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A theoretical approach to the problem of diffusion controlled bimolecular reactions is
presented. In order to take into account the time correlation of reaction process of our
many-particle system, the probability of the first reaction is introduced as a fundamental
quantity. Time development of the ensemble of our system is formulated using the probabil-
ity of the first reaction. An approximation which reduces the general formula to a problem
of Markov process is adopted. Then it is shown that, if we assume stationary reaction rate,
the usual phenomenological kinetic equation, i.e. the so called law of mass action can be de-
rived as the first order approximation, and as the second order approximation the deviation
from the law of mass action is examined. For the general case, in order to obtain the prob-
ability of the first reaction in an explicit form, it becomes necessary to solve the multi-
dimensional diffusion equation with pair absorbing interactions, which is calculated using the
binary collision expansion method. ’

§ 1. Introduction

Diffusion controlled reaction processes have been widely known, for example,
coagulation of colloidal particles, quenching of fluorescence, excitation transfers
and usual bimolecular reactions of the type A-+B—>AB. Theoretical investiga-
tions have been developed by many authors,”~*? since Smoluchowski’s funda-
mental work, which was originally developed to explain the process of coagulation
of colloids, appeared. Many of these works were devoted to deriving formulae
for collision frequency or reaction rate as a function of time and friction constant,
on the basis of Smoluchowski’s equation. Assuming the independence of colli-
sions, they solved essentially two-body problems under various boundary and
initial conditions.

If we consider the reaction process as a time dependent many-body problem,
it becomes necessary to take into account complicated spatial and time correla-
tions. The effects of these correlations have been also discussed by several
authors. However, the systematic formulation has seemingly not yet been esta-
blished. The purpose of this paper is to derive a general formula which de-
scribes the time development of an ensemble of our many-particle system, and
investigate the effects of these correlations on the reaction rates.

In order to take into account the time correlations of reaction process, the
probability of the first reaction is introduced as a fundamental quantity. By
using this probability function, time development of the ensemble of our system
is formulated in the most general form in § 2.  On the assumption of the uniform
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30 E. Teramoto and N. Shigesada

spatial distribution for the initial ensemble, the problem is reduced to that of
Markov process whose mathematical properties are discussed in §3. In §§4
and 5, by assuming the stationary reaction rate, the usual phenomenological
kinetic equation, i.e. the law of mass action is derived as the first order ap-
proximation, and by investigating the second order approximation the deviations
from the law of mass action are discussed. In order to have an explicit result,
it is necessary to calculate the probability of the first reaction by solving the
multi-dimensional diffusion equation with pair absorbing interactions, which has
just the same form as the Bloch equation for the density matrix of many-body
system which is discussed in § 6. Finally §§7 and 8 are devoted to the calcula-
tion of this multi-dimensional diffusion equation, using the binary collision ex-
pansion method which were formerly developed for many-body problems.

§ 2. Mathematical formulation

Let us consider a solution containing two kinds of particles (A and B) as
solutes, and suppose that these particles undergo random motions described by
diffusion constants D, and Dy respectively and also A particle reacts with B
particle at a relative distance » with the definite probability v (»), forming a
complex AB. In the following discussion it is assumed that the reaction is
irreversible and also direct interactions between particles of the same type,
- which may give some modifications to random motion, can be neglected.

As an initial ensemble, we consider an ensemble of those systems in which
N particles of type A and M particles of type B are distributed in a medium
of volume V and no complex AB is formed at zr=0. These particles begin
random diffusive motions and when any A particle approaches any B particle
within the reaction range, reactions of the type A +B—AB will start. Thus we
shall denote by Wy_, () the probability that at a time 7, # AB complexes have
already formed, so that N—# particles of type A and M —n particles of type B
remain unreacted. ' :

Using this probability function, the averaged density of A particles at time
¢t is given by

Cal® =V 33 (N—1) Wi &), @D

In order to take into account the time correlations of the reaction processes
of our many-particle system, we shall introduce the probability of the first reac-
tion T/, v(X, Y; t| Xy, Yo, ;) defined as follows. X= (a1, ,--+, xy) is a set of
coordinates of N particles of type A and z; is a position vector (in general it
‘may include the coordinates of internal freedom) of the i-th A particle, Y=
(¥1, Y2+ yur) 1s the same for B particles. The probability of the first reaction
T on(X, Y; 6] X, Yo t0) dXdY dt is the probability that until time ¢ no reaction
has occured and N+ M particles of types A and B which have started from
the initial positions (X, Y,) are found in the volume element dXdY at the
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Theory of Bimolecular Reaction Processes in Liquids 31

positions (X, Y) at time ¢z and in the time interval from ¢ to z+dt the first
reaction occurs between the i-th A particle and the j-th B particle at the posi-
tions x; and y, respectively.

Apparently the probability of the first reaction can be expressed in the
form

Twlin(X, Y5 t1 X, Yo t0) dXdY dt
=v(zs, ) P(X, Y; t| X, Yo; t)dXdY dt, (2-2)

where v (z;, y;) is the absolute reaction rate defined above and assumed to be
a function of the relative distance |x;—y;|. P(X, Y; | X, Yo; o) dXdY is the
probability that N+ M particles of types A and B, which started from the
positions (X, Y,) at time ¢, still not reacted and are found in the volume
element dXdY at the positions (X, Y) at time ¢z. In the present formulation
the processes that two or more AB pairs react at the same instant are neglected.
Then the probability that » AB pairs are found at time #, Wy_, »(£), can be
constructed by summing up the probabilities of each individual process of
successive reactions of #» AB pairs. Actually it can be written in the form

¢ tn £y

Wy (£) = Sdzn S Aty 1o g dt, SdXdY g AX,dY, SdXOdYO
0 0 0

X {(_Z )}P<X/(i1"'in)> Y/ GGreogad s 61 X/ i), Yo/ (Giredn) 5 ta)
Lk J ke

XT38 i1 (Xn/ G i)y Yo/ i fues) 5 tal
Xoes/ G ines)y Yoos/ Grones) 3 fne)
X T 5t nse (Xnms/ Govines) s Yoes/ G ines) 3 fnei]
X/ (1), Yus/ (J1"Jn-2) i n-2)

T (X Yis 6 X, Yoi t0) - F( Ko, Y0, | (2-3)

where the notations X,/ (4,---4,) and Y,/ (j,---j,) denote the coordinates of N—y
particles of type A and M —v particles of type B at time ¢, respectively, excluding
the coordinates of i7,,---, ,-th particles of type A (x;,,, x,) and ji, -, j,-th
particles of type B (y,,-, y,) which have already reacted. The summa-
tion is taken over all the possible sequences of n different AB pairs (i, 71),
(s, j2)»+rs (s ja), where 4,=1, 2,---, N, j,=1, 2,--, M and i,5i,, j,#j,
for v=£pu. f(Xo, Y,) is the distribution function of particles for the initial ensemble.

Expression (2-3) gives a detailed information of the reaction process
of our system and the space and time correlations of the process are completely
included in that complicated integration. However, calculation of Eq. (2-3) is
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32 E. Teramoto and N. Shigesada

actually almost impossible, so it is necessary to reduce the equation to a more
simple form by using some suitable approximations.

§ 3. Formulation as a Markov process

If, at the initial time, the particles A and B are uniformly distributed in
the medium of volume V, then the chance of reaction of the AB pair can be
expected uniformly in the space. In this case, we can reduce the problem to
a problem of the Markov process by assuming that at each instant ¢, just after
the k-th reaction has occured remaining unreacted particles have uniform distribu-
tion. That is, under this assumption, the multiple integration of space coordi-
nates in Eq. (2-3) can be performed independently, and we have

‘

Waeanw (&) = S At Wy —pwrs (6 — 1) Tyr, 5 (1)

0
bty ty
= S thnS Aty S At Wy _pwn(t—1,)
0 0 0
KTy wenir (b= b)) Ty pi1. 5 n2 (%—1 —Ln-2)
NETT T n(t),
for n=1, 3-1)
or using a simple notation for the convolutions
Wymn (&) = WN—n,N—n":TN‘In,J}I—n+l’:TzV—n+1,N—n+2f<' Ly, (3-17)

where Ty s 1 v_5(t) is the probability that at the initial time N—#% particles of
type A and M —Fk particles of type B are uniformly distributed in the medium
of volume V and in the time interval from v to v+4dr the first reaction occurs
between one of the AB pairs, and Wy_; y-(t) is the probability that N—#Z A
particles and M —% B particles with uniform initial distribution remain unreacted
until time v. Apparently these probability functions are given by

&

Wy (&) = SP(X, Y 11X, Yo; 0)£(Xo, Y dXodYodXdY, —(3-2)

Toossns () = 20 (o ) POX Y3 41X, Y3 0F(X,, Y dXodYod XY,
| (3-3)

where X, and X stand for the coordinates of N—£ particles of type A, and Y,
and Y the coordinates of M —*% particles of type B. Because of the Markovian
approximation, in Eqs. (3-2) and (3-3) it becomes unnecessary to distinguish
the particles as we have done in Eq. (2-3) by writing the arguments with
fractional coordinates.
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Theory of Bimolecular Reaction Processes in Liquids 33

Owing to the normalization condition of the probabilities, it is clear that

4

STN—k—l,N—-Is @)dt' + Wy pw-1(t) =1,

0

or in a differential form
Tyoimv-x() = —dWy_pn-r(t) /drt . (3-4)

Thus, if we can obtain an explicit form of the distribution function
P(X,Y; t| X,, Yo; 0), the probability of the first reaction Ty p-1,5-5(¢) is given by
calculating Eqgs. (3-2) and (3-4); then using Eq. (8-1) and finally Eq. (2-1)
we can evaluate the averaged density of A particles C,(z) as a function of time.

Here we shall denote the Laplace transform of a function F(z) by

0

L(F; 5) ‘“S FHe dr . (3-5)

Then,v from Eq. (3-4) we get
L(TN—k—l,N~Ia; S) =sL (1 - WN—-Ic,N—Ic; S) » (36)
and the Laplace transform of Eq. (3-1) becomes '

7~1

L(WN—n,N; $) ZL(Wan,an; s)s® ’]c,:[oL(l" WN—Ic,N—k; s)

=Fpi(s) —F,(s),  for n=1, 3-7)
where o v
Fols) =5 ﬁ(’)La—WN__,c,y_u ),  for n=0. (3-8)
From the obvious relation
L(Wis 9 =5 = L0 = Wi 9),

<&

it is seen that we can also use the formula (3:7) for n=0 by using the defini-
tion

Fo,=1/s. | (3-9)

- Thus we can obtain the Laplace transform of the averaged density of A
particles, using Eq. (2-1): '

LCa; )=V 3 (N ) L(Wi_nx: )

=0

N

= V"17E (N”‘ 71) (Fn;l (S) “Fn(5)>

1==0

—co - LY Ro|. (3-10)

n=0
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34 E. Teramoto and N. Shigesada

where C,°=N/V is the initial value of the density C,(z).
Finally, the inverse transformation of Eq. (3-10) gives

( N1
Ca® =Co L= 3 L7 (Fas 0], (3-11)
N =0
where L7' denotes the inverse Laplace transformation.

'§ 4. Elementary kinetic equation of stationary reaction rate

From Eq. (3-1) we have

d 4 In—1 &y
dr Wyenn () = S dfn—lg Aty Sdtl Ty w—nt1 (& —tar)

KT yenirvenis(Enor—tns) - Ty_1,5 (&)

4 Ly tZ
- g dzng (Ztn~-1 e g dtl TN~n—1,N7n (t - tn}
1 0o 0
X TN*?‘L,N*?I'Fl (tn — tnfl) : TN—l,N (tl) 3 (4 . 1)

where in the second term the relation (3-4) is used.
Now we shall define the rate function Ky_,(z) by the equation

Tw—to—t.—5(2) d
Kyo(t) = Lrewmn=s @ A yogyy ). (4-2)
Wy w2 (£) dt
The rate function Ky_,(¢)dt is the conditional probability that the first reaction
occurs during the time interval ¢z and 7+ dr when N—k A particles and M—F
B particles remain unreacted until time ¢z, Here, if we can assume that this
rate function is independent of ¢ and also has a form

Ky x=k(N—&) (M—k), (4-3)

then, by using Eqs. (4-2), (4-3) and (3-1), Eq. (4-1) can be reduced to a
differential equation

L Wiy =N =0 1) M =0+ 1) Wiy €N =) (M=) W
(4-4)
This equation was already investigated by Rényi,’”'® and, as shown in Appendix
I, we can obtain an exact solution, which is also compared with our general
formula developed in §3. However, in application it is of interest to determine
the averaged density C4(z).
We shall rewrite Wy_, » simply as W,, putting m=N—n, then we have

d

g Woa=t(m+1D) m+1+M-N)Wpp—kmn+M-—-N)W,, (4-5)
IA
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Theory of Bimolecular Reaction Processes in Liquids 35

and also Eq. (2-1) can be written as
N
C,&) =V 1mW, (@) =V m). (4-6)
m==0 -

Here it should be noted that if one puts Wy,,=0, Eq. (4-5) becomes applicable
for Wy as well.
Thus, from Eqs. (4-5) and (4-6), we obtain

(ZZ[ lmy = —g[<m™> 4+ (M-—N){m)]. (4-7)
¢ .

In order to solve this equation we need the equation from which the second
moment {»n”) can be calculated. This procedure, however, leads to the hierarchy
of equations which involve succesively higher order moments. -As the first order
approximation, if we put

Py = m, (1-8)
Eq. (4-7) becomes ‘

cli Ca=—v[Ca+ (C—CN]Cy, (4-9)
dr

where y=Vg, C,=N/V and C,=M/V. Equation (4-9) is the usual phe-‘

nomenological kinetic equation of bimolecular reactions, the so-called law of
mass action. The solution of Eq. (4-9) which satisfies the initial condition
C.(0)=C,, is given by

Cp—Cs 0

Cy (Z) EE e C,. (4’ 10)

G expln (G~ Y1~
In particular when Cz°>C,°, we have simply -
C.(t) =C L exp(—vCy't). (4-11)

Thus it has been shown that in the first order approximation our formula leads
to phenomenological kinetic equations of bimolecular reactions.

§ 5. Deviations from the first order approximation

Here we shall consider a second order approximation and examine the
fluctuation of density as a function of time. From Eq. (4:-5) we can obtain
the equation for the second order moment {m*),

j: (mty = = 26m*y + k{1 —2(M—N)}<m™) + £ (M = N)<my.  (5-1)

In order to close the equations by taking into account the second order moment,
we must express the third order moment {m*) in Eq. (5-1) approximately
using lower order moments. As a reasonable approximation, here we shall
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assume a symmetric distribution for W,, for example a normal distribution
function (see Appendix I):

Wa= 0 expl—(n=m) /207,
0= 'y = (. (5-2)
Then we can readily obtain
m®y =3lm*H<my —24my* . (5-3)

Hence, from Eqgs. (5-1) and (5-3), we obtain

;i n®y = —g{6<{md>+2(M—N) =1} m™> + klmy {4md*+ (M —N)},

(5-4)
or from Eqs. (4-7) and (5-4) we have
;Z[ 0°= —25{(M—N) +2{mp} 0"+ £ {(M— N)m) + D). (5-5)

Thus Egs. (4-7) and (5-4) (or (5-5)) form a closed set of kinetic equations
of the second order approximation. However, the exact solution of these equa-
tions cannot be simply calculated, so in this section let us consider two special
cases which seem to be physically significant.

First we shall consider the case that M >N, then Eq. (5-5) may be written
as

;Zi 0= —25Mo* + kM. (5-6)

Solving this equation under the initial condition ¢*(0) =0, we have

¢

5 (2) = KMo 1 Gy (5-7)

0

If we use the solution of the first order approximation (4-11), we obtain
0% (¢) = Ne= " (1L — e : (5-8)

Therefore the fluctuation of the density is given by

= md>)™ Jm>? = ;7 (et —1). (5-9)®

Next, let us consider another extreme case, namely N=2M. In this case

Eq. (56-5) becomes

® g=yp/V is a quantity of the order 1/V, so «M=yCjp.
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Theory of Bimolecular Reaction Processes in Liquids 37

,d(y?

& = —4k{mHa” + km)?, (5-10)

where in the second term we have used the approximation {m*»={n)’. On

the other hand Eq. (4-7) becomes
a dmdy= —rlm’®>, (6-11)
dt ‘

whose solution of the first order approximation, namely when {m®)={m)? is
given by :
N

e N 5.12

o kNt +1 ( )
If we use Eq. (5-12), we can solve Eq. (5-10) and obtain

62:-27 (ENE+ 1) [1— (eNz+1) 5], (5-13)

so that |

Cm—md) ™S m> = 33; GNe+ D1 GNer D). (5-14)

In order to calculate the second order approximation of Eq. (5-11), we shall
replace the right-hand side by Eq. (5-13), then we have

L my =~ ({md*+ 67
dt

- AN { 141 [1-— a J} (5-15)
ENt+1 UgNe+1 3N (ENt+1)°
Therefore, we obtain
| | 1 1 1 1 1
/ :N[ — {1 Ne-+1) — [1-—- | J ] 5.16
=N a1 T gy 108 )70 lM T ey i) G019
or ' .
1 1 s 17 1 1
c :CO[. B {1 Cotr1 [1 | } } 5.17
AT e t+1 3N gt Hl) = WC L2+ 1) (5-17)

From these results it is seen that the fluctuation of averaged density is
always of the order of N™'’, so the deviation from the first order approxima-
tion is not important when N is sufficiently large. :

§ 6. Multi-dimensional diffusion equaiion

with pair absorbing interactions

Now we shall again go back to the main line of our discussion. In §3
we have derived a general formula to caluculate the averaged density as a func-
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38 E. Teramoto and N. Shigesada

tion of time, where it was shown that what we need to calculate in an explicit
form is the distribution function P(X, Y; t| X, Ys; £). The change of the prob-
ability distribution function 7 with time is due to the diffusive random motions
of the particles and also the reaction processes between the AB pairs. From
the definition of P, that is, the probability that all particles still have not reacted
and are found at the positions (X, Y), if we consider an inactive system in
which no reactions occur, the survival probability (3-2) does not change and
conserves the value unity at any time; however, when reaction processes are
taken into accout, obviously the survival probability decreases with time.

In general there exist the intermolecular forces which may interfere with
normal diffusion processes. Diffusive motion of these particles can be described

in phase space by the Fokker-Planck type equation, and when the friction constant -

£ is large, a Maxwell velocity distribution will be established very soon, namely
after the lapse of time of the order m/{; after that time the change of space
distribution function can be expected to satisfy the Smoluchowski diffusion
equation characterized by the diffusion constant D= £kT/C.

Bimolecular reaction process which is assumed to be irreversible can be
described by introducing the pair absorbing probability as an additional term
which expresses the probability that any pair of A and B molecules disappears
by forming a complex AB.

Here we assume that there exists no direct interaction between the parti-
cles, so the diffusive motions of the particles are governed by a simple diffusion
equation of multi-dimensional space. Thus we have the equation

L PO Y5 0K Yo 0) = (DA 4 Dal 7=V (X, )} POX, Y5 2], Y3 0),

N M
VX2::Z V%;': VYQZEVZ
s T=1

ujs

N

VS Y) =3 3o (a2, (6-1)

where v (x;, y;) is the probability rate of bimolecular reaction between ‘the i-th
particle of type A and j-th particle of type B. This equation should be solved
under the initial condition ‘

P(X,Y; 0] X, Yo; 0) =0(X— X)) 0 (Y —Y). _ (6-2)

Equation (6-1) has just the same form as the Bloch equation for the density

matrix of many particles system in which #°/2m and 1/kT correspond to the.

diffusion constant and the time respectively, and the Shrodinger equation for
many-particle system has also the same form if we take the imaginary values
of the diffusion constant and absorbing probability. Therefore, we can adopt
the various techniques developed in the field of many-body problems to find the
approximate solutions of Eq. (6-1). In the next section, as an example, we
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Theory of Bimolecular Reaction Processes in Liquids | 39

shall summarize the derivation of binary collision expansion,” ™' which seems

to be an adequate treatment to the present problem.

§ 7. Binary collision expansion

Simply writing the ‘right-hand side of Eq. (6-1) by an operator 9), we have

aA P:: @P, (7 ¢ 1)
0t

where

@:@O_V’
» N M
g)o:DA Z Vg;i_FDB Z Vii’
i=1 ) J=1
V= v.= 200, 7-2)

In the last equation of (7-2), the pairs of A and B molecules are numbered
by small Greek subscripts and the sum extends over all the AB pairs (the
number of the possible AB pairs is obviously NM) and r, is the relative
distance of the pair a. The function P is understood to satisfy boundary con-
ditions and the initial condition " V

P(X, Y5 to] Xo, Yo35 1) =0 (X~ Xo)é\(y‘*yo>- (7-3)
Now, if we consider the solution of the equation '
aat P,= (o@o_va) -I)a:'g)apa (74)

with the same boundary and initial conditions, the solution P, is related with
the solution P by the integral equation

P(X, Y; t| X0, Yo; to) = Po(X, Y t| X, Yo: to)
N laxay pox, i ax, v 0 (V=00

XP(X, Y t'| Xo, Yo o). (7-5)
We shall introduce an abbreviated notation {A, B} defined by

t
(A, B} :Sdt’ng’dY’A(X, Yt X, Y ) B(X, Y s | X, Yo £0).
to
(7-6)
The operation {A, B} is associative, so that the inner parentheses can be
omitted:

{4, By, C} =1{4, {B, (3} =14, B, C}. (7-7)
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40 L. Teramoto and N. Shigesada

In this notation Eq. (7-5) is written as
P=P,—{P(V—=v,), Po} =P,— {P > vg, Pa}. (7-8)
8, Az

Furthermore, we have the well-known equation
P:I)O"‘{I)V’ PO}y <7°9>
where P, is the principal solution of the multi-dimensional diffusion equation for

the nonreacting particle system (V=0), and is given by, on the assumption of
the medium of infinite volume,

Py (X, Y5 t| Xo, Yos t0) ={4nD (¢ —to)} " {4nDy(t — o) } 7

N
XGXP['—ZI [xg*“Izolz/éi:DA(t*to)]
M )
xexp[ =2, ly;—yul’/AD5 (1 — 1) ]. (7-10)
. 7=
Then, of course one also has '
Pu:PO—'{Pa'Ua, P0}~ (711)
Starting from these equations (7-8), (7-9) and (7-11), we can find a succes-
sive approximation which results in the binary collision expansion

P=Py+>] ua~ﬁ§‘, {Psvg, tiay + . > , {P,v,, {Psvg, tta}}

g+
S (7-12)

where
Ue=Po— FPo=—{Pyva, P}, (7-13)

and the symbols >, > , etc., are the summation over all indices, exclud-
a3 c:f 3y Y 4B

ing the values a=:f, 5.
The pair distribution function defined by

P s Yo Ui, yeoi 0) = | Pu(X, Y3 21X, Vi3 0)dXaY,  (7-14)
where X and Y denote all the coordinates X and Y except for those of the

pair «, i.e. x, and y,, satisfies the equation

.aaz 2 (Zay Va3 t|Za, Yao; 0) = ADV o + Dyl — Vo (Xa Yo )}

Xp(xa:ya; t|xa0>ya0; 0)- (7'15)
If we introduce new variables r and = defined by
=Xy Ya,

Z = (DB.QSQ-FDAya)/(DA—FDB), (716>*)

* Here the bold-faced letters are used for convenience, but it should be noticed that x, and
Yo are also vectors. '
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and assume that v, depends only on the relative coordinate r, we can obtain
the solution of Eq. (7-15) in the form

=95 =; )o(r, ro; £), (7-17)
where ¢ and p are the solutions of the following equations:

0 D.Dj

i f == el 72 5 7'18
ot ' poap, @18
0= {Dat D)3 —va ()} . (7-19)

§ 8. Approximate calculation

Now we have to calculate the integral of Eq. (3-2), using the binary colli-
sion expansion (7-12), where P(X, Y; #| X, Yo; 0) is the solution of Eq. (6-1)
for N—k A particles and M—/% B particles. In our approximation we assume
the uniform initial ‘distribution, so that f(X,, Y,) is given by (1/V)¥+¥-*

The first term of expansion (7-12) obviously gives

/vy N"“M‘”“SPO(X, Y; 21X, Yo, 0)dX,dY,dXdY =1, 8-

because P, is the solution of unperturbed diffusion equation.
It is readily seen that the multiple integral

1,/ ”*M“Z’“SPa AX,dY,dXdY

can directly be performed for all coordinates except for those of the « pair, so
that we have

/v N+M"2'°Sua AX,dY,dXdY =w(t) —1, (8-2)

w (t) = (1/V> ZSP (xou ya; ZI-IaO, ya(}; O) dxoco dycw d$a’ dya, (8' 3) )
where we have -used Eq. (7-14). This can also be written as
w (@ = W/VY {9, 505 00, 7o; ) dadsodr dr,.

If we can neglect the boundary effects, the integrals with respect to z and =
can directly be performed and they give simply a factor V, because g is the
solution of the free diffusion equation (7-18). Therefore, under this assumption,
we have '

w (L) = (l/V)S(O(r, ro; 1) drdr,. | (8-4)

Thus all the (N—%) (M —k) terms of the sum in the second term of Eq. (7-12)
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Y
AR

Fig. 1. Fig.

ii

S

give the same integral (8-2). »
' Now let us consider the third term of Eq. (7-12). The integrals of the

type
1/v) NW—WS (Povp, 1} dXodYod X dY (8-5)

are divided into two cases. When the pairs « and £ have no common particle,
that is, the case i in Fig. 1, it is easily seen that the integral (8-5) can be
reduced to '

3

1/V) 4g dt’ gdxao dyaodx, dy, dag dyg dagdyg
0 .

X p(xa, Yo tlas’, yo's 10 (xs’, ye Y u(xd s ya''5 £ Zavs Yao; 0)
t

~ Sa(zvm (o) 1 dt’, (8-6)

0

where

0@—2t")=1/V) 2deﬁ dysdxg’ dys v (xs’, ys') p (2, yo; tlxs's ys's ).
8-7

The number of terms which belong to the case i is (N—k) (M—k) (N—k—1)
X (M —k—1) and they give the same contribution (8-6).

Next we shall consider the case that the pairs « and § have a common A
particle whose coordinate is denoted by x.;. In this case, the integral is
reduced to
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1/V) 38 d dem Ayerdcp dy dys' dzcus dy,s

X p (Zaps Yo s, y6's )0 (Xips Y67

X (Zougs Yo' 3 U Zapo, Yaos 0). (8-8)
It can be seen that, for the arguments of u, if we use the variables r,, 7./,
z4 and z,” defined by (7-16) and neglect the boundary effects, the integration
with respect to z, can be readily performed; then it becomes independent of
z,, so that the integration with respect to y,” gives again the factor w (") —1.
Then the remainder of the integral (8-8) has the same form as (8-7), so that
(8-8) gives the same contribution as FEq. (8:6). It is easily seen that when
the common particle is a B particle, the same result is obtained. The number
of terms of the case ii is given by (W—£k) (M —k){(N—k-—1)+(M—Ek—-1)};
therefore summing up all the terms of these integrals, we obtain the contribu-
tion from the third term of Eq. (7-12):

(N=1) M =B {N=B) M=B) =1 {0 =) fw ) ~Bar. 69
é \

The integrals of the fourth and higher order terms of Eq. (7-12) contain many
complicated multiple integrals which cannot be so simply factorized as we have
done for the third term. For example, we shall consider the fourth term of
Eq. (7-12), that is

2

.
el B, B4y

/Y)Y (o, oo, X AY (XY . (8:10)

Various types of these multiple integrals are schematically shown in Fig. 2.
It looks as if the integrals of diagrams of types ii, iii and iv can be factorized
as well as type i, but it is not so and because of the time correlations, some

of the diagrams of types ii and iii, depending on the order of bond indices

«, B and 7, cannot be simply factorized. However, as an approximation, if we
attribute the same contribution as that of diagram i to all these diagrams, we
obtain
P
H(E) {H (E) ~1}2Sdt’ Sdt”O(t#t’)O(t’—z”) (W) —1y,  (8-11)
0 0

as the contribution from the fourth term of our expansion, where
Hk) = (N—Fk) (M—k). (8-12)
Thus if we use the same approximation for the higher order terms, we may obtain

2

Wy () =1+ H (%) {w () —1} - H (k) -{H(/e) —1} Scl['@ (t—1")

0
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13

% {w (t) =1} + H (k) {FI (k) — 1}23 ds’ Sdz”@ (t—1t")

X0 —t") {ww () =1} —veeenn | ’ (8-13)

Here, if we take into account the relation which corresponds to Eq. (3:6):
L—wis)=" L0, (8-14)
the Laplace transform of Eq. (8-13) is given by
LW y—gwps 8) = f [1—HE)LO; s) + k) {HE) =1} L(0; 5)*
CH ) {H R —13L0; )+ -]
- f [1=H B2 (~DHE ~1BLE; 9. (8:15)

Thus if we know the solution of the two-body problem, we can calculate
Eq. (8-15), then from our general formula (3-7) or (3:10) we can obtain the
final result. However, the approximation adopted in the derivation of Eq. (8-15)
is very crude and in order to have more precise information on the correlations
of our many-body system, we need to calculate various terms appearing in the
binary collision expansion in a more exact way.

§ 9. Diffusion controlled reaction rates

Finally, in this section we shall present an explicit result for the simplest
case of diffusion controlled reactions. As we stated in the Introduction, the
equation for two-body problems (7-19) have been investigated by many authors.
In many of these investigations, reactions are taken into account by specifying
the boundary conditions at the reaction radius |r]|=R, instead of the absorbing
probability v (). Two kinds of boundary conditions are considered. In the
“Smoluchowski boundary condition”, it is assumed that two molecules react
immediately upon collision; thus 0 () must be zero at |r|=R. Collins and
Kimball” examined the case that the rate of reaction on the sphere of radius
R is proportional to the flux of counter particles through that surface, which
is usually called the ‘“radiation boundary condition”,

In these cases, it was shown that the stationary reaction rate is given by
4nD ,zR*/V, where D,z=D,+ Dy and R* is the effective reaction radius. It
seems to us that there may be some ambiguous points in the direct application
of this result to our formula, because it should be noticed that this stationary
diffusion controlled reaction rate is obtained for an essentially infinite system,
assuming the constant probability density of the counter particles at infinite
distance. IHowever, if we can assume that this stationary rate is valid for short
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time ranges for the finite system, we may be able to use this result as the
solution of our two-body problem. Then we have

w(t) :eXp<"‘ 4EDABZ{$K/VV> 5 ’ (9' 1)
and calculating (8-14) we obtain

L(;s) = DRV

9.2
s+4nD g R*/V ®-2)
Equation (8-15) can be written in the form
1 1-L(6; )
LW Nk S§) T e e S ST T 9.3
B N TR YOI ©9)
Hence, using Eq. (9-2) we have
1
LWy _tn-r38) = . 9.4
(Wooewss = oD R H )V ©-D
The inverse transformation of Eq. (9-4) becomes
Wyt w-1(t) =exp|[ —4nD zR*F (k) ¢/V']. (9-5)
Thus, in this case, from Eq. (4-2) the_ rate function is given by
Kyy= 47D s R¥H &) /V = »_l“‘%BR.V (N—B) (M—F). 9-6)

§ 10. Summary

In this paper we have developed a systematic formulation of bimolecular
reaction processes in liquids as a many-body problem. Space-time correlations,
which are completely taken into account in the general formula (2-3), have
been partially smoothed out by reducing the problem to that of Markov pro-
cess; this seems to be allowed only when the uniform distribution is assumed
for the initial ensemble.

In particular when the rate function defined by Eq. (4-2) is independent
of time, the process becomes a rather simple stationary Markov process, which
is essentially a random walk problem and is described by a differential difference
equation (4-4) or (4-5). Moreover it has been shown that the solution of these
equations in the first order approximation gives just the law of mass action.
In more general cases which can be described by Eq. (3:11), in order to have
that equation in an explicit form, the multi-dimensional diffusion equation with

pair absorbing interactions must be solved. This equation will be calculated -

using various techniques developed in the theory of many-body problems. Here
we have adopted the binary collision expansion method and have showed that
in a simple approximation, we can have the well.known result obtained pre-
viously for the diffusion controlled bimolecular reactions.
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In fact what we have discussed here is only that if we start from the general
description of the time development of our many-body system, the results of the
usual simple phenomenological equations can be derived through many steps of the
approximations. However, various formulae developed here will give the ways of
investigating more detailed effects of the space time correlations and then devia-
tions from simple laws of the usual theories of chemical kinetics. These pro-
blems will be discussed in the near future.
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Appendix I

By applying the Laplace transformation to Eq. (4-4), that is

| Z Wynw =t (N +1) (M—n+1) Wy s — 1 (N—2) (M= 1) Wy,
(I-1)
we obtain
LWy 9= O LWy 9, for a1, (I-2)
where H(n) = (N—n) (M —n). For n=0, we have
Wy = — ENMW (1-3)
dt
with the initial condition Wy 4 (0) =1; hence
1
Wan(t) = —kNMt), L(Wy,y;5) = - . I-4
v () =exp( ) (Wy,ws 5) st e NM (I-4)
Using Egs. (I-2) and (I-3), we obtain by iteration
@ 11 H (k—1)
~ fo=1
L(Wyepys $) = " : (1-5)
k[}() [s+KxH (k)]
Now, if we employ the partial-fraction representation, we get
L(Wiopys ) =3 Ao | (1-6)

= s+ H(R)

where
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he= [H© H() -+ H(n— D T{LH©O) ~ H®[H1) ~ H()]
[HG~1) —HEHE+D —HGE) ] [H@) —HGE T}

Hence

L(Wiyi ) = [ HU=D X [s+eH® 1 I [HO ~H® 1}

(17

The inverse transformation of Eq. (I-7) gives the final expression for the
solution of Eq. (4-4):

W@ =2 e ([T HQ-1/ ] [HO ~H®. 18

<l<n
[

Here we shall compare this result with our general formula developed in
§3. If we assume the stationary condition (4-3), from Eq. (4-2) we obtain

Lo Wka’ Vg ([) — e-—n[[(ﬁ?)t . (I» 9)
Hence, we have
H (k)
L l_W — A o= - K N 1.10
\ ( Nk N-k> S) s[5+ kLB ] ( )

and

1

LW —myN=m> S) 7 PRt .
(War-ny-a 3) s+rH(n)

(I-11)
Thus it can be seen that, in this case, the solution (I-5) is derived directly
from the general formula (3-7) as a special case.

~ When M >N, it can be easily shown that Eq. (I-8) becomes a Bernoulli
distribution, that is, if we use the approximation H () =M (N—[1), we obtain

n Y
WN~n,N (l) :]c:\O e—mM(N—Ic)t {(Z\]]Y—n) Y / (__ 1)n—k (72 — /76) [ ]3' }
N! N N n! —k Mkt
Newyint & B e P
|

= <N~‘Z\;'> Yn ' e—-—/c]lINL [echt — 1] 7

—_— N! N-n_ n
(N—n)!n! pg

where
P _ e_/ch, q= 1 __e-—/th .
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Thus, if we use the variable m=N—n, we have

N!
Wm )= - = e m o N—m . I’ 12
2 (N—=m)!m! pa ( )

The mean and the mean square deviation of the Bernoulli distribution (I-12)
is given by '
{m> = Np = Ne~*", C(1-13)
0* (&) =<{(m—{my)*y = Npg=Ne "™ (1 —e "), (I-14)

which agree with the results (4-11) and (5-8) obtained by solving the diffe-
rential equations for the moments on the assumption of the relation (5-3).

Furthermore, owing to the DeMoivre-Laplace limit theorem, asymptotic
formula of Eq. (I-12) is given by

W () = (2 Npq) ~V* ¢~ m=Nr2m (I-15)

under the condition N>m>1. This result may suggest the plausibility of our
assumption used in § 5.

Appendix II

Reversible bimolecular reactions

Though we have restricted our attention to irreversible reactions in the
text, it will be shown that the similar formulation can be derived for a more

general case in which the inverse reaction AB—A +B exists.

‘We consider a system in which N particles of type A and M particles of
type B are initially distributed by medium of volume V. In order to formulate
the reaction process, let us introduce the following probability functions: Z,(z)
is the probability that one reaction of association or dissociation of an AB pair
occurs between ¢ and ¢+ dt and the number of AB complexes becomes n during
that time interval, 7', ,-:(z) is the probability of the first association defined in
the text where we have denoted it by Ty_p y-n+1, and R, ,.1(2) is the probability
of the first dissociation defined in just the same way as T, ,_:.

Then the probability that at time ¢ n AB complexes are found, which is
denoted by Wy_, »() in the text, can be written as

Wi @ =\ Unouvea G =) 200 (I-1)
0

where Uy_, y_n(¢) is the probability that N—»n A particles and M —»n B particles
with uniform initial distribution remain unreacted until time z. In the irreversible
case, it was unnecessary to distinguish this probability from Wy_, y_.(¢), because
the reaction process always proceeds to one direction. From the definitions
there exists a relation
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Usnrn (D) + g [Tosin (&) + Roorn (') 1d’ =1, (IL-2)

and also we have

4

7. () = ST,,,,H (b=t Zoo s () dt’

0
t

+ an,nH{l‘—-—t') Znir (&) dt" . _ (1I-3)
0

Hence, by the Laplace transformation, we obtain ‘
Ly (5) =T pn-1 (5) Lyt (5) + Rn.n+l (5) Zn+1 (5‘) > (II . 4)

where we have used the simple notation for the Laplace transforms by putting
argument s. Equation (I[-4) can also be written in the form

. 1 p Tne1(s)
Zus@ = bz T 7o), (I1-5)
* Rn,n—l—l (5) Rﬁ,n-H (S) '
Now if we introduce the vectors and matrices defined by
| L Tl
Z,(s) = / Z(s) >’ T,(s) = <Rn,n+1(s) Ry ni1 (5) ), (11-6)
\ o1 (5') 1 0'
we obtain, by successive applications of Eq. (II-5),
Znis(s) = Tulo=11 TiZ, o
where | '
1 o
:ro:< Bu® )z - = ) (11-8)
1 o) 0
Hence, by Eq. (II-1) we have
n—1
Wyony (8) = Uy y-ats™ 11 TuZ,(5), (II-9)
where
) .
u:<0>, ut= (1 0). (I1-10)

In Eq. (II-9), Uy-nwy-n and T;s are expressed in terms of probabilities
of the first reaction R,_1, and T, by Egs. (II-2) and (II-6), on the other
hand Z,(s) can be obtained by the normalization condition
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~
> Wyean (@) =1, (II-11)
n=0
that is,
N
2 Wyan(s) =1/s. | (I1-12)
Thus we have the formula
n—1
1 Z]N——n,l\’—nu>x< 11 Tiu
WN—‘n,N (S) — e )\; e .,,,jf?,n,:,l,,,,,,,* A (II. 13)
g Z Uzv—n,zv—nu>I< ] Tu
n=0 =0

Now, as a special case, we shall consider the stationary reaction rate, that
is, we assume probabilities of the first reaction T, ,_; and R, ,.: to be given in
the forms

,[Yn,n—l = /CH(?’l - 1) UN~n+1,N-—n+1 5

Rn.n+1::u<7l+ 1) UN—-n—l,N—n——la (II‘14)

where H(n) = (N—n) (M —n). Then using Eqgs. (II-1) and (II-4), we get
Zn@) =kHn—1) Wy_p1,5 (@) +£(n+1) Wy_ao1,x(2). (II-15)

Differentiating Eq. (II-1) and using the expression
& 10g Uy-ny-a= —KH ) =, (11-16)
which can be derived from Eqs. (II-2) and (II-14), we obtain
O Wienn @) =H (1= 1) Wy, ) + £+ 1) Wir-esn (0

s —{kH (n) + pny Wy_, x(@). Ir-17)

This is the stochastic equation which describes the reversible bimolecular
reaction processes,
By Eq. (II-13) the Laplace transform of the solution of this case is given

by
i SRS u* ﬁl T; (su
IR SR (R S AT
=0 s+ H(n) +n “ g Te(s)
where
T,(s) = (STRHGEHD +uG+D) sHGa-Ds+rH@+1D +pmx+1D]
1(G+1) tn+ D) [s+eHn—1) +un—1)]
1 0

for i>1, (II-19)
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T, (s) = 5.7”‘_,H21) tuoy

1 0

Finally, in just the same manner as we have done in §5, it can be easily
shown that, in the first order approximation, Eq. (II-17) leads to the law of
mass action

D

2)
3)
4)
5)
6)
7
8)
9)
10)
11)
12)
13)

14)
15)
16)

j[ Cum= —9C4Cn+ 1C . (I1-20)
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