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NOMENCLATURE 

The following symbols have been adopted for use in this thesis: 

a. 

b 

E1,E2,E3 ........ , .. . 

Glxz'Glyz'G2xz'G2yz 

hl' h2 

i 

j 

Kl,K2 

Mx, My, Mxy 

N N N x' y' xy 

p. 

Qx,Qy 

tl,t2,t3' 

u ' . . ' 

. . . 

vii 

length of plate in x-direction; 

length of plate in y-direction; 

some constants defined by the 
geometrical and material properties; 

transverse shear rigidities of plate; 

bending and torsional rigidities of 
plate; 

Young's modulus of elasticity of 
facing membrane; 

shear modulus of elasticity of core; 

thickness of core; 

index, designates ith membrane; 

index, designates jth core; 

constant defined by V,, C, C and C ; x y 

moment, twisting moment per 
unit width of plate; 

stress resultant per unit width of 
plate; 

loading function normal to the plate; 

shear force per unit width of piate; 

thickness of facing membrane; 

strain energy; 



v~~. v~H~ ........... . 

w . . . . . . . . . . . . . . . 

w .... 001110·····~· 

(3 

'1 · '2· C3, C4, C5, C6 

Al,\2, ... ,\8, 

(J, ,CJ. 
lX 1y 

T, 
1xy 

72. 

74 

7 6. 

complementary energy, auxiliary 
functional; 

Lagrangian multiplier, transverse 
deflection of the plate; 

work done by edge forces and 
moments; 

distance measured from xy~plane 
to the middle plane of first, second, 
third membrane, to neutral surface; 

Lagrangian multiplier, slope; 

Lagrangian multiplier, slope; 

generalized displacement at boundary; 

Lagrangian multiplier; 

Poisson's ratio of membrane, equi­
valent Poisson's ratio, common 
Poisson's ratio; 

constant defined on c 1, c 2, c 3 and c 4 ; 

normal stress in ith membrane; 

shearing stress in ith membrane; 

Laplacian operator; 

7 2 7 2 and 

727272 

Additional symbols used in the example problem and in the Appendix 

are defined when they appear and are not listed. 

viii 



1. 1 General 

CHAPTER I 

INTRODUCTION 

A small-deflection theory for multi-core sandwich plates is 

developed by means of variational principles. A set of differential 

equations governing the deflection, moments and transverse shear 

forces of the plate is derived. 

The sandwich constructions are characterized by the relatively 

low-stiffness core materials between facing membranes with high 

moduli of rigidities. In this investigation, the facing materials are 

considered to be isotropic and homogeneous. However, the different 

cores possess different elastic properties and, in general, are 

assumed to be orthotropic. The reduction to the case of isotropic 

cores is also shown. All deflections are defined on neutral surface, 

and considered that the transverse deflection of the upper and lower 

surfaces, at any location on the plate, are the same as that of neutral 

surface. 

In addition to above general description concerning the property 

of this type of construction, the following assumptions are essentially 

necessary for this analysis: 

(a) The total thickness is still small in comparison with the 

dimensions in other directions, i.e., the plates are con­

sidered to be "thin" plates. 

l 



(b) Under all kinds of loadings, all bonds between each 

layer are considered strong enough so that no bond 

failure may occur and stresses can be transmitted 

without discontinuity. 

(c) Non-homogeneity of the core cell is neglected. 

(d) The transverse rigidities of the core materials are 

relatively high compared to the facing materials, i.e., 

transverse shear forces are completely taken by cores. 

(e) The core stiffnesses associated with plane stress com-

ponents in the plane of structure are neglected. 

(f) The deformations due to temperature change are not 

taken into account in this presentation. 

2 

The development of the theory falls mainly on the formulation 

of the complementary energy functional, minimizing process and the 

elimination of the additional unknowns of Lagrangian multipliers. This 

portion of analysis forms the content of the second chapter of this 

thesis. The necessary constant quantities describing the cross-sectional 

property of the sandwich plate are also defined. Once the set of Euler 

equations is obtained, the eliminating process can proceed to obtain 

the differential equations governing the transverse shear forces, 

bending and torsional moments and the transverse deflection of the 

plate. Reductions to the particular case of single core sandwich 

plate and to the ordinary isotropic homogeneous plate equation are 

also shown in this third chapter. In the fourth chapter, a bending 

problem of this type of construction with particular edge conditions 

subjected to a general system of loads is solved to illustrate the application 
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of the developed theory. Summary and conclusions of this study, as 

well as the desirable extension, are included in the final chapter. 

The letter symbols adopted for use in this thesis are defined 

where they first appear and are listed in the Nomenclature. 

1. 2 Historical Notes 

The analytic study of the sandwich construction becomes in-

creasingly important with the development of new and high strength 

materials and the complexity of the aeronautic structures. The vast 

majority of past effort connected with this study has been confined to 

a single-core construction with two either identical or different facing 

plates. 

The first analytic investigation which appeared in the literature 

associated with this problem was done by E. Reissner(l) in 1947 ~~ He 

considered a plate consisting of a core layer with two facing membranes 

identical both in thickness and elastic properties, and assumed that 

the face-parallel stresses in the core and the variation of the face 

stresses over the thickness of the face layers are negligible. The 

same assumptions were also made by N. J. Hoff( 2>, but in a more 

general form for solving the buckling problem. This Reissner-Hoff 

assumption is one of the main approaches in analyzing this type of con-

struction, and will be adopted as the basic assumption of this dissertation. 

For non-isotropic sandwich plates, C. Libove and S. B. Batdorf(3) con-

sidered the sandwich plate approximately as a non-isotropic thick plate 

~~ Numbers in parenthesis es refer to references in Bibliography. 



and extended the classical thin plate theory to sandwich panels by 

introducing the effective bending and shearing rigidities, and taking 

4 

the shear deformation into account. In 1951, A. C. Eringen(4 ) extended 

this theory to include the flexural_ rigidity of core in his investigation. 

Since 1959, in a series of publications, Y. Y. Yu( 5 ), (5 ), (7 ) presented 

a flexural theory, for the isotropic case, to include the shear de for-

mations in the facing materials. Theoretically, his investigation has 

generalized the Reissner-Hoff's "membrane facings" to the "plate­

facings" theory. 

In the period between E. Reissner and Y. Y. Yu, a great deal 

of works had been done by many investigators. However, most of 

these studies are limited to particular problems which are still based 

on "membrane facings" theory, and also are confined in single core 

sandwich constructions. Their contributions are not in the develop-

ment of the theory, but in the techniques of solving the problems. 

For instance, S. Cheni8> modified Reissner's problem for orthotropic 

cores and related the solution of the sandwich plate equation to the 

solutions of the biharmonic equation of classical plate theory. In 

1960, C. C. Chang and I. K. Ebicoglu( 9 ) presented their studies on 

the elastic instability of rectangular sandwich panels with orthotropic 

cores and different face thicknesses and materials. 



CHAPTER II 

GENERAL ANALYSIS 

2. 1 Statement of the Problem 

A rectangular sandwich plate consisting of two cores of thick-

nesses h 1 and h2 and three facing membranes of thicknesses t 1, 

t 2 and t 3 is considered (Fig. 1 }. Let the xy-plane be a plane parallel 

to the undeformed surface of the plate with z-axis along the normal 

to this plane. Also, let z 1, z 2 and z 3 be the distances measured 

from the xy-plane to the middle plane of each membrane respectively. 

Each facing is assumed to be isotropic and homogeneous and posses-

sing different elastic properties, while the cores are both assumed 

to be orthotropic. 

z 

FIG. 1 A CROSS SECTION OF PLATE 
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The problem to be solved is, then, to develop a theory defining 

the bending behavior of the sandwich plate due to a general type of 

externally applied load which is normal to the plate. 

The formulation which will be presented in the following sec-

tions is also good for a plate with many cores. However, for simpli-

city in presentation, only a plate with two cores as described above 

will be considered. 

2. 2 Stress Resultants and Equilibrium Equations 

After the assumptions made previously that the face-parallel 

stresses of cores and the variations of the stresses of facing mem-

branes are negligible, the stress resultants and stress couples may 

be defined as follow: 

M 
x 

N 
y 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

6 



where M (M ) designates the bending moment about y(x)-axis, 
x y 

(8) 

M (= M ) the twisting moment about y(x)-axis, Q (Q ) the trans-
xy yx x y 

7 

verse shear force on the face normal to x(y)-axis, N (N ) the normal x y 

force on the face normal to x(y)-axis, N (=N ) the shear force xy yx 

parallel to the plane of structure and existing on the face normal to 

x(y)-direction, cr. (cr. ) the normal stress on ith membrane in the 
lX 1y 

direction of x(y)-axis, T. the shearing stress in ith membrane 
1xy 

parallel to xy-plane and T. (T. ) the shearing stress on the face 
JXZ JYZ 

normal to x(y)-axis in z-direction of jth core, For a problem of 

considering bending only, the normal forces N and N and the x y 

shear force N are not taken into account, i.e., the stress resul-
xy 

tants are considered to be zero, 

The moments and transverse shear forces are defined on the 

plane of structure, as shown in Fig. 2. Summations of moments and 

transverse forces acting on a differential plane element dx dy of the 

plate yield the following equilibrium equations: 

M +M -Q =O x, x xy, y x 

M +M -Q =O y,y xy,x y 

Q +Q +p=O x,x y.y 

where p is the transverse load applied on the differential element 

of plate, 

(9) 

(10) 

(11) 



QYM 
y 

. 

------ ------~-----------·-·1=-X ,-::· 

,/ 

M + M dx 
xy xy, x 

Q +Q dx x x,x 
/·--=====~afa#;;!==:!======V 

/ /M + M dy 
/ y y,y 

y 
+ Q dy y,y 

z 

FIG. 2 A DIFFERENTIAL PLATE ELEMENT 

2. 3 Equations of Compatibility 

Considering a rectangular plate of the dimension a by b, 

the strain energy stored in the system after deformation is expressed 

in terms of stresses such as: 

b a 

1 J' J'[ tl 2 2 U = 2 T 1 (crlx +crly-
o O 
f 

2 
7 lxy 

8 



ba 
1 I I [ h1 2 h1 2 h2 2 h2 2 J 

+ 2 0:--1 7 lxz + 0:--1 7 lyz + 0:--2 7 2xz + 0:-- 7 2 z dxdy 
O o xz yz xz 2yz Y 

c 

where the subscript f refers to the facing membranes and c the 

cores, \)i the Poisson's ratio of ith facing membrane and Gixz 

the shear modulus of rigidity of xz-plane of the ith core. Let C 1, 

(12) 

C2 , C3, C4 , C5 and C6 be the generalized displacements of the plate 

prescribed on boundaries, the work done by the boundary forces and 

moments is 

b 

W = I (Q Cl + M C 2 + M C 3) dy x xy x x=o 
o x=a 

a 

+ J (Q C4 + M C 5 + M C 6 ) dx y xy y y=o 
O y=b 

(13) 

Then, the complementary energy of the system is defined as(l)(lO) 

v~~ = u - w (14) 

9 

Thus, the problem becomes one of finding the conditions for extremum 

of the functional V~~ subjected to the constraint conditions of equations 

(1), (2), (3), (4), (5), (6), (7), (8), (9), (10) and (11). 

Introducing a set of Lagrangian multipliers Al' A2 , A. 3, A4, 

A5 , A6, A7, A8, a, {3 and w, the auxiliary functional can be formu­

lated as follows: 



10 

h 1 2 h 1 2 h2 2 h2 2 J 
+--T +--T +--T +--T G 1 lxz G 1 lyz G2 2xz G2 2yz xz yz xz yz 

+ a(M + M - Q ) x, x xy, y x 



+ Q(M + M - Q ) 
~ y,y xy,y y 

+ w(Q + Q + p) } dxdy x,x y,y 

b 

-I (Q '1 + M '2 + M C3) dy x xy x x=o 
0 x=a 

a 

-J (Q C4 + M C5 + M C6 ) dx y xy y y=o 
O y=b 

(15) 

It is obvious that the Lagrangian multipliers a, f3 and w have impor-

tant physical meanings, i.e., a(/3) the rotation of the face normal to 

the x(y)-axis ~nd w the transverse displacement of the sandwich 

plate. The rest of the set of Lagrangian multipliers are riot of pri-

mary interest and can be eliminated by using the constraint conditions 

of equations (1) through (8). 

In order to have extrema for the functional V* subjected to 

those const:['.aint conditions, the first variation of the auxiliary func­

tional must vanish, i.e., oV* -1~ = 0. For a system of stresses in 

static equilibrium, it ,can be proven(lO) that this is a ·minimum of 

v"~, and that the condition oV*"~ = O gives the set of compatibility 

conditions of deformations. Carrying out the first variation of v*\ 
integrating by parts and transforming the surface integrals to line 

integrals by Green's theorem, the set of Euler's equations is obtained 

as follow: 

(16) 

11 
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(1 7) 

(18) 

(19) 

(20) 

(21) 

2tl (1 + '\) 
El Tlxy - tlzlA.3 + tlA.8 = 0 (22) 

(23) 

(24) 

(25) 

hl 
-- r - hlA = 0 
Glyz lyz 5 

(26) 
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(27) 

(28) 

and 

x1 - a = 0 ,x (29) 

X -f3 =O 
2 'y 

(30) 

X - (a + f3 ) = 0 
3 , y ,x 

(31) 

x4 - (a+ w ) = 0 ,x (32) 

X - (f3 + w ) = 0 
5 ,y (33) 

This set of eighteen Euler's equations and those eleven con-

straint conditions constitute totally a system of twenty-nine equations 

with twenty-nine unknown quantities, i.e., eleven Lagrangian multi-

pliers, thirteen stresses and five stress resultants and couples. 

2. 4 Boundary Conditions 

In addition to the Euler's equations, a set of physical boundary 

conditions is also obtained by considering the independent vanishing of 

each term of the two line integrals in equation (15): 



At x = o and x = a, 

' = w 1 

' = [3 2 

' = Q' 3 

At y = o and y = b, 

' = w 4 

' = Q' 5 

' = [3 6 

2. 5 Stresses, Moments and Shear Forces 

Solving for the Lagrangian multipliers A. 1, ).. 2, >.. 3, >.. 4 and 

14 

(34) 

(35) 

).. 5 from equations (29), (30), (31), (32) and (33) in terms of the other 

set of Lagrangian multipliers >.. 6, ).. 7 , a, [3 and w and their first 

partial derivatives such that 

>..1 = a ,x (36) 

>.. = (3 
2 ,y (37) 

A3 = a + (3 
• y 'x 

(38) 

>.. 4 = a+ w 
' 'x 

(39) 
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(40) 

and substituting into equations (16) through (28), the stresses may be 

expressed as follow: 

El zl El 
(),.6 + 'vl A7) (41) al = 2 (a + 'vl/3 ) -

1 - \)2 x 1-'v ,x .y 
1 1 

El zl El 
(A7 + 'v1A6) (42) al= 2(/3 +'vla )-

1 - \)2 y 1-'v .y ,x 
1 1 

E2z2 
(a + 'v2{3 ) -

E2 
(A6 + 'v2A7) (43) a = 

1 - \)2 2x 1 _ 'v2 ,x .y 
2 2 

E2z2 
(/3 +'v2a )-

E2 
(A7 + 'v2A6) (44) a -

2y - l _ \)2 'y .x 1 - \)2 
2 2 

E3Z3 
(a + 'v3/3 ) -

E3 
(A6 + 'v3A7) (45) a -3x - 1 _ \)2 • x • y 1 - \)2 

3 3 

E3z3 
({3 + 'v3 a ) -

E3 
(A7 + 'v3A6) (46) a = 

1 - \)2 3y l _ \)2 .y ,x 
3 3 

El zl El 
A (47) Tlxy:: 2(1 +'v 1) ( a. y + f3. x) - 2 ( 1 + 'v 1) 8 

E2z2 E2 
A3 (48) T - (a. y + /3,x) - 2(1 +v2 ) 2xy - 2(1 +v2 ) 
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(49) 

and 

Tl = Gl ( QI + w ) xz xz • x . 
(50) 

T = G (Q + w ) 
lyz lyz "' , y 

(51) 

T 2 = G2 ( QI + w ) xz xz • x (52) 

T = G (Q + w ) 
2yz 2yz "' , y 

(53) 

Making use of equations (41) through (49), those constraint 

conditions of equations (6), (7), and (8). which characterize the 

problem of bending only, may be written as follow: 

(6a) 

(7a) 

(Ba) 

where c 1, c 2, c 3 and c 4 are :µierely some constants of geometrical 

and material properties and are defined as 

E.t. 
C =1: 11 

1 i l _ \)? 
l 



E. t. \I. 
C =:E 111 

2 i 1 - \)~ 
1 

E.t.z. 
C =:E 111 

3 i l _ \)? 

c = :E 
4 i 

1 

E.t.z.\l. 
1 1 1 1 

1 - \)~ 
1 

17 

i = 1, 2, 3 

Solving for \. 6 , \. 7 and \. 8 from equations (6a), (7a) and (8a) such 

that 

\. 6 =s 1a +s 2(3 ,x ,y (54) 

A7 = s2a + s1(3 
'x 'y 

(55) 

A.8 = S 3(a + (3 ) 
'y 'x 

(56) 

in which sl' s2 and s3 are defined as 
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and substituting into equations (41) through (49). the stresses in all 

membranes can be obtained as follow: 

(43a) 



Making substitution of these stresses into equations (1), (2 ), 

(3), (4) and (5). the moments and transverse shear forces can be 

expressed in terms of a, {3, w and their partial derivatives(B) 

M = D( a + \I f3 ) 
X ,x O ,y (57) 

M = D(/3 + \I a ) y ,y O ,x (58) 

M = D (a + {3 ) xy xy , y , x (59) 

Q = C (a+ w ) x x ,x (60) 

Q = c ({3 + w ) y y ,y (61) 

where D IS the flexural rigidity of the sandwich plate and is defined 

by the following expression: 

E . t. z . (z. - S l - \I. S 2 ) D=l'. 111 1 1 i = 1, 2, 3 
i 1 - \)~ 

1 

in which 

. 1 E.t.z.(\I.Z, - \11.sl - S2) 
\) =-l'. 111 11 i = 1, 2, 3 

o D i l _ \I~ 
1 

D the torsional rigidity of the sandwich plate and is defined as 
xy 

' 
E.t:z.(z. - s3) 

D =1: 111 1 

xy i 2 ( 1 + \Ii) 
i = 1, 2, 3 

19 



and 

C = I: h.G. 
X j J JXZ 

j = 1, 2 

C = I: h.G. 
y j .:J JYZ 

j 1, 2 

the shear rigidities of the sandwich plate. 

2. 6 Specialization for Constant Poisson's Ratio 

The theory developed so far is of a general case of non-equal 

Poisson's ratio for each facing membrane. It has made the problem 

complicated not only in defining those plate constants but also in 

locating the so- called "neutral surface" of the deformed structure. 

In many instances, the values of Poisson's ratio may be very 

closely constant for materials with appreciably different moduli of 

elasticity. Assuming this to be the case, then, starting with the sim­

plification of constants !; l' s2 and !; 3 in such a manner that 

and 

!; = 0 
2 

I:E.t.z. 
i 1 1 1 

= z = -=-:---
O I: E.t. 

. 1 1 
1 

i = 1, 2, 3 

1 D = 2 I: E.t.z.(z. - z ) 
l-V i 1111 o 

v = v D =· v 
o D the common value of Poisson's ratio, 

20 
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D =~D 
xy 2 

the stresses of membranes may be written as 

El(zl - zo) 
(a +v/3) (4lb) CJ = 

1- v2 lx ,x ,y 

El(zl - zo) 
(/3 + v a ) (42b) CJ - . 

ly - 2 
1 - v • y • x 

E2(z2 - zo) 
(a +vf3) (43b) CJ = 

1- v2 2x ,x ,y 

E2(z2 - zo) 
(/3 + v a ) (44b) CJ = 

2y 1 - v2 • y • x 

E 3(Z3 - zo) 
(a +vf3) (45b) CJ = 

1 - v2 3x ,x .y 

E3(z3 - zo) 
(/3 + v a ) (46b) CJ = 

1- v2 3y • y • x 

El (zl - zo) 
(a + f3 ) (47b) 'T = 2(1+v) lxy ,y ,x 

E2(z2 - zo) 
(a + f3 ) (48b) 'T = 2xy 2(1 +v) ,y ,x 

E 3(z 3 - z ) 
(a + f3 ) 'T = . 0 (49b) 3xy 2(1 + V) • y • x 



where (z. - z ) can be defined as the distance measured from the 
1 0 

neutral surface to the middle plane of ith membrane. The bending 

and twisting moments are written as 

22 

M = D( a + v /3 ) 
x , x , y 

(57a) 

M = D(/3 + v a ) 
y , y , x 

(58a) 

1 
M = - ( 1 - V) D ( a + f3 ) 

xy 2 ,y ,x 
(59a) 

The system of twenty-nine equations with twenty-nine unknowns 

is reduced to that of three equations, i.e., equations (9), (10) and (11), 

with three unknowns a, f3 and w. Further reduction for finding the 

governing differential equations defining the bending behavior of the 

structure will be performed in the following chapter of this thesis. 



CHAPTER III 

DERIVATION OF GOVERNING DIFFERENTIAL EQUATIONS 

3.1 Shear Forces 

After the specialization for constant Poisson's ratio, the cross-

sectional elements, moments and shear forces, are expressed in 

fairly simple forms, which have been shown by S. Cheng(B) for a 

special case of sandwich plate construction with a single core and 

two identical facing membranes. It is understood that this is a rea-

sonable assumption in practical purpose. Thus, in the following deri-

vation, the Poisson's ratios of all membranes are specified to be con-

stant, although the modulus of elasticity of each membrane may not 

be the same. 

From equations (60) and (61). the Lagrangian multipliers a 

and (3 may be found in terms of the transverse shear forces Q and 
x 

Q such that y 

Qx 
QI:::..,....... - w 

'--x 'x 

Q 
f3 = ..:..:I.. - w 

Cy ,y 

(62) 

(6,3) 

Then, making use of these two expressions, equations (57), (58) and 

(59) can be written as follow: 

23 
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[ 1 VO . J 
M = D (- Q + - Q ) - (w + v w ) 

X C X, X C y, y , xx O , yy x y 
(64) 

(65) 

(66) 

Utilizing equations (64), (65) and (66), equations (9) and (10) of moment 

equilibrium become 

1 1 Q = - (D Q + D a ) + - (V D + D )Q 
x Cx x, xx xy--X, yy Cy o xy y, xy 

- [n w + (V D + 2 D )w J ,xxx o xy , xyy (67) 

Q = l (D Q + D Q ) + - 1- (V D + D )Q 
y c;: y, yy xy y, xx ex O xy x, xy 

- [n w + (V D + 2 D )w J , yyy o xy , xxy (68) 

For the case of specifying constant Poisson's ratio, these two expres-

sions may be written as follow: 

Q _ D [Q +(1-V)Q ]+ D (l+v)Q D 2 (68 ) 
Y - c;: y, yy -2- y, xx .. ex -2- x, xy- 'v w. y a 
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Differentiating equation (67a) with respect to y · and equation (68a) 

with respect to x, and subtracting yield 

D [ 1- v · J D 1 +v 
- Cy Qy. xyy + (-r)Qy, xxx - ex (-,-- )Qx. xxy (69 ) 

Differentiating equation (69) with respect to y, then, 

_ D[ + 1-V ]- D 1+V 
C Qy,xyyy (-r)Qy,xxxy r ( 2 )Qx.xxyy 

y x (70) 

Let equation (11) of the force equilibrium be written in a form such 

that 

Q = - (Q + p) y. y x, x (1 la) 

then, by substitution, equation (70) becomes 

K Q + (K + K ) Q + K Q . - 'ii 2Q 1 x, xxxx 1 2 x, xxyy 2 x, yyyy x 

2 = p - K1'v p x 
J x • 

where K 1 and K2 are some constants pefined by the following 

expressions: 

(71) 
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Kl :::: 
(1 - V) D 

2C (72) 
v v 

K2 :::: 
il_- V} D 

2C (7 3) 
x 

By the same procedure, the differential equation of Qy can be obtained 

as follows: 

K Q + (K +K ) Q + K Q vyyv - v 2Qy 1 y, xxxx 1 2 y, xxyy 2 y' .., .., 

2 
= p - K 'i7 p 

'y 2 'y 
(74) 

Equation (71) and (7 4) may also be written in more compact forms 

such that 

K )'i72Q 
2 x xx 

' 

2 
= p - Kl 'v p 

'x 'x 
(7 la) 

(74a) 

4 
where 'v is the biharmonic operator defined as 

for cartesian coordinates. 

3. 2 Deflection Surface 

A governing differential equation defining the deflection surface 

w(x, y) may be obtained by eliminating the shear forces from the force 
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equilibrium equation. Differentiating equation (68a) with respect to 

y and making use of equation (1 la) yield 

-[D D 1+\)l +D 1-\) 
Qx x - C - C (-2-)JQx xyy C (-2-)Qx xxx 

' y x ' y ' 

D [ 1-\) J 2 + ..,..,- p + (~) p - p .+ D 'v w \.., ,yy ·,c, ,xx ,yy 
y 

(75) 

Differentiating equation (67a) and also making use of equation (lla) 

give 

_ D 1-\) +[D D 1+\)J 
Qx x - C (-2-)Qx xyy C - C (-2-) Qx xxx 

• x ' x y ' 

D 1+\) 2 
- ..,..,- (--) p - D 'v w \.., 2 ,xx ,xx y 

(76) 

Subtracting equation (76) from equation (7 5) and making use of equations 

(72) and (73), a: differential equation of shear force Qx may be obtained 

as follows: 

"2Q = D( 1 - \)) 4 ..E Kl 2 
v 2 (K K ) (V w - D) + K - K 'v p x, x . 2- 1 2 1 

By the same way, the differential equation of Q may be obtained y 

as follows: 

(77) 

(78) 
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Differentiating equation (7la) and making use of equation (77), a dif-

ferential equation defining the transverse deflection of the plate is 

obtained; 

+ 1 + \) (K - K ) p - P] 
1 - \) 2 1 , xx (7 9) 

6 
where 'v is a differential operator defined as 

6 2 2 2 
'v :c:v 'v 'v 

This equation may also be written in a form as follows: 

4 4 4 
K 1v w + K 2 v w - v w 

'xx 'yy 

(80) 

or in a form, which can be compared with the homogeneous plate 

equation, such that 

(81) 



This is a sixth-order linear partial differential equation defining the 

transverse deflection of the sandwich plate for the case of specializing 

the Poisson's ratios of all membranes to be constant, 

3. 3 Reduction to the Case of Isotropic Cores 

For the case that all core materials are isotropic, the con-

stants K 1 and K 2 are identical, and are defined as 

K == K == K = (1 - V)D 
1 2 2C (82) 

where 

C=I:h.G. 
j J JXZ 

(83) 

in which j designates the number of core. The differential equations 

(7 la) and (7 4a) of shears become 

- - p ,x 

= - p 
,y 

. The sixth-order differential equation (81) defining the transverse 

(84) 

(85) 

deflection w reduces to a fourth-order linear differential equation 

as follows: 

(86) 
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For those loading conditions which make the second term of the right-

hand side of equation (86) vanish, the equation becomes exactly 

the one of homogeneous plate. This result has been shown previously 

by E. Reissner(ll) and S. Cheni8) for a particular case of plate 

with a single core and two identical facing membranes. 
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.CHAPTER.N 

A SIMPLY SUPPORTED RECTANGULAR PLATE 

WITH OR THOTROPIC CORES 

The problem of bending of a simply supported rectangular 

sandwich plate with orthotropic cores subjected to a system of uni-

formly distributed loads is considered (Fig. 3). The plate is assumed 

to be constructed in such a manner that all the membranes are of the 

same material and cores are arbitrary. Thus, those constants D, 

Cx and Cy can be calculated by those equations defined in this thesis. 

Since the load is constant over the entire structure, the differential 

equation (81) defining the transverse deflection becomes 

a2 a2 4 
(1 - K - - K ) v w = .E. 

1 ax2 2 ay2 D 
(87) 

·O - x 

r l 
I I 
I I 
I I b 

I I 
I I 
L_ ___ _J ---

a l 
T 

y 

. FIG. 3 A SIMPLY SUPPORTED RECTANGULAR PLATE 
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For a Navier's type of solution, the deflection surface may be assumed 

in such a form that 

._.., ._.., W . mnx . nny 
w = L, L, mn sin -a- sin b , 

mn 
m = 1, 2, 3, ... , oo (88) 
n = 1, 2, 3, ... , oo 

Then, the loading function p(x, y) may be represented by the shape of 

deflection surface such that 

p(x, y) = I: I: P sin mTix sin n5y • 
m n mn a 

m = 1, 2, 3, 
n = 1, 2, 3, 

ct II II :J 00 (89) 

where P can be evaluated as follows: 
mn 

a b 

p 4 II p(x, y) sin manx mn - ab sin~ dxdy 
00 

which becomes 

p _ 16 p 
m- 2 

mnn 
m = 1, 3, 5, ... , oo 
n = 1, 3, 5, ... , oo 

11111111, 00 

(90) 

(91) 

for constant p over the entire region. Making substitution of equa-

tion (88) into equation (87), the coefficient W may be solved in mn 

terms of the known coefficient of loading function P mn such that 

p W . ________ ___,m ... n ___________ _ 
·mn (92) 

or, in a symbolic form: 
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(92a) 

where 

w* - . _________ 1 ________ _ 
mn (93) 

Thus, the deflection surface becomes 

1 ~ ~ W,i~ p . m TT X • nTT _y w = D sin -- sin b m n mn mn a (94) 

which may be written in a form that can be compared with the Navier's 

solution of the homogeneous plate subjected to uniformly distributed 

loads: 

w = lip ~ ~ 
TT D m n 

. mTTx . n6y 
sin-a- sin 

where m and n are positive odd integers. 

(94a) 

Using equations (77). (78) and (88), the shear forces Q and 
x 

Qy may be assumed to have forms as follow: 

Q = ~ ~ A cos~ sin n5y 
x m n mn a 

Q "' "' B . mTTx nt? Y = ,:.. ,:.. sin -a- cos • mn mn 
m = 1, 2, ••• , oo 
n = 1, 2, ... , oo 

(95) 

(96) 



Substituting equations (88) and (95) into equation (77), and equations 

(88) and (96) into equation (78). the series coefficients A and mn 

B are obtained: 
mn 

(97) 

(98) 

where 

J (99) 

Rewriting equations (62) and (63) in terms of constants K 1 and K 2: 

and making use of equations (88), (95) and (96), the Lagrangian 

multipliers a and {3 are obtained: 

a=Z::I: 
mn 

~~ mTTx . nt? a COS -- Sln mn a 

Q __ °'"' °'"' {3* , IDTTX nby ,-, t.. t.. Sln -- COS 
m n mn a 

(62a) 

(63a) 

(100) 

(101) 

34 
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where a,i~ and {3,i~ are determined by those known coefficients 
mn mn 

A B and W by the equations as follow: mn' mn mn 

2K2 
,i~ = A (mTT) W 

amn D(l-\1) mn - a mn (102) 

2K1 
{3,i~ B - (~) W 
mn = D(l - \I) mn · u mn (103} 

or, in terms of P such that 
mn 

[ a K2 J p a* = t ) ( ) (m TT ) W,J~ __.!£!!. 
mn 'rrin K - K y mn - a mn D 

2 1 
(102a) 

(103a) 

In these expressions, the constants K 1 and K2 cannot be the same, 

that is due to the fact that the differential equations for orthotropic 

case and isotropic case are distinct. These solutions do satisfy the 

boundary conditions of a simply supported plate, i. e,, w = o, 

M = o and f3 = o at the edges x = o and x = a and w = o, M = o x y 

and a =:- o at the edges y = o and y = b, 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The purpose o:f this thesis is to develop a theory defining the 

bending behavior of the multi-layer sandwich plates, which are con-

structed in such a manner that those assumptions stated previously 

are satisfied, due to a general type of externally applied load normal 

to the plane of structures. The development of the theory falls mainly 

upon the formulation of the functional of complementary energy of the 

system, minimizing process and the elimination of some additional 

Lagrangian multipliers introduced for the constraint conditions, The 

problem is formulated in a complete Lagrange form with all stresses 

as dependent variables, which are functions of two independent vari-

ables locating the position on the plane of structure. This type of 

formulation has not been shown previously. 

It is found in this investigation that a "neutral surface" cannot 

be properly defined for the case that the facing membranes have com­

pletely different elastic properties. However, it is understood that 

the difference of values of Poission 's ratio for different materials 

with appreciably different moduli of elasticity is small. Thus, an 

additional assumption specifying the constant Poisson's ratio is made 

in this investigation. 

After the specialization for the constant Poisson's ratio, a 

sixth-order partial differential equation governing the transverse 

deflection and two supplementary equations governing the transverse 

36 
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shear forces are obtained. This result has generalized the "membrane 

facings" theory of sandwich construction which was originated by 

E. Reissner(l), (ll), (12 >. 

A simple example of a sandwich plate with simply supported 

edges is solved by the Navier's approach to illustrate the application 

of the presented theory. 

The governing differential equation defining the transverse 

vibration, without rotatory effect, can be directly obtained by intro-

ducing the inertia force to replace the static transverse load p. The 

presented formulation may also be extended to develop the theory 

defining the buckling of the multi-layer sandwich plates. 
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APPENDIX 

AN APPROXIMATE THEORY 

A-1 Derivation 

By the principle of superposition for small deformations, it is 

possible to separate the transverse deflection into two parts: one is 

due to the bending and the other due to the shear deformation. Observ-

ing equations (57), (58) and (59), the deflection due to bending may be 

introduced in such a manner that 

a= -w b,x 

f3 = - w b,y 

(A 1) 

(A2) 

where wb designates the flexural part of the transverse deflection. 

Then, equations (57), (58), (59), (60) and (61) can be written in the 

following forms: 

M = - D (wb + 'v wb ) 
X , xx O , yy (A3) 

M = - D (wb + v wb ) y , yy O ,xx (A4) 

M = - 2D w · xy xy b, xy (A5) 

Q = C (w · - wb ) x x ,x ,x (A6) 

Q = C (w - w ) y y J y b, y (A 7) 
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Substitution of equations (A6) and (A7) into equation (11) of the force 

equilibrium yields 

2K 1K 2 
K w + K w = - ( ) E. (A8) 1 s, xx 2 s, yy 1 - v D 

where K 1 and K 2 are defined by equations (72) and (7 3), and w s 

is the part of deflection due to shear and is defined as follows: 

w = w - w s b 
(A9) 

Making use of equations (A3), (A4) and (A5). equations (9) and (10) of 

the moment equilibrium may be written as 

C w = - D (w + v w ) - 2D w x s,x b,xxx o b,xyy xy b,xyy 
(AlO) 

C w = - D (w + v w ) - 2D w y s, y b, yyy o b, xxy xy b, xxy '(All) 

Differentiating equations (Al 0) with respect to x and (All) with respect 

to y and adding together yield 

Dwb + 2(2D + v D)wb + Dwb . , xxxx · xy · o , xxyy , yyyy 

= - (C w + C w ) x s,xx y s,yy 

Replacing Cx and Cy by K 1 and K2 and using equation (A8). 

equation (A12) becomes 

Dwb + 2(2 D + v D)wb + Dwb = p , xxxx xy o , xxyy , yyyy 

which may be written as 

(A12) 

(A13) 



(A14) 

for the case of specifying the constant Poisson's ratio for all mem-

branes. For the case that all core materials are isotropic, equation 

(A8) is reduced to a Poisson's equation: 

(A15) 

where C is the constant defined by equation (83), Making operation 

on equation (A15) by the Laplacian operator and adding to equation 

(A14) yield 

(Al6) 

which has been shown previously in Chapter III as equation (86) of 

this thesis. 

For the case with orthotropic cores, the sixth-order equation 

governing the transverse deflection now is approximated by equations 

(A8) and (A14). It is also shown that, for the case with isotropic 
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cores, this approximate theory becomes exact in the sense of previous 

derivation. 

A-2 Comparison of Solutions 

The problem considered previously in Chapter IV of a simply 

supported rectangular sandwich plate is solved by the approximate 

theory derived in this appendix. The solutions for the wb and w s 

are assumed to have the forms as follovv: 



= I: I: w . mnx sin nby wb sin--
m n bmn a 

(A 17) 

= I: I: w . mnx . nby ws sin-- sin 
mn smn a 

(Al8) 

The loading function p(x, y) is also represented by the shape of the 

deflection surface that 

( ) I: " P . m nx . nny 
p x, y = m ~ mn sm -a- sin b (A19) 

where P is evaluated by the same way described previously 
mn 

in Chapter N. Making substitutions of equation (A17) into (A14) 

and (Al8) into (A8) respectively, yield 

p 
W _ mn 

bmn - 2 2 2 
D [ (n~t) + (n:) J 

p 
( ~n) 

Thus, the solution of the total deflection is 

w = .2:.. I: I: w"~"~ P sin mnx sin nnby 
D m n mn mn a 

where w-1~ "~ is defined as follows: mn 

(A20) 

(A21) 

(A22) 

(A23) 

42 



Designating the ratio between the constants K 1 and K 2 such that 

then, W"H~ becomes mn 

W-IH~ - . 1 
mn - [ 2 2 2 

(n~t) + (~TT) J 

2riK 1 
1-V 

+ 2 2 

e1~t > + ri(~> 

(A24) 

(A25) 

The Lagrangian multipliers used to calculate the moments and the 

shear forces are obtained by substituting equations (Al 7) and (Al8) 

into equations (Al), (A2), (A6) and (A 7): 

and 

(mTT) p 
a = - _!_ I: I: ----a __ m_,n._. cos maTT x sin n by 

D m n 2 2 2 
[ (r:TT) + (~TT) J 

sin maTTx cos nby 

(~ TT) Kl 
Q = I: I: ----------- cos maTTx sin n6 Y 

x m n 2 2 
K (m TT) + K (nTT) 

1 a 21J" 

. mTTx . nby sin- cos a 

(A26) 

(A27) 

(A28) 

(A29) 
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Solutions of these forms do satisfy the boundary conditions described 

in Chapter N. 

Comparison between the solutions of the approximate theory 

and the "exact" theory shows that the approximate theory is valid 

only for the case of isotropic cores or in case the deformations due 

to shear are negligibly small. This conclusion proves that the 

assumptions made by T. E. Falgout"~ are not true, in general. 

-l~ T. E. Falgout, "A Differential Equation of Free Transverse 
Vibrations of Isotropic Sandwich Plates," Developments in Mechanics, 
Vol. 1, Proceedings of the Seventh Midwestern Mechanics Conference, 
1961. 
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