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The quantum capacitance model is applied to obtain an exact solution for the space-resolved carrier density in

a multigated doped graphene sheet at zero temperature, with quantum correction arising from the finite electron

capacity of the graphene itself taken into account. The exact solution is demonstrated to be equivalent to the

self-consistent Poisson-Dirac iteration method by showing an illustrative example, where multiple gates with

irregular shapes and a nonuniform dopant concentration are considered. The solution therefore provides a fast and

accurate way to compute spatially varying carrier density, on-site electric potential energy, as well as quantum

capacitance for bulk graphene, allowing for any kind of gating geometry with any number of gates and any types

of intrinsic doping.

DOI: 10.1103/PhysRevB.87.125427 PACS number(s): 73.22.Pr, 41.20.Cv, 72.80.Vp, 85.30.De

Introduction. Manipulation of carrier density in graphene

by electrical gating is one of the key techniques for graphene

electronics. Since the first successful isolation of monolayer

graphene flakes, conductance (resistance) sweep using a single

backgate has been a standard electronic characterization tool

for graphene.1 Double-gated graphene opens possibilities

for experimental investigations of graphene pn and pnp

junctions,2–4 which allow for exploration of the interesting

physics of Klein paradox5 in graphene.6–8 In order to improve

the junction quality, graphene heterojunctions using contact-

less top gates9,10 and embedded local gates11,12 were proposed

and investigated.

More complicated gating geometry is involved in recent

proposals for graphene-based devices, such as a switching

device with two topgates,13 graphene transistors with self-

aligned gates made by standard patterning with a regular cross

section,14 core-shell nanowires with round cross sections,15

or deposited films with T-shaped cross sections.16 Transport

through bilayer graphene with multiple top gates up to eight

was recently investigated;17 patterning periodic top gates18

on graphene to form quasi-one-dimensional superlattice is, in

principle, feasible. Whereas a successful transport simulation

relies decisively on the preciseness of the on-site potential

profile, or, equivalently, the carrier density profile,19 a more

reliable theory to deal with general gating geometry is,

therefore, imperative.

The theory of gate-induced carrier density started from

the simplest classical capacitance model,1 which regards the

graphene-substrate-backgate as a parallel-plate capacitor and

the relevant carrier density in graphene as the surface charge

density (divided by electron charge −e) induced by the gate.

Without taking into account the quantum correction due to

the finite capacity of graphene itself for electrons to reside,

this model can be straightforwardly generalized to arbitrary

gating geometry by treating graphene as a perfect conducting

plane with fixed zero potential. A more precise computation

of the gate-induced carrier density, however, needs to take into

account the relation between the induced charge density on

graphene and the electric potential energy that those charge

carriers gain, through the graphene density of states.20–22 The

solution to the carrier density with such a correction taken

into account requires a self-consistent iteration process10,23,24

that may be suitably termed the Poisson-Dirac method but

actually corresponds to the quantum capacitance model,25

where an exact solution for single-gated pristine graphene at

zero temperature has been derived.22

In this paper, the spatial profile of carrier density in mono-

layer graphene due to arbitrary gating and doping is exactly

solved within the quantum capacitance model. The solution

has been further tested by comparing with the self-consistent

Poisson-Dirac method, showing very good agreement between

the two and, hence, their equivalence. A numerical example

will be illustrated at the end. Throughout, we will restrict

our discussion to bulk graphene at zero temperature and

approximate the energy dispersion within the linear Dirac

model, E = ±h̄vF k, which leads to the density of states (per

unit area) linear in energy, D(E) = 2 |E| /π (h̄vF ). The carrier

density is given by integrating the density of states over the

energy,

n(E) = sgn(E)
1

π

(

E

h̄vF

)2

, (1)

which is the underlying origin of the quantum correction to

the gate-induced graphene carrier density in the following

derivations. We are, therefore, working in the single-particle

picture, and the solution within the quantum capacitance model

to be presented is exact in the sense that no iteration is required

during the solution process, as contrary to the following

Poisson-Dirac method.

Self-Consistent Poisson-Dirac iteration method. Consider

a graphene sheet laid in the x-y plain at z = 0. In the presence

of a dopant concentration n0(x,y) without electric gating, the

quasi-Fermi level is given by

E0(x,y) = sgn[n0(x,y)]h̄vF

√

π |n0(x,y)|, (2)

which is obtained from Eq. (1). When gate voltages of, in

general, N metalic gates are applied as sketched in Fig. 1,

the electron in the graphene layer at (x,y) gains an electro-

static potential energy −eVG(x,y), where −e is the electron

charge and VG(x,y) = u(x,y,0) is the electrostatic potential

u(x,y,z) at z = 0 to be numerically solved from the Poisson
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FIG. 1. (a) Schematic of a graphene sheet subject to N metalic

gates. (b) Equivalent circuit plot of (a) with quantum capacitance of

graphene QC taken into account.

equation,

−∇ · [ǫr (x,y,z)∇u(x,y,z)] =
ρ(x,y,z)

ǫ0

, (3)

with ǫ0 the permittivity in free space and ǫr (x,y,z) the

relative permittivity that can be, in principle, position

dependent.

The energy gain of the electron implies the raising of the

energy band of graphene and, hence, the lowering of the quasi-

Fermi level. The graphene carrier density n therefore obeys

Eq. (1) with

E(x,y)

h̄vF

=
E0(x,y) − [−eVG(x,y)]

h̄vF

= sgn[n0(x,y)]
√

π |n0(x,y)| +
eVG(x,y)

h̄vF

, (4)

where E0(x,y) is given by Eq. (2). Together with the charges

of the dopant ions that maintain the neutrality of the graphene

sheet, the net charge density on graphene divided by ǫ0 is given

by

ρ(x,y)

ǫ0

∣

∣

∣

∣

z=0

=
e

ǫ0

{

n0(x,y) −
1

π
sgn

[

Ē(x,y)
]

Ē(x,y)2

}

,

(5)

where Ē(x,y) = E(x,y)/h̄vF is given by Eq. (4).

Equation (5) is the boundary condition at the graphene sheet

for the Poisson equation (3). This boundary condition contains

the solution VG(x,y) = u(x,y,z = 0) and, hence, makes the

solution process iterative.

Quantum capacitance model. The system of N metalic

gates labeled by j = 1,2, . . . ,N plus the graphene sheet

labeled by G as sketched in Fig. 1(a) is equivalent to the circuit

plot shown in Fig. 1(b), where the quantum capacitance of the

graphene sheet CQ is considered. Regarding G as the reference

conductor with electric potential VG, the charge density on the

surface of each gate can be expressed as

ρ1 = C1G(V1 − VG) + C12(V1 − V2) + · · · + C1N (V1 − VN )

ρ2 = C12(V2 − V1) + C2G(V2 − VG) + · · · + C2N (V2 − VN )
...

ρN = C1N (VN−V1) + C2N (VN − V2) + · · ·+ CNG(VN − VG)

,

(6)

where C1G, . . . ,CNG are self-partial capacitances and Cij

with i �= j are mutual partial capacitances.26 Since the whole

isolated system should remain charge neutral, the net charge

density on G should be the negative of the total charge

density on the N metalic gates: ρG = −
∑N

j=1 ρj . The net

electron number density on G is, therefore, nG = ρG/(−e) =
∑N

j=1 CjG(Vj − VG)/e. Suppose there is an intrinsic doping

concentration of n0 in graphene. The net charge density on G is

not affected since the number of doped electrons should equal

the number of dopant ions, ρG → ρG + en0 − en0 = ρG. The

net carrier density of graphene, however, is given by n =

(ρG − en0)/(−e) = nG + n0, which should obey Eq. (1), i.e.,

nG + n0 = sgn(E0 + eVG)[(E0 + eVG)/h̄vF ]2/π, just like in

the Poisson-Dirac method. We therefore need to solve the

quadratic equation for VG,

N
∑

j=1

CjG

e
(Vj − VG) + n0 = sgn(E0 + eVG)

1

π

(

E0 + eVG

h̄vF

)2

.

(7)

After some tedious but straightforward algebra, the carrier

density of graphene in the presence of dopant concentration

n0 and N gates with voltages V1, . . . ,VN is given by

n = nC + sgn(nC)nQ

(

1 −

√

1 + 2
|nC |

nQ

)

+ sgn(n0)
√

2nQ |n0|, (8)

where

nC = n0 +

N
∑

j=1

CjG

e
Vj (9)

is the classical contribution from doping and gating, and

nQ =
π

2

⎛

⎝

h̄vF

e

N
∑

j=1

CjG

e

⎞

⎠

2

(10)

arises solely from the quantum capacitance, leading to the

second and third terms in Eq. (8) as the quantum correction.

Equations (8)–(10) with N = 1, n0 = 0, and nC > 0 clearly

recover the results for single-gated pristine graphene given

in Ref. 22. Contrary to the undoped case,22 the third term in

Eq. (8) is responsible for the shift of the quasi-Fermi level due

to doping and is typically weak for a reasonable n0.

In addition to the doping concentration n0 that can have

any kind of spatial profile, the position dependence enters

the carrier density (8) through the self-partial capacitances

C1G,C2G, . . . ,CNG, which can be computed numerically but

exactly. For the ith gate, by grounding all the other conductors,

including the graphene sheet, i.e., Vj �=i = 0 and VG = 0, Eq.

(6) suggests n̄C ≡ −
∑N

j=1 ρj/(−e) = (CiG/e)Vi . The self-

partial capacitance for gate i is, therefore, given by

CiG

e
=

n̄C

Vi

∣

∣

∣

∣

VG=0,Vj �=i=0

, (11)

where n̄C = ±ǫrǫ0(∂u/∂z)z=0±
/e can be numerically com-

puted by any kind of finite-element simulator.
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With the definitions (9) and (10), one may also write the

solution VG to Eq. (7),

VG = −

sgn(nC)nQ

(

1 −

√

1 + 2
|nC |

nQ

)

+ sgn(n0)
√

2nQ|n0|

∑N
j=1

CjG

e

,

(12)

which has a reasonable form of charge divided by capacitance,

with the numerator containing only the quantum correction

terms in Eq. (8). The absence of nC in the numerator of VG

agrees with our earlier remark that the classical capacitance

model regards graphene as a perfect conducting plane with

fixed zero potential so nC does not contribute to VG.

Equation (12) allows for a direct comparison with the

iterative solution obtained from the self-consistent Poisson-

Dirac method, as we will show with an explicit example soon.

Multiplying Eq. (12) with the electron charge together with

the quasi-Fermi level shift E0 due to doping, −(E0 + eVG)

provides for the graphene transport calculation a realistic

on-site energy profile that guarantees a reliable quantum

x (nm)

z
(n

m
)

backgate (Vbg)

r = 3.9

↓ graphene (VG)

local gate
(Vlg1)

local gate
Vlg2

u
(x

,
z
)

−400 −200 0 200 400
−400

−300

−200

−100

0

−15
−10
−5
0

(a)

−400 −200 0 200 400

−0.2

−0.1

0

0.1

0.2

0.3

x (nm)

E
le

ct
ri
c

p
o
te

n
ti
a
l
V

G
(x

)
(V

) Poisson−Dirac method

Quantum capacitance model

(b)

)(

FIG. 2. (Color online) (a) Side view of a graphene sheet (with a

hyperbolic-tangent-shaped intrinsic doping n0) and a backgate (with

Vbg = −20 V) sandwiching a SiO2 with two embedded local gates

(with Vlg1 = −1.8 V and Vlg2 = 1.5 V); the color shading shows

the electric potential u(x,z) obtained by the self-consistent Poisson-

Dirac method. (b) The electric potential at the graphene layer VG(x)

obtained by the Poisson-Dirac method and the quantum capacitance

model.

transport simulation; see, for example, Ref. 19 for the case with

neglected n0. Furthermore, the channel electrostatic potential

VG given in Eq. (12) also allows us to write down the quantum

capacitance of the graphene sheet in the low-temperature

limit:22 CQ ≈ (2/π ) (e/h̄vF )2 |eVG|.

Numerical example. Armed with the above introduced

theories, we next numerically demonstrate the equivalence of

the quantum capacitance model to the self-consistent Poisson-

Dirac iteration method by considering a specific example. To

be simple but general, let us consider a quasi-one-dimensional

system along x with translation invariance along y, composed

of a doped graphene sheet gated by one flat backgate and two

embedded local gates with irregular shapes roughly 10 nm

under graphene; see Fig. 2(a). Embedding such local gates at

such a shallow depth allows independent control of the carrier

density in the locally gated region due to screening of the

backgate contribution and can be experimentally achieved;

see, for example, Ref. 11. The finite-element method is

implemented in the iteration process for the Poisson-Dirac

method as well as the exactly solvable self-partial capacitances

[Eq. (11)] for the quantum capacitance model, and the pdetool

in MATLAB
27 is chosen as the simulator for the present

demonstration.

The electric potential u(x,z) shown in Fig. 2(a) is obtained

by the self-consistent Poisson-Dirac method with backgate

voltage Vbg = −20 V and local gate voltages Vlg1 = −1.8 V

and Vlg2 = 1.5 V and an intrinsic doping described by n0(x) =

−5 × 1011 tanh(x/40) cm−2, where the position coordinate x

is in units of nm. The iterated potential solution VG(x) =

u(x,z = 0) at the graphene layer is compared in Fig. 2(b)

with the exact solution (12) obtained within the quantum

capacitance model, showing an excellent agreement with each

other. With other gate voltages and other shapes of n0(x), the

agreement remains exact. Note that the numerical example

chosen here is basically a complicated version of Ref. 11,

including the proper range of the gate voltages, except that an

artificial doping profile n0 with hyperbolic tangent shape is

considered, in order for the comparison to be general.
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FIG. 3. (Color online) Carrier density profiles of intrinsic doping

n0(x), classical capacitance model nCC(x), Poisson-Dirac method

nPD(x), quantum capacitance model nQC(x), and the difference

nPD(x) − nQC(x), with identical parameters used in Fig. 2.
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The spatial profiles of the carrier densities n0(x), nCC(x),

nPD(x), nQC(x), as well as the difference nPD(x) − nQC(x)

are shown in Fig. 3. Here the subscripts CC, PD, and QC

denote “classical capacitance,” “Poisson-Dirac,” and “quan-

tum capacitance,” respectively. The carrier density within the

classical capacitance model nCC is obtained by first computing

the induced surface charge at z = 0− with the graphene layer

grounded (VG = 0) and then adding the dopant concentration

n0 or, equivalently, by Eq. (9) with the self-partial capacitances

[Eq. (11)] numerically computed.

As the quantum correction, i.e., the second and third terms

in Eq. (8), always reduces the magnitude of the net contribution

of the gates, the classical solution always overestimates the

gate-induced carrier density. This correction is especially

salient when the gate is close to the graphene sheet, as is clearly

observed by comparing nPD(x) or nQC(x) with nCC(x) in Fig. 3.

In addition, the surface roughness of the embedded local gates

considered here with such a short distance to the graphene

sheet (roughly 10 nm) further introduces a strongly fluctuating

potential profile [Fig. 2(b)] as well as the corresponding carrier

density profile (Fig. 3) at the locally gated regions.

As in the case of VG(x) compared in Fig. 2(b), the agreement

between nPD(x) and nQC(x) is rather satisfactory. In Fig. 3,

the discrepancy between the Poisson-Dirac method and the

quantum capacitance model becomes relatively obvious near

positions where the surface charge density of the boundary

condition (5) is changing its sign. This implies that the

discrepancy may stem from the inherent numerical limitation

of the chosen nonlinear partial differential equation solver.

Conclusion. In conclusion, an exact solution for the space-

resolved carrier density in multigated doped graphene sheets

within the quantum capacitance model has been derived.

With an illustrative quasi-one-dimensional example, the exact

solution is shown to be equivalent to the self-consistent

Poisson-Dirac iteration method. The solution therefore pro-

vides a fast and accurate way to compute spatially varying

carrier density, on-site potential energy (key input for quantum

transport simulation), as well as quantum capacitance for bulk

graphene, allowing for any kind of gating geometry and any

types of intrinsic doping. Moreover, the contact doping28,29

and its corresponding screening potential30 can as well be

treated by the presented solution, which therefore takes care

of all three types of doping in graphene—electric, chemical,

and contact induced—in a unified manner.
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4B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, D. A. Abanin, L. S.

Levitov, and P. Kim, Phys. Rev. Lett. 99, 166804 (2007).
5O. Klein, Zeitschr. Phys. 53, 157 (1929).
6M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2,

620 (2006).
7N. Stander, B. Huard, and D. Goldhaber-Gordon, Phys. Rev. Lett.

102, 026807 (2009).
8A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009).
9G. Liu, J. J. Velasco, W. Bao, and C. N. Lau, Appl. Phys. Lett. 92,

203103 (2008).
10R. V. Gorbachev, A. S. Mayorov, A. K. Savchenko, D. W. Horsell,

and F. Guinea, Nano Lett. 8, 1995 (2008).
11S.-G. Nam, D.-K. Ki, J. W. Park, Y. Kim, J. S. Kim, and H.-J. Lee,

Nanotechnology 22, 415203 (2011) .
12J. Lee, L. Tao, Y. Hao, R. S. Ruoff, and D. Akinwande, Appl. Phys.

Lett. 100, 152104 (2012).
13S. Nakaharai, T. Iijima, S. Ogawa, H. Miyazaki, S. Li,

K. Tsukagoshi, S. Sato, and N. Yokoyama, Appl. Phys. Express

5, 015101 (2012).
14D. B. Farmer, Y.-M. Lin, and P. Avouris, Appl. Phys. Lett. 97,

013103 (2010).

15L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L.

Wang, Y. Huang, and X. Duan, Nature 467, 305 (2010).
16A. Badmaev, Y. Che, Z. Li, C. Wang, and C. Zhou, ACS Nano 6,

3371 (2012).
17H. Miyazaki, S.-L. Li, S. Nakaharai, and K. Tsukagoshi, Appl.

Phys. Lett. 100, 163115 (2012).
18D. Weiss, K. von Klitzing, K. Ploog, and G. Weimann, Europhys.

Lett. 8, 179 (1989).
19M.-H. Liu and K. Richter, Phys. Rev. B 86, 115455 (2012).
20J. Guo, Y. Yoon, and Y. Ouyang, Nano Lett. 7, 1935 (2007).
21J. Fernández-Rossier, J. J. Palacios, and L. Brey, Phys. Rev. B 75,

205441 (2007).
22T. Fang, A. Konar, H. Xing, and D. Jena, Appl. Phys. Lett. 91,

092109 (2007).
23A. A. Shylau, J. W. Kłos, and I. V. Zozoulenko, Phys. Rev. B 80,

205402 (2009).
24T. Andrijauskas, A. A. Shylau, and I. V. Zozoulenko, Lith. J. Phys.

52, 63 (2012) .
25S. Luryi, Appl. Phys. Lett. 52, 501 (1988).
26D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. (Prentice

Hall, New York, 1989) .
27Partial Differential Equation ToolboxT M User’s Guide, The Math-

Works, Inc., MATLAB 2012a ed. (2012) .
28G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van

den Brink, and P. J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).
29P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. van

den Brink, and P. J. Kelly, Phys. Rev. B 79, 195425 (2009).
30P. A. Khomyakov, A. A. Starikov, G. Brocks, and P. J. Kelly, Phys.

Rev. B 82, 115437 (2010).

125427-4

http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1103/PhysRevLett.98.236803
http://dx.doi.org/10.1126/science.1144657
http://dx.doi.org/10.1126/science.1144657
http://dx.doi.org/10.1103/PhysRevLett.99.166804
http://dx.doi.org/10.1007/BF01339716
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1103/PhysRevLett.102.026807
http://dx.doi.org/10.1103/PhysRevLett.102.026807
http://dx.doi.org/10.1038/nphys1198
http://dx.doi.org/10.1063/1.2928234
http://dx.doi.org/10.1063/1.2928234
http://dx.doi.org/10.1021/nl801059v
http://dx.doi.org/10.1088/0957-4484/22/41/415203
http://dx.doi.org/10.1063/1.3702570
http://dx.doi.org/10.1063/1.3702570
http://dx.doi.org/10.1143/APEX.5.015101
http://dx.doi.org/10.1143/APEX.5.015101
http://dx.doi.org/10.1063/1.3459972
http://dx.doi.org/10.1063/1.3459972
http://dx.doi.org/10.1038/nature09405
http://dx.doi.org/10.1021/nn300393c
http://dx.doi.org/10.1021/nn300393c
http://dx.doi.org/10.1063/1.3701592
http://dx.doi.org/10.1063/1.3701592
http://dx.doi.org/10.1209/0295-5075/8/2/012
http://dx.doi.org/10.1209/0295-5075/8/2/012
http://dx.doi.org/10.1103/PhysRevB.86.115455
http://dx.doi.org/10.1021/nl0706190
http://dx.doi.org/10.1103/PhysRevB.75.205441
http://dx.doi.org/10.1103/PhysRevB.75.205441
http://dx.doi.org/10.1063/1.2776887
http://dx.doi.org/10.1063/1.2776887
http://dx.doi.org/10.1103/PhysRevB.80.205402
http://dx.doi.org/10.1103/PhysRevB.80.205402
http://dx.doi.org/10.3952/lithjphys.52104
http://dx.doi.org/10.3952/lithjphys.52104
http://dx.doi.org/10.1063/1.99649
http://dx.doi.org/10.1103/PhysRevLett.101.026803
http://dx.doi.org/10.1103/PhysRevB.79.195425
http://dx.doi.org/10.1103/PhysRevB.82.115437
http://dx.doi.org/10.1103/PhysRevB.82.115437



