Natoris assumption (and our own in subsequent publications),
where (0) is independent of drain bias, is a good one for typ-
ical MOSFETs. In Section V, however, we will discuss a case
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for which the assumption of a constant charge at the top of the
barrier is not valid.

In practice, the model developed in this paper may be useful
to compare the measured characteristics of nanoscale MOS-
FETs to their ballistic limits. From the measured electrical char-
acteristic, the technique presented in this section can be used to
extract the parameters needed for the model. Another use for the
model might be to compare the upper limit performance of de-
vices that use novel channel materials to that of the conventional
silicon MOSFET. (The model has been formulated to allow the
use of numerically tabulated bandstructures.) Finally, we note
that the ballistic model is not entirely academic. Comparisons
with experiments suggest that present-day MOSFETs operate
at roughly 50% of the ballistic limit [16], [32], and much of the
research on new channel materials is motivated by a desire to
approach the ballistic limit.

V. MOLECULAR TRANSISTORS

The model presented in Section III was expressed in terms of
a general density-of-states so that it could describe transistors
made from different semiconducting materials, even single
molecule transistors. Carbon nanotube field-effect transistors
(CNTFETs) are a type of molecular transistor that has already
demonstrated high on-currents [10]–[12]. Carbon nanotubes
can be thought of as a sheet of graphene rolled up into a tube;
depending on how the tube is rolled up, the nanotube may
be either semiconducting or metallic. For semiconducting
nanotubes, eV/ , where is the diameter of the
nanotube in nanometers [33]. For typical nanotube diameters
(1–3 nm), the bandgaps are suitable for electronic devices,
and the 1-D bandstructure allows ballistic transport over long
distances [10]. CNTFET technology is at an early stage of
development; it is still not clear how CNTFETs operate or
even if they all operate in the same way. One possibility is
that the gate modulates the conductance of the channel as
in a MOSFET, which is supported by the observations that
some long channel CNTFETs obey the MOSFET square law
theory (with inferred mobilities of several thousand) and that
ambipolar behavior is not observed in these devices [12].
Another possibility is that the gate modulates the transmission
through a Schottky barrier between the source metal and the
nanotube channel, which is supported by the observation of
ambipolar operation of some CNTFETs and the transition
from the p-type to the n-type operation after gas absorption
[34]. Whether a CNTFET operates like a MOSFET or like a
SBFET may depend on details of the processing and device
structure that are still not fully understood at this time. The
maximum performance of a ballistic carbon nanotube FET
should, however, occur for MOSFET-like operation. Achieving
MOSFET-like operation will require learning how to heavily
dope nanotubes (both n- and p-type) or achieving small or
even negative Schottky barriers [35], [36]. Such devices would
behave much like ballistic MOSFETs with some differences
due to the 1-D density of states. CNTFETs, however, also offer
the possibility of operation at the quantum capacitance limit
where some interesting effects that do not occur in MOSFETs
arise.

(a)

(b)

Fig. 11. (a) Normalized electron density at the beginning of the channel versus
the drain voltage atV = 0:4 V for three N-type, 3-nm-diameter CNTFETs
with C = 0:4 pF/cm (dash-dot line), 5 pF/cm (dashed line), and 90 pF/cm
(solid line). (b) Charge versus the gate voltage curves forC = 90 pF/cm.
The power supply voltage specified by ITRS for the 2016 technology node [1]
(0.4 V) is assumed in the subsequent calculations.

The quantum capacitance limit occurs when the gate in-
sulator capacitance is much larger than the semiconductor
(or quantum) capacitance. For MOSFETs, it is unlikely that
operation in the quantum capacitance limit will be achieved,
but for CNTFETs, the situation is different. Operation in an
aqueous environment and the absence of dangling bonds,
which facilitates the use of high-gate dielectrics [12], provide
the possibility to achieve large gate insulator capacitance, and
the relatively low density of states in 1-D conductors reduces
the quantum capacitance [recall (2)]. Consider, for example,
an electrolytically gated CNTFET with the effective oxide
thickness nm and dielectric constant [10].
The quantum capacitance of the nanotube can be estimated
as 4 pF/cm, whereas that of the insulator is about 90 pF/cm;
therefore, the total gate capacitance is approximately. Even
for a recently reported 8-nm-thick ZrO-gated CNTFET [12],
the insulator capacitance is about 5 pF/cm, which is larger than
the quantum capacitance.

MOSFET-like CNTFETs can be treated with the analytical
model described in Section III if the appropriate is used
[37]. Fig. 11(a) plots the charge density at the top of the bar-
rier versus the drain voltage for three different gate capacitance
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Fig. 12. Intrinsic device delay metric versus the on-off current ratio for a model
ballistic MOSFET and for a MOSFET-like CNTFET. The solid line is for a
double gate Si MOSFET with channel lengthL = 10nm, gate oxide thickness
t = 1 nm, and dielectric constant� = 4, and the dashed line is for a
coaxially gated CNTFET withL = 10 nm, t = 2 nm, and� = 25.
The power supply voltageV = 0:4 V. By adjusting the gate work function,
the� versusI =I characteristics was obtained.

values. When , the charge at the beginning of the
channel is nearly independent of the drain voltage, and the tran-
sistor operates at the charge control limit typical for MOSFETs.
On the other hand, when , the charge at the be-
ginning of the channel decreases by a factor of two asin-
creases. In the quantum capacitance limit, instead of holding the
charge constant, the gate holds the nanotube potential constant
at the gate potential. In this sense, the device operates more like a
bipolar transistor [29]. Because the nanotube potential is pinned
by the gate voltage, increasing the drain bias suppresses the
by half of the distribution function and reduces the charge den-
sity by a factor of 2. At high , therefore, the gate capacitance
is only one half of its equilibrium value, as shown in Fig. 11(b).
Operation in the quantum capacitance limit has some interesting
implications: The on-off ratio increases, and the channel con-
ductance and transconductance approach the same value [38].

To explore the possible role of CNTFETs in future electronic
systems, it is important to compare the upper limit performance
of a ballistic CNTFET to that of a ballistic silicon MOSFET.
We consider MOSFET-like CNTFETs because they should have
a higher performance limit that a Schottky barrier FET. Di-
rect comparison of the on-current is clouded by the need to
convert the CNTFET on-current to per unit width basis; it is
preferable to compare quantities that are dimensionless or that
have the same dimensions. A useful set of performance met-
rics, which are independent of the channel dimensions, are 1)
the device delay metric (on) and 2) the on-off
current ratio . For these comparisons, we consider
two devices: 1) a 10-nm channel length ballistic, double-gate
MOSFET with nm and ; and 2) a 10-nm channel
length, ballistic coaxial-gate CNTFET with nm and

. A high- dielectric is used for the CNTFETs because
it has already been achieved [12].

Fig. 12 compares the on-off current ratio and the delay metric
of MOS and CNT technologies. The power supply voltage was
fixed at 0.4 V, the workfunction was varied, and the resulting
and plotted. The delay metric was evaluated using
the simple, analytical model with and a constant gate

capacitance , which was extracted from the charge versus
the gate voltage relation above the threshold. On theversus

plane, operation in the lower right hand corner is pre-
ferred, and the CNTFET shows a clear advantage. For a device
delay of 0.05 ps, the CNTFET has an on-off ratio that is more
than 100 times that of the MOSFET. For an on-off ratio of 1000,
the CNTFET operates at twice the speed of the MOSFET. The
advantage arises from three factors. First, the nanotube band-
structure delivers higher carrier velocities, which translates di-
rectly to lower switching delays. Second, the use of high-gate
dielectrics leads to higher induced charge in the channel, which
increases the carrier velocity by pushing the Fermi level high
into the band where it is steep. Finally, the low quantum capac-
itance coupled with the use of high-gate dielectrics facilitates
the direct modulation of the barrier height by the gate voltage,
without volt drops across the gate insulator. Although these are
upper limit estimates for each device, they show a considerable
performance promise for the CNTFET—one that merits serious
study.

VI. DISCUSSION

The simple model we have developed does a rather good but
not perfect job of reproducing more detailed numerical simula-
tions. The discrepancy under high gate and drain bias was re-
solved by forcing the potential at the top of the barrier to
follow the floating source potential, but the high-gate, low-drain
bias region is better described when is not allowed to follow
the floating source potential. The reason for this behavior can be
understood from Fig. 4. Under high gate and drain bias, the po-
tential energy maximum is pushed up against the source; there-
fore, it seems reasonable that follows the floating potential
in the source. Under low drain bias, it is not pushed as close to
the source, and therefore, is not as tightly coupled to the
source potential. Whether this physics can be captured in an an-
alytically simple way is still under investigation.

The model that we have developed describes MOSFET-like
transistors in which the gate modulates the channel conductance
and the contacts are nearly ideal. Other types of transistors are,
however, possible. One possibility is that the source-drain cur-
rent is limited by a metal/semiconductor junction at the source
end of the channel whose tunneling resistance is modulated by
the gate. The Schottky barrier MOSFET (SBFET), which re-
places the heavily doped silicon source drain with a silicide, is
one such example [39], [40]. The question of whether our model
applies to SBFET-like transistors is the subject of this section.

Ballistic SBFETs can be simulated by NEGF techniques sim-
ilar to those used for MOSFETS [35]. We simulate a 10-nm
channel length, double-gate, ultra-thin body SBFET with a sim-
ilar device geometry to the MOSFET shown in Fig. 1. Fig. 13
shows the versus characteristic compared with the re-
sult of the simple, analytical model described in Section III. Its
clear that the simple model overestimates the on-current of this
device. Fig. 14, which plots the first conduction subband min-
imum versus position at different gate voltages, explains why
the simple model fails for the SBFET. At low gate bias, a large
barrier limits the drain current. Gate modulation is achieved by
reducing the barrier height, which is a mechanism similar to that
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Fig. 13. I versusV characteristics of a ballistic SBFET as simulated by
the NEFG approach (dashed line) and the corresponding ballistic MOSFET
characteristics as obtained by the analytical model (the solid line). The
double-gate SBFET has a gate and channel lengthL = L = 10 nm,
silicon body thickness oft = 1:5 nm, gate oxide thickness oft = 1 nm
with � = 4, and an effective Schottky barrier height of� = 0:2 eV. The
off current wasI = 1 �A/�m in both cases.

Fig. 14. First conduction subband energy versus position for the SBFET from
the off-state (V = 0 andV = 0:4 V) to the on-state (V = V = 0:4 V).
The shaded region is the silicide source (drain) with the Fermi levelE ,E .

of the MOSFETs, but at high gate voltages, a conduction band
spike, which appears near the source end of the channel, limits
the current. The gate modulates the current by squeezing the
barrier width, which increases quantum mechanical tunneling
through the barrier. Because device operation is not governed
by thermionic emission, we cannot identify a beginning-of-the-
channel, where the charge density is nearly independent of the
drain voltage, and the average carrier injection velocity can be
computed by simple semiclassical carrier statistics. The analyt-
ical model of Section III, as well as the semiclassical Boltz-
mann transport equation, do not apply to this device. In the con-
ventional MOSFET, transistor action occurs by modulating the
charge in the channel; in the SBFET, transistor action occurs by
modulating the transmission coefficient of the device. To simu-
late typical SBFETs with a positive M/S barrier height, an ap-
proach that treats the gate-modulated tunneling at the source
contact is needed.

VII. CONCLUSIONS

In this paper, we have developed a simple analytical model for
ballistic nanotransistors that operate by modulating the charge
in the device (as opposed to modulating the current at the con-
tact). For conditions typical of silicon MOSFETs and when 2-D
effects are small, this surface potential model reduces to Na-
toris theory of the ballistic MOSFET. When the insulator ca-
pacitance exceeds the quantum capacitance, however, some in-
teresting new effects arise. This analytical model captures the
essential physics of MOSFET-like ballistic nanotransistors and
provides a convenient way to assess and compare transistors at
the ballistic limit.

APPENDIX

Fig. 6 shows how the states at the top of the barrier are occu-
pied for a simple relationship. As mentioned in Section III,
the energy reference is the top of the barrier at zero terminal bias.
We express the source Fermi level , drain Fermi level ,
and potential at the top of the barrier for first subband with
respect to this reference. The positive-states are then occupied
according to the Fermi level of the source to find

where is a constant energy surface in-space, is an
elemental area on this surface, and is the distance
between the surfaces and [41]. Defining the
density-of-states as

we finally have

(A1)

The last expression is valid for general bandstructure in 1-D,
2-D, or 3-D. The density-of-states function is either analytically
expressed or is numerically tabulated. For a 2-D electron gas
with isotropic and parabolic relationship, we have

where is the 2-D density-of-states, when spin
degeneracy and a valley degeneracy of two for the unprimed
subband in silicon are considered. In this case, the integral for

can be analytically evaluated as

(A2)

where is the effective 2-D den-
sity-of-states, is the Fermi Dirac integral of order 0,
and . A similar expression exists
for with replaced by .
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In addition to the carrier density, we can also evaluate current
for the positive population from

(A3)

where is the average value of over the constant en-
ergy surface , which is expressed as

Now, defining the current-density-of-states as

(A4)

we have

(A5)

In general, this expression can be evaluated for either numeri-
cally tabulated or analytically calculated bandstructures. For the
2-D electron density considered here, we can analytically eval-
uate to obtain

(A6)

where the factor appears because of averagingover all
possible values at energy . With this expression for

, we can analytically integrate (A5) to find

(A7)

Similar expression can be obtained for negative going carriers,
with replaced by .

When the drain bias is large, only the states are
occupied, and we can evaluate the maximum velocity at the top
of the barrier as

(A8)

The presence of the Fermi–Dirac integrals in this expression
explains why the saturation injection velocities in Figs. 5(b) and
10(b) are gate bias dependent. Below threshold voltage, the ratio
of the Fermi–Dirac integrals is one, and the injection velocity

(a)

(b)

(c)

Fig. 15. Treating floating boundary condition. (a) Under lowV , charge
neutrality in source extension is maintained by onlyE . (b) WhenV is
increased, barrier lowers and charge neutrality is not maintainted. (c) Raising
E toE restores charge neutrality in source entension.

becomes constant. The injection velocity at the highest gate bias
determines the maximum on-current that a transistor can deliver.
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Finally, we will discuss the treatment of the floating boundary
condition in the analytical model. In Fig. 15(a), we see that at
low gate and high drain bias the barrier height is large, i.e.,

, and inside the source, both positive and nega-
tive going states are at equilibrium with the source Fermi level.
The charge neutrality condition demands

(A9)

where is the doping density in the source extension.
When high gate bias is applied, we can see in Fig. 15(b) that

the barrier height becomes small, and there are three distinct
groups of carriers: i) carriers with energy lower than the bar-
rier height and are reflected by the barrier, ii) carriers with en-
ergy higher than the barrier and having positive velocity, and iii)
carriers having energy above barrier and going in the negative
direction. Population groups i) and ii) are at equilibrium with

, and group iii) is in equilibrium with . Because the
sum of the three populations in Fig. 15(b) is smaller than equi-
librium carrier density in source, to maintain charge neutrality,
we have to increase ( ). Physically, is fixed, and

floats down. Equivalently, as shown in Fig. 15(c), we can
keep fixed and float up. In our analytical model, we
have treated the floating boundary condition by fixing and
floating up to . Therefore, the charge neutrality condi-
tion in the source is

(A10)

Equation (A10) is solved self consistently with (3)–(8), i.e.,
for each , barrier height is computed to distinguish three
carrier populations, and charge neutrality in the source is en-
sured.
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