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Theory of Bimolecular :Reaction Processes in Liquids 

Ei TERAMOTO and Nanako SHIGESADA 

Department of Physics, Kyoto University, I<..yoto 

(Received August 29, 1966) 

A theoretical approach to the problem of diffusion controlled bimolecular reactions 1s 

presented. In order to take into account the ti:ne correlation of reaction process of our 

many-particle system, the probability of the fust reaction is introduced as a fundamental 

quantity. Time development of the ensemble of our system is formulated using the probabil

ity of the first reaction. An approximation which reduces the general formula to a problem 

of Markov process is adopted. Then it is shown that, if we assume stationary reaction rate, 

the usual phenomenological kinetic equation, i.e. the so called law of mass action can be de

rived as the first order approximation, and as the second order approximation the deviation 

from the law of mass action is examined. For the general case, in order to obtain the prob

ability of the first reaction in an explicit form, it becomes necessary to solve. the multi

dimensional diffusion equation with pair absorbing interactions, which is calculated using the 

binary collision expansion method. 

§ 1. Introduction 

29 

Diffusion contrqlled reaction processes have been widely known, for example, 

coagulation of colloidal particles, quenching of fluorescence, excitation transfers 

and usual bimolecular reactions of the type A+ B-> AB. Theoretical investiga

tions have been developed by many authors,tl-lll since Smoluchowski.'s funda

mental work, which was originally developed to explain the process of coagulation 

of colloids, appeared. Many of these works were devoted to deriving formulae 

for collision frequency or reaction rate as a function of time and friction constant, 

on the basis of Smoluchowski's equation. Assuming the independence of colli

sions, they solved essentially two-body problems under various boundary and 

initial conditions. 

If we consider the reaction process as a time dependent many-body problem, 

it becomes necessary to take into account complicated spatial and time correla

tions. The effects of these correlations have been also discussed by several 

authors. However, the ~ystematic formulation has seemingly not yet been esta

blished. The purpose of this paper is to derive a general formula which de

scribes the time development of an ensemble of our many-particle system, and 

investigate the effects of these correlations on the reaction rates. 

In order to take into account the time correlations of reaction process, the 

probability of the first reaction is introduced as a fundamental quantity. By 

using this probability function, time development of the ensemble of our system 

is formulated in the most general form in § 2. On the assumption of the uniform 
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30 E. Teramoto and N. Shigesada 

spatial distribution for the initial ensemble, the problem is reduced to that of 

Markov process whose mathematical properties are discussed in § 3. In §§ 4 

and 5, by assuming the stationary reaction rate, the usual phenomenological 

kinetic equation, i. e. the law of mass action is derived as the first order ap

proximation, and by investigating the second order approximation the deviations 

from the law of mass action are discussed. In order to, have an explicit result, 

it is necessary to calculate the probability of the first reaction by solving the 

multi-dimensional diffusion equation with pair absorbing interactions, which has 

just the same form as the Bloch equation for the density matrix of many-body 

system which is discussed in § 6. Finally §§ 7 and 8 are devoted to the calcula

tion of this multi-dimensional diffusion equation, using the binary collision ex

pansion method which were formerly developed for many-body problems. 

§ 2. Mathematical formulation 

Let us consider a solution containing two kinds of particles (A and B) as 

solutes, and suppose that these particles undergo random motions described by 

diffusion constants DA and DB respectively and also A particle reacts with B 

particle at a relative distance r with the definite probability v (r), forming a 

complex AB. In the following discussion it is assumed that the reaction is 

irreversible and also direct interactions between particles of the same type, 

which may give some modifications to random motion, can be neglected. 

As an initial ensemble, we consider an ensemble of those systems in which 

N particles of type A and M particles of type B are distributed in a medium 

of volume V and no complex AB is formed at t = 0. These particles begin 

random diffusive motions and when any A particle approaches any B particle 

within the reaction range, reactions of the type A+ B~ AB will start. Thus we 

shall denote by WN-n,N(t) the probability that at a time t, nAB complexes have 

already formed, so that N- n particles of type A and M- n particles of type B 

remain unreacted. 

Using this probability function, the averaged density of A particles at time 

t is given by 
N 

CA (t) = v-l ~ (N- n) WN-n,N (t). (2·1) 
n=O 

In order to take into account the time correlations of the reaction processes 

of our many-particle system, we shall introduce the probability of the first reac

tion Ti/~1,N(X, Y; tl Xo, Yo; t0) defined as follows. X= (x1, x 2,- · ·, xN) is a set of 

coordinates of N particles of type A and xi is a position vector (in general it 

·may include the coordinates of internal freedom) of the i-th A particle, Y = 

(yr, Y2,. · ·, YM) is the smne for B particles. The probability of the first reaction 

T}.;~l,N(X, Y; tiXo, Y 0 ; t 0)dXdY dt is the probability that until timet no reaction 

has occured and N + M particles of types A and B which have started from 

the initial positions (X0, Y0) are found in the volume element dXdY at the 
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Theory of Bimolecular Reaction Processes in Liquids 31 

positions (X, Y) at time t and in the time interval from t to t + dt the first 

reaction occurs between the i-th A particle and the j-th B particle at the posi

tions xi and y 1 respectively. 

Apparently the probability of the first reaction can be expressed in the 

form 

TJ.;~J,?V(X, Y; t!Xo, Yo; to)dXdYdt 

=v(xi, yJP(X, Y; t!Xo, Yo; to)dXdY dt, (2·2) 

where v (xi, y 1) is the absolute reaction rate defined above and assumed to be 

a function of the relative distance lxi·-y1!. P(X, Y; tiXo, Y 0 ; t 0)dXdY is the 

probability that N + M particles of types A and B, which started from the 

positions (X0, Yo) at time to, still not reacted and are found in the volume 

element dXdY at the positions (X, Y) at time t. In the present formulation 

the processes that two or more AB pairs react at the same instant are neglected. 

Then the probability that n AB pairs are found at time t, WN-n,N(t), can be 

constructed by summing up the probabilities of each individual process of 

successive reactions of n AB pairs. Actually it can be written in the form 

t tn t2 

WN-n,N(t) = )dtn )dtn-1"" ) dt1 )dXdY) dXndYn"'" )dXodYo 
0 0 0 

X ~ P(Xj (il" ·in), Y / (jl" jn) ; tl Xn/ (il .. ·in), Yn/ (jl .. jn) ; tn) 
{ (ik, jk)} 

X T ~~/~-n+l (Xn/ (il· · ·in-1), Yn/ CJ1· · j1~-1) ; tnl 

Xn-l/(il"'in-1), Yn-1/(jl .. jn-1); tn-1) 

T in-bj-1 ex ;c· . ) y· ;c· . )· I X N-n+l~N-n+2 n-l l1' · 'ln-2 , n-l ]l· · '}n-2 , tn-1 

X ......... 

(~· 3) 

where the notations Xk/ (i1 .. · iv) and Yk/ (j1 .. jv) denote the coordinates of N -v 

particles of type A and M -v particles o:f type B at time tk respectively, excluding 

the coordinates of £1, .. ·, iv-th particles of type A (xi
1
,-··, X 1) and jr, .. ·, jv-th 

particles of type B (y it,. .. , y 1) which have already reacted. The summa

tion is taken over all the possible sequences of n different AB pairs (ir, j 1), 

(i2, j2), ... , Cin. jn), where £v=-=l, 2,-··, N, j"=l, 2, ... , M and iv=l=i,.., jv=l=j"" 

for V=F/1. f(Xo, Yo) is the distribution function o:f particles for the initial ensemble. 

Expression (2 · 3) gives a detailed information of the reaction process 

of our system and the space and time correlations of the process are completely 

included in that complicated integration. However, calculation of Eq. (2 · 3) is 
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32 E. Teramoto and N. Shigesada 

actually almost impossible, so it is necessary to reduce the equation to a more 

simple form by using some suitable approximations. 

§ 3. Formulation as a Markov process 

If, at the initial time, the particles A and B are uniformly distributed in 

the medium of volume V, then the chance of reaction of the AB pair can be 

expected uniformly in the space. In this case, we can reduce the problem to 

a problem of the Markov process by assuming that at each instant tk just after 

the k-th reaction has occured remaining unreacted particles have uniform distribu

tion. That is, under this assumption, the multiple integration of space coordi

nates in Eq. (2 · 3) can be performed independently, and we have 

I 

W N-n,N (t) = ~ dtl WN-n.N-1 (t- t1) T N-l,N (tl) 

0 

t tn t2 

=) dtn) dtn-l ··) dtlvVN-n,N-n(t-tn) 

0 0 0 

X ......... TN-l.N (tl)' 

for n>1, 

or us1ng a simple notation for the convolutions 

(3·1) 

(3 ·1') 

where TN-k-l,N-k (r:) is the probability that at the initial time N- k particles of 

type A and M- k particles of type B are uniformly distributed in the medium 

of volume V and in the time interval from r: to r: + dr the first reaction occurs 

between one of the AB pairs, and vV N-k,N-k (r) is the probability that N- k A 

particles and M- k B particles with uniform initial distribution remain unreacted 

until time r. Apparently these probability functions are given by 

(3·2) WN-k,N-k(t) =)rex, Y; tiXo, Yo; O)f(Xo, Yo)dLYodYodXdY, 

TN-k-l,N-k(t) =ij)v(xi,y1)P(X, Y; ti~Yo, Yo; O)f(Xo, Yo)dXodYodXdY, 

(3. 3) 

where Xo and X stand for the coordinates of N- k particles of type A, and Yo 

and Y the coordinates of M- k particles of type B. Because of the Markovian 

approximation, in Eqs. (3 · 2) and (3 · 3) it becomes unnecessary to distinguish 

the particles as we have done in Eq. (2 · 3) by writing the arguments with 

fractional coordinates. 
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Theory of Bimolecular Reaction Processes in Liquids 33 

Owing to the normalization condition of the probabilities, it is clear that 

t 

~ T N-k-l,N-k (t') dt' + w N-k,N-k (t) = 1' 
0 

or 1n a differential form 

TN-k-l,N-k(t) = --dWN-k,N-k(t)/dt. (3· 4) 

Thus, if we can obtain an explicit form of the distribution function 

P(X, Y; tl Xo, Yo; 0), the probability of the first reaction T N-·k-l,N-k (t) is given by 

calculating Eqs. (3·2) and (3·4); then using Eq. (3·1) and finally Eq. (2·1) 

we can evaluate the averaged density o:f A particles CA (t) as a function of time. 

Here we shall denote the Laplace transform of a function F(t) by 

co 

L(F; s) = ~ F(t)e-st dt. 

0 

Then, from Eq. (3 · 4) we get 

L(TN-k-l,N-k; s) =sL(1- WN-k,N-k; s), 

and the Laplace transform of Eq. (3 ·1) becomes 

n--1 

L(WN-n,N; s) =L(WN-n,N··n; s)sn ]J L(1- WN-k,N-k; s) 
k=O 

=Fn-l(s) -l"n,(s), for n>l, 

where 

n 

Fn(s) =sn II L(1- WN--lc,N-k; s), for n>O. 
k=O 

From the obvious relation 

· L(WN,N; s) =}--·-L(1- WN,N; s), 
s 

(3· 5) 

(3· 6) 

(3·7) 

(3·8) 

it is seen that we can also use the formula (3 · 7) for n = 0 by using the defini

tion 

(3·9) 

Thus we can obtain the Laplace transform of the averaged density of A 

particles, using Eq. (2 ·1) : 

N 

L(CA; s) = v-l :E (N-n)L(WN-n,N; s) 
n=O 

]\r 

= V- 1 :E (N·-n) (Fn-l(s) -·Fn(s)) 
1!=0 

(3 ·10) 
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34 E. Teramoto and N. Shigesada 

where C} = N/V is the initial value of the density CA (t). 

Finally, the inverse transformation of Eq. (3 ·10) gives 

CA(t) =C}{1-- ~ ~L- 1 (Fn; t)}, (3·11) 

where L - 1 denotes the inverse Laplace transformation. 

§ 4. Elementary kinetic equation of stationary reaction rate 

From Eq. (3 ·1) we have 

d t tn-1 t2 

dt-WN-n,N(t) = ~ dtn-1~ dtn-2···~dt1 TN-n,N-n+1(t-tn-1) 
0 0 0 

t tn t 2 

- ~ dtn ~ dtn--1 .. · ~ dt1 T N-n-1,N-n (t- tn) 
IJ 0 (I 

X T N-;~,N-n-t-1 (tn- tn-1) · · · T N-1,N (t1), 

where in the second term the relation (3 · 4) is used. 

Now we shall define the rate function KN-k(t) by the equation 

KN-k (t) = __ T'N~k~l,J!~k(t) = - d,_ log WN-k,N-k (t). 
WN-k,N-k(t) dt 

(4·1) 

(4· 2) 

The rate function KN-k (t) dt is the conditional probability that the first reaction 

occurs during the time interval t and t + dt when N- k A particles and M -!? 

B particles remain unreacted until time t. Here, if we can assume that this 

rate function is independent of t and also has a form 

J(N-k=tc(N-1?) (M-k), (4·3) 

then, by usmg Eqs. (4·2), (4·3) and (3·1), Eq. (4·1) can be reduced to a 

differential equation 

d 
-d WN-n,N= 1C (N- n + 1) (M- n + 1) WN-n+1,N-IC (N :- n) (M- n) WN-n,N. 

t 

(4· 4) 

This equation was already investigated by Renyi/2
)'

13
) and, as shown in Appendix 

I, we can obtain an exact solution, which is also compared with our general 

formula developed in § 3. However, in application it is of interest to determine 

the averaged density CA (t). 

We shall rewrite WN-n,N simply as Wm putting m=N-n, then we have 

_d Wm=IC(m+1) (m+1+M-N) Wm-t-1-tcm(nz+M-N) Wm, (4·5) 
dt 
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Theory of Bimolecular Reaction Processes m Liquids 35 

and· also Eq. (2·1) can be written as 

N 

CA(t) v-l ~ JnWm(t) = v- 1(m). (4· 6) 
m"~o 

Here it should be noted that if one puts W 1V+ 1 = 0, Eq. (4 ·5) becomes applicable 

for W N as well. 

]'hus, from Eqs. (4·5) and (4·6), we obtain 

{ll (m) = -- fC [ (m}) -+· (M -- JV) (tn)]. 
ct 

(4·7). 

In order to solve this equation we need the equation from which the second 

moment (nl2
) can be calculated. This procedure, however, leads to the hierarchy 

of equations which involve succesively higher order moments. As the first order 

approximation, if we put 

Eq. (4·7) becomes 

d CA = -- v[CA + (Cn° -C}) ]C;t, 
dt 

(4·8) 

( 4. 9) 

where v=V!C, C}=N/V and Cn°=M/V. Equation (4·.9) 1s the usual phe

nomenological kinetic equation of bimolecular reactions, the so-called law of 

mass action. The solution of Eq. (4·9) which satisfies the initial condition 

CA (0) = CA0
' is given by 

CA(t)=--- _Cno_~-C} __ -- Ct 
c B O exp [V ( c B O -- c A 

0
) t] - C} L 

( 4 ·10) 

In particular when Cn°'::?C}, we have simply · 

CA (t) = C} exp (- vCn°t). (4·11) 

Thus it has been shown that in the :first order approximation our formula leads 

to phenomenological kinetic equations of bimolecular reactions. 

§ 5. Deviations from ithe first order approximation 

Here we shall consider a second order approximation and examine the 

fluctuation of density as a function of time. From Eq. (4· 5) we can obtain 

the equation for the second order moment (m2
), 

- d-(m 2
) = - 2/C(m}) + fC {1- :2 (M-N)} (nz2

) + IC (M- N) (m). 
dt 

(5·1) 

In order to close the equations by taking into account the second order moment, 

we must express the third order moment (m3
) in Eq. (5 ·1) approximately 

using lower order moments. As a reasonable approximation, here we shall 
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36 E. Teramoto and N. Shigesada 

assume a symmetric distribution for ~Vm, for example a normal distribution 

function (see Appendix I) : 

1 
vVm= I exp[- (m-<m)) 2/20"2], 

v 2-rr: (} 

0"2 = <m2)- <m/. 

rfhen we can readily obtain 

(m3
) = 3<m2)<m)- 2<m ) 3 

• 

Hence, from Eqs. (5 ·1) and (5 · 3), we obtain 

(5· 2) 

(5· 3) 

d (m2
) =- tC {6<m) + 2 (M- N) -1} <m2

) + /C<m) {4<m)2 + (M-N)}, 
dt . 

or fron1. Eqs. (4·7) and (5·4) we have 

d (f
2 

= - 2/C { (M- _l\f) + 2<m)} 0"2 + /C { (M- N) <m) + <m2
)}. 

dt 

(5. 4) 

(5· 5) 

Thus Eqs. (4·7) and (5·4) (or (5·5)) form a closed set of kinetic equations 

of the second order approximation. However, the exact solution of these equa

tions cannot be simply calculated, so in this section let us consider two special 

cases which seem to be physically significant. 

First we shall consider the case that M> N; then Eq. (5 · 5) may be written 

as 

(5· 6) 

Solving this equation under the initial condition 0"2 (0) = 0, we have 

t 

(f2 (t) = !CMe-2"JJu~e2Kl<It' <m)dt'. (5· 7) 

0 

If we use the solution of the first order approximation (4·11), we obtain 

(f2 (t) = JVe-"1wt ( 1 - e-dit). (5·8) 

Therefore the fluctuation of the density is given by 

Next, let us consider another extreme case, namely J.V = M. In this case 

Eq. (5 · 5) becomes 

'~> K=v/V is a quantity of the order 1/V, so KM=vCn. 
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Theory of Bimolecular Reaction Proce.';ses in Liquids 37 

d 62 
= - 4tc(m)62 + K.(m/, 

dt . 
(5 ·10) 

where in the second term we have used the approximation (m2
) = (m ) 2

• On 

the other hand Eq. ( 4 · 7) becomes 

d
d (m)= -K.(m2), 

. t 
(5·11) 

whose solution of the first order approximation, namely when (m2
) = (m/, is 

given by 

(m) 
N 

1CNt+1 

If we use Eq. (5 ·12), we can solve Eq. (5 ·10) and obtain 

6 2 = !..J (teNt+ 1) ..,_ 1 [1- (ICNt + 1) -s], 
3 

so that 

< (nz 

(5 ·12) 

(5 ·13) 

(5 ·14) 

In order to calculate the second order approximation of Eq. (5 ·11), we shall 

replace the right-hand side by Eq. (5 ·13), then we have 

.4.(m)= -tc((m/+62
) 

dt 

1CN
2 

{ 1 

1CNt+1 1CNt+1 
(5 ·15) 

Therefore, we obtain 

(m)=N[--
1 

-
1 

{log (1CNt+1) --
1 

[1--
1 J~J (5·16) 

_JCNt-t-1 3N 2 (;cNt+1) 2 
J 

or 

C11 =C}[- 1 
___ ) {Iog(vC}t+1) ---~[1-- . 

1 J~·J. (5·17) 
vCt1°t+1 3N . 2 (vC}t+1) 2 

J 

From these results it is seen that the fluctuation of averaged density is 

always of the order of N-1
/

2
, so the deviation from the first order approxima

tion is not important when N is sufficiently large. 

§ 6. Multi-dimensional diffusion equation 

with pair ahBorhing interactions 

Now we shall again go back to the main line of our discussion. In § 3 

we have derived a general formula to caluculate the averaged density as a func-
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38 E. Teramoto and N. Shigesada 

tion of time, where it was shown that what we need to calculate m an explicit 

form is the distribution function P(X, Y; t/ L"<o, Yo; t 0). The change of the prob

ability distribution function P with time is due to the diffusive random motions 

of the particles and also the reaction processes between the AB pairs. From 

the definition of P, that is, the probability that all particles still have not reacted 

and are found at the positions (X, Y), if we consider an inactive system in 

which no reactions occur, the survival probability (3· 2) does not change and 

conserves the value unity at any time; however, when reaction processes are 

taken into accout, obviously the survival probability decreases with time. 

In general there exist the intermolecular forces which may interfere with 

normal diffusion processes. Diffusive motion of these particles can be described 

in phase space by the Fokker-Planck type equation, and when the friction constant 

( is large, a Maxwell velocity distribution will be established very soon, namely 

after the lapse of time of the order m/ (; after that time the change of space 

distribution function can be expected to satisfy the Smoluchowski diffusion 

equation characterized by the diffusion constant D = l~T /(. 

Bimolecular reaction process which is assumed to be irreversible can be 

described by introducing the pair absorbing probability as an additional term 

which expresses the probability that any pair of A and B molecules disappears 

by forming a complex AB. 

Here we assume that there exists no direct interaction between the parti

cles, so the diffusive motions of the particles are governed by a simple diffusion 

equation of multi-dimensional space. Thus we have the equation 

N M 

f7 x2 =: ~ v;;i ' 
,,=ol 

f7 2- '\' f72 
y -- L.J ?lj' 

.i~~l 

(6 ·1) 

where v (xi, yj) is the probability rate of bimolecular reaction between the i-th 

particle of type A and j-th particle of type B. This equation should be solved 

under the initial condition 

P(X, Y; 0/Xo, Yo; 0) =o(X--Xo)o(Y- Yo). (6. 2) 

Equation (6 ·1) has just the same form as the Bloch equation for the density 

matrix of many particles system in which h2/2m and 1/l~T correspond to the 

diffusion constant and the time respectively, and the Shrodinger equation for 

many-particle system has also the same form if we take the imaginary values 

of the diffusion constant and absorbing probability. Therefore, we can adopt 

the various techniques developed in the field of many-body problems to find the 

approximate solutions of Eq. (6 ·1). In the next section, as an example, we 
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Theory of Binzolecular Reaction Processes in Liquids 39 

shall summarize the derivation of binary collision expansion,14
)-tG) which seems 

to be an adequate treatment to the present problem. 

§ 7. Binary collision expansion 

Simply writing the right-hand ~ide of Eq. (6 ·1) by an operator !]), we have 

where 

0
- P===.fl)P, 

at 

N ]I{ 

.fDo=DA ~ 17~:i+Dn ~ P~j, 
i=l ' j=l 

V =:EVa=:[; v(ra). 
<X <X 

(7 ·1) 

(7. 2) 

In the last equation of (7 · 2), the pairs of A and B molecules are numbered 

by small Greek subscripts and the sum extends over all the AB pairs (the 

number of the possible AB pairs is obviously NM) and ra is the relative 

distance of the pair a. The function P is understood to satisfy boundary con

ditions and the initial condition · 

P(X, Y; tal Xo, Yo; to) == o (X- Xo) (} (Y --Yo). (7. 3) 

Now, if we consider the solution of the equation 

(7. 4) 

with the same boundary and initial conditions, the solution Pa 1s related with 

the solution P by the integral equation 

P(X, Y; tlXo, Yo; to) ==Pa(X, Y; tlXo, Yo; to) 

t 

- ~ dt' ~dX' dY' P(X, Y; tl X', Y'; t') (V -va) 

to 

x P(X', Y'; t'l Xo, Yo; to). (7. 5) 

We shall introduce an abbreviated notation {A, B} defined by 

t 

{A,B}=~dt'~dX'dY'A(X, Y;tlX', Y';t')B(X', Y';t'IXo, Yo; to). 

to 

(7 ·6) 

The operation {A, B} is associative, so that the Inner parentheses can be 

omitted: 

{{A, B}, C} = {A, {B, C}} = {A, B, C}. (7 ·7) 
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40 E. Teramoto and N. Shigesada 

In this notation Eq. (7 · 5) is written as 

Furthermore, we have the well-known equation 

P= Po- {PV, Po}, 

(7 ·8) 

(7. 9) 

where Po is the principal solution of the multi-dimensional diffusion equation for 

the nonreacting particle system (V = 0), and is given by, on the assumption of 

the medium of infinite volume, 

Po (X, Y; tl Xo, Yo; to) =, {4nD A (t- to)} -SN/
2 {4rrDB (t- t 0)} -sM;2 

y 

X exp[- :E I xi -xioi
2
/4DA (t- to)] 

i=l 

Jli 

X exp[- ~ lyJ-YJoi
2
/4DB(t-to)]. 

J=l 

(7 ·10) 

Then, of course one also has 

Pa=Po- {Pa'L'a, Po}. (7·11) 

Starting from these equations (7 · 8), (7 · 9) and (7 ·11), we can find a succes

Sive approximation which results in the binary collision expansion 

P= Po+~ Ua- ~ {Pf3Vf3, Ua} + ~ {Pc/'U"i' {P(3v(3, Ua}} 
C!O (3oj=ct (3=/=X,"/o/=(3 

(7 ·12) 

where 

(7 ·13) 

and the symbols ~, I.; , etc., are the summation over all indices, exclud
ct=f,f3 ct 1/-1, 'Y+f3 

mg the values a=/={3, r=l=/3. 
The pair distribution function defined by 

jJ(Xa,ya; tiXao,Yao; 0) = ~Pa(X, Y; tiXo, Yo; O)dXdY, (7·14) 

where X and Y denote all the coordinates X and Y except for those of the 

pair a, i. e. Xa and Ya, satisfies the equation 

xp(xa,ya; tlxao,Yao; 0). (7 ·15) 

If we introduce new variables r and z defined by 

r=xa-ya, 

Z = (D BXa + D AYa) / (D A+ DB) , (7 ·16) *) 

*) Here the bold-faced letters are used for convenience, but it should be noticed that Xa. and 

Ya are also vectors. 
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Theory of Bimo1.ecular Reaction Processes in Liquids 41 

and assume that va depends only on the relative coordinate r, we can obtain 

the solution of Eq. (7 ·15) in the form 

p=g(z, z 0 ; t)p(r, r 0 ; t), 

where g and p are the solutions of the following equations: 

a- g = DA/2!!_ -- r;,g , 
at DA+Dn 

f) P= {(DA+Dn)f7~-va(r)}p. 
at 

§ 8. Approxhnate calculation 

(7 ·17) 

(7 ·18) 

(7 ·19) 

Now we have to calculate the integral of Eq. (3 · 2), using the binary colli

sion expansion (7 ·12), where P(X, Y; tl X 0, Yo; O) is the solution of Eq. (6 ·1) 

for N- k A particles and M -!? B particles. In our approximation we assume 

the uniform initial distribution, so that f(X0, Yo) is given by (1/V) N+M- 21
c. 

The first term of expansion (7 · 12) obviously gives 

(1/V)N+M- 2 /c~Po(X, Y; tiXo, Yo; O)dXodYodXdY=1, (8·1) 

because Po is the solution of unperturbed diffusion equation. 

It is. readily seen that the multiple integral 

(1/V) N+M-Z/c~ Pa dXo dYo dX dY 

can directly be performed for all coordinates except for those of the a pair, so 

that we have 

(1/V) N+M- 2 k~uadXodYodXdY =w(t) -1, 

w(t) = (1/V) 2 ~p(xa,ya; tlxao,Yao; O)dxaodYaodxadya, 

where we have ·used Eq. (7 ·14). This can also be written as 

w(t) = (1/V) 2 ~g(z, z 0 ; t)p(r, ro; t)dzdz0 drdr 0 • 

(8· 2) 

(8· 3) . 

If we can neglect the boundary effects, the integrals with respect to z and z0 

can directly be performed and they give simply a factor V, because g is the 

solution of the free diffusion equation (7 ·18). Therefore, under this assumption, 

weh~e · 

w (t) = (1/V) ~P (r, r 0 ; t) dr dro. (8· 4) 

Thus all the (N- k) (M- k) terms of the sum in the second term of Eq. (7 ·12) 
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42 E. Teramoto and N. Shigesada 

ii iii 

ii 

iv v 

Fig. 1. Fig. 2. 

give the same integral (8·2). 

Now let us consider the third term of Eq. (7 ·12). The integrals of the 

type 

(1/V) NH£ _ 2 ;,;~ {P13·v 13 , ua} d~\. 0 dYo dX dY (8. 5) 

are divided into two cases. When the pairs a and /3 have no common particle, 

that is, the case i in Fig. 1, it is easily seen that the integral (8 · 5) can be 

reduced to 

/, 

(1/V) 4 ~ dt' ~dXaodYaodx/ dy/ dx/ dy/ dx13dyf3 

0 

t 

= ~{}(t-t') {w(t') -1}dt', (8· 6) 

0 

where 

() (t- t') = (1/V) 
2
)dx,e dy13 dx/ dy/ ·v (x/, y/) p (x13 , y 13 ; tlx/, y/; t'). 

(8· 7) 

The number of terms which belong to the case i is (N- k) (M- k) (N- k -1) 

X (M- k -1) and they give the same contribution (8 · 6). 

Next we shall consider the case that the pairs a and /3 have a common A 

particle whose coordinate is denoted by Xaf3. In this case, the integral is 

reduced to 
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Theory of Binwlecular Reaction Proces:·;es zn Liquids 43 

t ' 

(1/V) 3 ~ dt' ~dXa(3odYaodx;~fJdYa 1 
dy/ dxafJdy(J 

I) 

(8. 8) 

It can be seen that, for the arguments of u, if we use the variables r ao, r a', 

Zao and za' defined by (7 ·16) and neglect the boundary effects, the integration 

with respect to Zao can be readily performed; then it becomes independent of 

za', so that the integration with respect to Ya' gives again the factor w (t') -1. 

Then the remainder of the integral (8 · 8) has the same form as (8 · 7), so that 

(8 · 8) gives the same contribution as Eq. (8 · 6). It is easily seen that when 

the common particle is a B particle, the same result is obtained. The number 

of terms of the case ii is given by (1V --/~) (M --/~) { (N-1~ --1) + (M-!? -1)} ; 

therefore summing up all the terms of these integrals, we obtain the contribu

tion from the third term of Eq. (7 ·12) : 

t 

(N-h) (M-/~) {(N-/~) (M-/~) ---1} ~O(t-t') {w(t') --1}dt'. (8·9) 

0 

The integrals of the fourth and higher order terms of Eq. (7 ·12) contain many 

complicated multiple integrals which cannot be so simply factorized as we have 

done for the third term. For example, we shall consider the fourth term of 

Eq. (7 ·12), that is 

af hh (1/V) N+M-
2

1c ~ {jJ7 V7 , {jY(JV(J, Ua}} dXo dYod)( dY. (8 ·10) 

Various types of these multiple integrals are schematically shown in Fig. 2. 

It lOoks as if the integrals of diagrams of types ii, iii and i v can be factorized 

as well as type i, but it is not so and because of the time correlations, some 

of the diagrams of types ii and iii, depending on the order of bond indices 

a, {3 and y, cannot be simply factorized. However, as an approximation, if we 

attribute the same contribution as that of diagram i to all these diagrams, we 

obtain 

l t' 

H (h) {H (!~) -1} 2 ) dt') dtN 0 (t- t') () (t'- t") {w (t") -1}, (8 ·11) 
{) 0 

as the contribution from the fourth term of our expansion, where 

H(h) = (N-k) (M-k). (8 ·12) 

Thus if we use the same approximation for the higher order terms, we may obtain 

/. 

WN-lc,N-Tc(t) =1+1-I(k) {w(t) -1} --1-l(k) {H(k) --1} )dt'O (t--t') 

() 
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44 E. Teramoto and N. Shigesada 

t 

X {w(t') -1} +1-I(k) {l-J(k) -1} 2
} dt' ~dt"6(t-t') 
IJ 0 

X(} (t'- t") {w (t"') -1} - · · · · · · · · · . (8 ·13) 

Here, if we take into account the relation which corresponds to Eq. (3 · 6) : 

1 
L(1-w;s)= L((};s), 

s 

the Laplace transform of Eq. (8 ·13) is given by 

L(WN-lc,N-k; s) == 
1 [1-II(t~)L(O; s) +I-I(!~) {FI(!?) -1}L((}; s) 2 

s 

-II(!~) {I-I(k) -1} 2L(O; s) 3 + ... J 

(8 ·14) 

= 
1 

[1-II(k)f;(--1)i{I-J(k) -1}iL((}; s)H 1
]. (8·15) 

:·; t .. 0 

Thus if we know the solution of the two-body problem, we can calculate 

Eq. (8 ·15), then from our general formula (3 · 7) or (3 ·10) we can obtain the 

final result. However, the approximation adopted in the derivation of Eq. (8 ·15) 

is very crude and in order to have more precise information on the correlations 

of our many-body system, we need to calculate various terms appearing in the 

binary collision expansion in a more exact way. 

§ 9. Diffusion controlled reaction rates 

Finally, in this section we shall present an explicit result for the simplest 

case of diffusion controlled reactions. As we stated in the Introduction, the 

equation for two-body problems (7 ·19) have been investigated by many authors. 

In many of these investigations, reactions are taken into account by specifying 

the boundary conditions at the reaction radius lrl = R, instead of the absorbing 

probability v (r). Two kinds of boundary condition~ are considered. In the 

"Smoluchowski boundary condition", it is assumed that two molecules react 

immediately upon collision; thus p (r) must be zero at lrl = R. Collins and 

Kimball 5
) examined the case that the rate of reaction on the sphere of radius 

R is proportional to the flux of counter particles through that surface, which 

is usually called the "radiation boundary condition". 

In these cases, it was shown that the stationary reaction rate is given by 

4nDAsR*/V, where DAs=DA-+Ds and R* is the effective reaction radius. It 

seems to us that there may be some ambiguous points in the direct application 

of this result to our formula, because it should be noticed that this stationary 

diffusion controlled reaction rate is obtained for an essentially infinite system, 

assummg the constant probability density of the counter particles at infinite 

distance. However, if we can assume that this stationary rate is valid for short 
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Theory of Bimolecular Reaction Processes in Liquids 45 

time ranges for the finite system, we may be able to use this result as the 

solution of our two-body problem. Then we have 

w (t) = exp ( -- 4rc.D AnR*t/F), 

and calculating (8 ·14) we obtain 

L ((}. s) = __ 4nl?AnR* /.V 
' s+47rDAel<*/V 

Equation (8 ·15) can be written in the form 

. _ 1 1-L((J; s) 
L (WN-k N-k, s) - --- ----- - -- -- --- -

. s 1+ {H(k) --1}L(6; s) 

Hence, usmg Eq. (9 · 2) we have 

L(WN-k,N-k; s) = 
s + 4rcD Ann* 1-1 (I?) /V 

1 

The Inverse transformation of Eq. (9 · 4) becomes 

WN-kN-Tc(t) =exp[ --4nDABR*J-I(k)t/V]. · 

Thus, m this case, from Eq. ( 4 · 2) the rate function is given by 

K * (l)jV "1rcDAnR* ( ( N-k=4TCDAnR'"FI 1? = N-1<) !Vl--k). 
v 

§ 10. Summary 

(9 ·1) 

(9· 2) 

(9. 3) 

(9· 4) 

(9. 5) 

(9· 6) 

In this paper we have developed a systematic formulation of bimolecular 

reaction processes in liquids as a many-body problem. Space-time correlations, 

which are completely taken into account in the general formula (2 · 3), have 

been partially smoothed out by. reducing the problem to that of Markov pro

cess; this seems to be allowed only when the uniform distribution is assumed 

for the initial ensemble. 

In particular when the rate function defined by Eq. ( 4 · 2) is independent 

of time, the process becomes a rather simple stationary Markov process, which 

is essentially ~ random walk problem and is described by a differential difference 

equation ( 4 · 4) or ( 4 · 5). Moreover it has been shown that the solution of these 

equations in the first order approximation gives just the law of mass action. 

In more general cases which can be described by Eq. (3 ·11), in order to have 

that equation in an explicit form, the multi-dimensional diffusion equation with 

pair absorbing interactions must be solved. This equation will be calculated 

using various techniques developed in the theory of many-body problems. Here 

we have adopted the binary collision expansion method and have showed that 

in a simple approximation, we can have the well-known result obtained pre

viously for the diffusion controlled bimolecular reactions. 
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46 E. Teramoto and N. Shigesada 

In fact what we have discussed here is only that if we start from the general 

description of the time development of our many-body system, the results of the 

usual simple phenomenological equations can be derived through many steps of the 

approximations. However, various formulae developed here will give the ways of 

investigating more detailed effects of the space time correlations and then devia

tions from simple laws of the usual theories of chemical kinetics. These pro

blems will be discussed in the near future. 
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Appendix I 

By applying the Laplace transformation to Eq. (4· 4), that is 

d 
dt WN-n.N=!C(N-n+1) (M-n+1) WN-n+l.N-!C(N-n) (M-n) WN-n.N, 

(I ·1) 

we obtain 

.. _ !CH(n-1) .. 
L(vVN-n,N,.s)- · L(WN-n+l.N,s), for n>1, (I·2) 

s + !CH(n) 

where H(n)=(N-n)(M-n). For n=O, we have 

d 

l 
WN,N= -FCNMWN,N 

([ 

with the initial condition W N,N (0) = 1; hence 

WN,N(t) =exp( -FCNMt), L(WN,N; s) = 
1 

s+FCNM 

Using Eqs. (I·2) and (I·3), we obtain by iteration 

n 

!CniTH(k-1) 
k=l 

n 

Tl[s+FCH(k)] 
k.c Q 

Now, if we employ the partial-fraction representation, we get 

n J.. 

L(WN-n,N; s) = ~ - __ 'l}k ___ -' 

~coco s+FCH(k) 

where 

(I· 3) 

(I· 4) 

(I· 5) 

(I· 6) 
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Theory of Bimolecular Reaction Processes in Liquids 47 

An~c = [H (0) l-1 (1) · · · H (n -1)] { [H (0) -11 (/?)] [I-f (1) -I-I(/?)] 

... [H(k-1) -H(k)][1-i0~+1) --H(k)J .. ·[Fl(n) -H(/?)]}- 1
• 

Hence 

n n 

L(WN-n,N; s) =TI l-I(l--1)}~ {[s+Jcl-l(k)] TI [IJ(l) -H(k)]}- 1
• 

l od /c ~co o::;;l::;;n 
4:) I 

(I· 7) 

The inverse transformation of Eq. (I·7) gives the final expressiOn for the 

solution of Eq. ( 4 · 4) : 

n n 

W N-n,N (t) = ~ e-"H(k)t {II: I-J(l--1) / JT [J-1 (l) --1-1 (k)]}. (I· 8) 
•:-"o Ll os;L:c;;n 

'··!!.; 

Here we shall compare this result with our general formula developed in 

§ 3. If we assume the stationary condition ( 4 · 3), from Eq. ( 4 · 2) we obtain 

W . (t·) = e--!CII(k)t 
N--k, N-k · (I· 9) 

Hence, we have 

JCli (k) 

s[s + JCH(k)] 
(I ·10) 

and 

L(WN-n,N-n; s) = 
s + JC!-i(n) 

1 
(I ·11) 

Thus it can be seen that, in this case, the solution (I· 5) is derived directly 

from the general formula (3 · 7) as a special case. 

\Vhen M>N, it can be easily shown that Eq. (I·8) becomes a Bernoulli 

distribution, that is, if we use the approximation H(l) ~~"-"'M (N -l), we obtain 

where 

WN-n,N (t) .. t e-!CM(N-k)t {······ N! I ( --1)n-k (n- k)! k! } 
k=o (JV-n)! 

e-~eMNt [e1cMt -1] n 

(N-n)!n! 

N! 

= .. N! __ _ pN-nqn, 
(N-n)! n! 
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48 E. Teramoto and N. Shigesada 

Thus, if we use the variable m = N- n, we have 

Wm (t) = _}\/! pmqN-m • 
(N-m)!m! 

(I ·12) 

The mean and the mean square deviation of the Bernoulli distribution (I ·12) 

is given by 

(m) = Np = Ne-KMt, 

r52 (t) = < (m- (m)) 2) = Npq = Ne-!Clr1t (1- e-KMt), 

(I ·13) 

(I ·14) 

which agree with the results ( 4 ·11) and (5 · 8) obtained by solving the diffe

rential equations for the moments on the assumption of the relation (5 · 3). 

Furthermore, owing to the DeMoivre-Laplace limit theorem, asymptotic 

formula of Eq. (I ·12) is given by16
> 

W m (t) = (27CNjJq) -1/2 e-<m-Np)2f2Npq (I ·15) 

under the condition N'}>rn):, 1. This result may suggest the plausibility of our 

assumption used in ~ 5. 

Appendix II 

--Reversible bimolecular reactions--

Though we have restricted our attention to irreversible reactions in the 

text, it will be shown that the similar formulation can be derived for a more 

general case in which the inverse reaction AB-> A+ B exists. 

·we consider a system in which N particles of type A and M particles of 

type B are initially distributed by medium of volume V. In order to formulate 

the reaction process, let us introduce the following probability functions: Zn (t) 

is the probability that one reaction of association or dissociation of an AB pair 

occurs between t and t + dt and the number of AB complexes becomes n during 

that time interval, Tn.n-l (t) is the probability of the first association defined in 

the text where we have denoted it by T N-n,N-n+l, and Rn,n+l (t) is the probability 

of the first dissociation defined in just the same way as Tn,n-l· 

Then the probability that at time t n AB complexes are found, which is 

denoted by WN-n.N(t) in the text, can be written as 

t 

WN-n,N(t) = )uN-n.N-n(t-t')Zn(t')dt', (II ·1) 

where UN-n.N-n (t) is the probability that N- n A particles and M- n B particles 

with uniform initial distribution remain unreacted until time t. In the irreversible 

case, it was unnecessary to distinguish this probability from WN-n.N-n(t), because 

the reaction process always proceeds to one direction. From the definitions 

there exists a relation 
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Theory of Bimolecular. Reaction Processes in Liquids 

and also we have 

t 

U N-n,N-n (t) +) [Tn+1>n (t') + Rn--l,n (t')] dt' = 1, 

0 

t 

Zn (t) = \ Tn,n-1 (t -- t') Zn-1 (t') dt' 

0 

t 

+ ) Rn,n+l (t- t') Zn+l (t') dt' . 

0 

Hence, by the Laplace tr-ansformation, we obtain 

Zn (s) = Tn.n-1 (s) Zn-1 (s) + Rn.n+l (s) Zn+1 (s), 

49 

(II· 2) 

(II· 3) 

(II· 4) 

where we have used the simple notation for the Laplace transforms by putting 

argument s. Equation (II· 4) can also be written in the form 

Zn+l (s) = l Zn (s) - Tn:l&-:- 1 (~) Zn-1 (s). 
Rn,n+l (s) R,;,,n+l (s) 

Now if we introduce the vectors and matrices defined by 

_ 'J'n,n-:-1 (s) ) 

R •.• ~, (s) , 

we obtain, by successive applications of Eq. (II· 5), 

where 

T,=( 

n 

Zn+l (s) = 'fnZn= II T1,Z0 , 

1 

Ro,l (s) 

1 

~=0 

, ( Zo (s) ) 
Z 0 (s)=== . 

0 

Hence, by Eq. (II·1) we have 

n-1 

W N-n.N (s) = U N-n,N-nu* II TiuZo (s), 
i~cO 

where 

u=C), «*=(1 0). 

(II· 5) 

(II· 6) 

(II· 7) 

(II· 8) 

(II· 9) 

(II·10) 

In Eq, (II· 9), U N-n.N-n and T/s are expressed in terms of probabilities 

of the first reaction Rn-l,n and Tn+l,n by Eqs. (II· 2) and (II· 6), on the other 

hand Zo (s) can be obtained by the normalization condition 
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50 E. Teramoto and N. Shigesada 

N 

~ WN-n,N(t) = 1, 
n=O 

that is, 

1Y 

~ WN-n,N(s) = 1/s. 
n=O 

Thus we have the formula 

1 
WN-n,N(s) = · · 

s 

n-1 

U N-n,N-nu* II Tiu 
i=O 

N n-1 

~ U N-n,N-nu* II Tiu 
U=O i=O 

(II ·11) 

(II ·12) 

(II ·13) 

Now, as a special case, we shall consider the stationary reaction rate, that 

IS, we assume probabilities of the first reaction Tn,n- 1 and Rn,n+l to be given in 

the forms 

Tn,n-1 = teH (n -1) U N-n+l,N-n+l, 

Rn.n+l =fl. (n + 1) U N-n-l,N-n-1, (II ·14) 

where H(n) = (N-n) (M-n). Then using Eqs. (II·1) and (II·4), we get 

Zn(t) =teH(n-1) WN-n+l,N(t) +fl.(n+1) WN-n-l,N(t). (Il·15) 

Differentiating Eq. (II ·1) and using the expression 

d 
dt log UN-n,N-n= -tei-I(n) -jJ.n, (II ·16) 

which can be derived from Eqs. (II·2) and (II·14), we obtain 

d 
dt WN-n,N(t) =teH(n-1) WN-n+l,N(t) +fl.(n+1) WN-n-l,N(t) 

- {teH(n) +fl.n} WN-n,N(t). (II ·17) 

This is the stochastic equation which describes the reversible bimolecular 

reaction processes. 

By Eq. (II ·13) the Laplace transform of the solution of this case Is given 

by 

1 n-1 
- ---------------- ·-- · u* II Ti (s) u 
s+H(n) +n i=o 

---------------- ·- . 

N 1 n-1 

~ - u* II Ti(s)u 
n=O s + H (n) + n i=O 

(II·lS) 

where 

s+teH(i+1) +fl.(i+1) Ti (s) = - -------- - .. -. - - . 
fl.(i+1) 

1 

teH(n -1) [s + teH(n + 1) +fl. (n + 1)] - - --- - .... - ------- -···--··--·-·-· ----- --.~~- ··-·-··----· ....... -) 
fl. (n + 1) [s + teH (n -1) +fl. (n -1)] 

0 

for i>1, (II ·19) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

7
/1

/2
9
/1

8
5
9
5
2
7
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Theory of Bimolecular Reaction Processes zn Liquids 

To (s) = ( s + tcH(l) -j-- /}. 
/1. 

1 

0 

0 

51 

Finally, In just the same manner as we have done in § 5, it can be easily 

shown that, In the first order approximation, Eq. (II ·17) leads to the law of 

mass action 

d c -'1 c c 
-- A= - .VC A B + /). AB • 

dt 
(II· 20) 
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