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We review recent results on the simulation of quantum channels, the reduction of adaptive pro-
tocols (teleportation stretching), and the derivation of converse bounds for quantum and private
communication, as established in PLOB [Pirandola, Laurenza, Ottaviani, Banchi, arXiv:1510.08863].
We start by introducing a general weak converse bound for private communication based on the
relative entropy of entanglement. We discuss how combining this bound with channel simulation
and teleportation stretching, PLOB established the two-way quantum and private capacities of sev-
eral fundamental channels, including the bosonic lossy channel. We then provide a rigorous proof
of the strong converse property of these bounds by adopting a correct use of the Braunstein-Kimble
teleportation protocol for the simulation of bosonic Gaussian channels. This analysis provides
a full justification of claims presented in the follow-up paper WTB [Wilde, Tomamichel, Berta,
arXiv:1602.08898] whose upper bounds for Gaussian channels would be otherwise infinitely large.
Besides clarifying contributions in the area of channel simulation and protocol reduction, we also
present some generalizations of the tools to other entanglement measures and novel results on the
maximum excess noise which is tolerable in quantum key distribution.

I. INTRODUCTION

In quantum information [1–9], the area of quantum
and private communications is the subject of an intense
theoretical study, also driven by an increasing number of
experimental implementations. This hectic field ranges
from point-to-point protocols [10–41] to the development
of quantum repeaters [42–59], untrusted relays [60–63]
and, more generally, a quantum network or quantum In-
ternet [64–68]. In this wide scenario, it is important to
know the fundamental limits imposed by quantum me-
chanics, which also serve as benchmarks to test the per-
formance of practical proposals and new technologies.
However, the exploration of the ultimate limits is not
easy, especially when it comes to considering quantum
and private communication protocols which involve feed-
back strategies, where the parties may interactively up-
date their quantum systems in a real time fashion.

The most important point-to-point quantum commu-
nication scenario involves two remote parties, Alice and
Bob, which are connected by a (memoryless) quantum
channel without pre-sharing any entanglement. By using
this channel, the two parties may achieve various quan-
tum tasks, including the reliable transmission of qubits,
the distillation of entanglement bits (ebits) and, finally,
the communication or generation of secret bits. The most
general protocols are based on transmissions through the
quantum channel which are interleaved by local opera-
tions (LO) assisted by unlimited and two-way classical
communication (CC), briefly called adaptive LOCCs.

The first approach to simply quantum communication
protocols dates back to Bennett, DiVincenzo, Smolin
and Wootters (BDSW) [69]. These authors introduced
the simulation of discrete-variable (DV) Pauli channels
via quantum teleportation, and exploited this tool to re-

duce a quantum communication protocol through a Pauli
channel into an entanglement distillation protocol over
mixed isotropic states. This transformation was explic-
itly discussed for non-adaptive protocols based on one-
way CCs but the extension to two-way CCs is easy. Since
then we have witnessed a number of advances [70–76].

Most recently, Pirandola, Laurenza, Ottaviani and
Banchi (PLOB) [77] generalized these precursory ideas
in several ways. First of all, PLOB introduced the most
general form of channel simulation in a communication
scenario, where the quantum channel is replaced by an
LOCC (not necessarily teleportation [78–80]) applied to
the input and some resource state. Furthermore these
elements (LOCC and resource state) may be asymp-
totic, i.e., defined as limit of suitable sequences. In this
way, any quantum channel can be simulated at any di-
mension, i.e., both DV channels and continuous-variable
(CV) channels. For instance, this approach allows one to
deterministically simulate the amplitude damping chan-
nel, which was impossible with any of the previous ap-
proaches, including the one formulated in Ref. [70], whose
limitation was due to the use of finite-dimensional and
non-asymptotic LOCCs (see Eq. (11) in Ref. [70]).

The second advance brought by PLOB was teleporta-
tion stretching. This technique is based on the channel
simulation and allows one to re-order an arbitrary adap-
tive protocol into a much simpler block version, where
the output state is simply expressed in terms of tensor-
product states up to a single LOCC. This technique
works for any channel, at any dimension and for any
type of adaptive protocol, i.e., for any task. In contrast
with the BDSW reduction into entanglement distillation,
teleportation stretching maintains the original task of the
protocol, so that adaptive key generation is reduced into
block key generation. This feature is crucial in order to
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apply the technique to many different contexts, including
the reduction of adaptive quantum metrology and quan-
tum channel discrimination [81, 82], and the extension to
multi-party protocols [83] and quantum networks [66].
By using teleportation stretching and extending the

notion of relative entropy of entanglement (REE) [84–
86] from states to channels, PLOB derived simple single-
letter upper bounds for the two-way quantum and private
capacities of an arbitrary quantum channel. In particu-
lar, these capacities were established for dephasing chan-
nels, erasure channels (see also Refs. [87, 88]), quantum-
limited amplifiers, and bosonic lossy channels. The two-
way capacity of the lossy channel, also known as PLOB
bound, closes a long-standing investigation started in
2009 [89–91], and finally sets the ultimate limit for optical
quantum communications in the absence of repeaters.
In this manuscript, not only we review these techniques

and results, but we also show some generalizations. We
study the general conditions that an entanglement mea-
sure needs to satisfy in order to be used for the deriva-
tion of single-letter upper bounds for two-way assisted
capacities. We then consider a problem which is comple-
mentary to that presented in PLOB. Instead of analyzing
the optimal achievable rates in quantum key distribution
(QKD), we investigate the maximum excess noise which
is tolerable by QKD protocols. As we will see, this char-
acterization is and remains an open problem.
Finally, we also investigate strong converse properties.

In fact, directly building on the methods described above
(channel’s REE and teleportation stretching), a follow-up
work by Wilde, Tomamichel and Berta (WTB) [92] stud-
ied the strong converse property of the upper bounds es-
tablished in PLOB. Here we re-consider this later refine-
ment while fixing its technical mathematical issues. In
fact, we show that the strong converse bounds for bosonic
Gaussian channels presented in WTB technically explode
to infinity, due to an imprecise use of the Braunstein-
Kimble (BK) protocol for CV teleportation [79, 93].
The optimal teleportation simulation of bosonic chan-

nels is asymptotic and, for this reason, must be handled
with a careful control on the simulation error (between
the actual and the simulated channel). Such error needs
to be rigorously propagated through the protocol and
then bounded via a correct use of the BK teleportation
protocol. While this technique is fully taken into ac-
count in the weak converse bounds of PLOB, it is ab-
sent in the derivations of WTB for bosonic Gaussian
channels, whose strong converse bounds become there-
fore “unbounded”.

Structure of the paper

The paper is organized as follows. In Sec. II, we define
adaptive protocols and two-way capacities. In Sec. III, we
provide a general weak converse upper bound for these
capacities. To simplify this bound, we describe chan-
nel simulation in Sec. IV and teleportation stretching in

Sec. V. We combine all these elements in Sec. VI to de-
rive single-letter upper bounds and the formulas for the
two-way capacities. In Sec. VII we specify some of the
results to establish the maximum excess noise which is
tolerable in QKD. In Sec. VIII, we discuss how the recipe
introduced by PLOB is general and can be formulated for
other entanglement measures. Sec. IX contains a detailed
discussion on the main advances in the field of channel
simulation and protocol reduction before the full gener-
alization in PLOB. Then, in Sec. X, we review aspects
of WTB and we provide a complete proof of its strong
converse claims for bosonic Gaussian channels. Finally,
Sec. XI is for conclusions.

II. ADAPTIVE QUANTUM PROTOCOLS AND

TWO-WAY CAPACITIES

A. General formulation and definitions

Let us start with the description of the most general
adaptive protocol for quantum or private communication
over an arbitrary quantum channel E . We adopt the no-
tation introduced in PLOB, where Alice and Bob have
local registers, a and b, each composed of a (countable)
number of systems. The adaptive protocol goes as fol-
lows [77] (see also Fig. 1 for a schematic).

• Alice and Bob prepare an initial state ρ0
ab

applying
an adaptive LOCC Λ0 to their registers a and b.

• Alice picks a system a1 ∈ a and sends it through
the channel E ; Bob receives the output system b1
which becomes part of his register, b1b → b. An-
other adaptive LOCC Λ1 is then applied to the local
registers, with output ρ1

ab
.

• Then, there is the second transmission a ∋ a2 → b2
through E , which is followed by another adaptive
LOCC Λ2. This procedure goes so on for n uses
of the channel. The sequence of adaptive LOCCs
P = {Λ0, . . . ,Λn} characterizes the protocol and
provides the output state ρn

ab
.

The output state ρn
ab

is epsilon-close to some target
state φn with nRn bits, where Rn is the rate. In other
words, we have ||ρn

ab
− φn|| ≤ ε in trace norm [94]. De-

pending on the task of the protocol, the target bits are
of different types, e.g., qubits, ebits or private bits. The
generic two-way capacity is taking the limit of large n
and optimizing over the adaptive protocols

C(E) := sup
P

lim
n

Rn. (1)

If the target φn is a maximally-entangled state, then C is
the two-way entanglement-distribution capacity D2. Un-
der two-way CCs, D2 is equal to the quantum capacity
Q2 (transmission of qubits). If the target φn is a private
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state [95], then C is the secret key capacity K (genera-
tion of secret bits), which is equal to the two-way private
capacity P2 (private transmission of classical bits). Since
a maximally-entangled state is a specific type of private
state, entanglement distillation is a particular protocol of
key distillation and we may write the hierarchy

Q2 = D2 ≤ K = P2. (2)

a

b
1

a
1

b

b
2

a
2

Λ� Λ� Λ�

Alice

Bob

a

b

Λ�

���
0 ���

1 ���
2

���
�

First transmission Second transmission Output stateInitial registers

FIG. 1: Adaptive protocol through a quantum channel E .
Each transmission ai → bi is interleaved by adaptive LOCCs,
Λi−1 and Λi, applied to the local registers a and b. After n
transmissions, we have a sequence of adaptive LOCCs P =
{Λ0, . . . ,Λn} characterizing the protocol and a corresponding
output state ρnab for Alice and Bob.

B. Private states

Let us explain in detail the structure of a private
state [95]. Decompose the local registers as a = AA′ and
b = BB′, where A and B are the local “key systems”
with individual dimension dK, while A′ and B′ are used
to protect the key and form the so-called “shield system”,
whose dimension dS is in principle arbitrary (even infinite
for CV systems). The total dimension of the registers is
therefore d = d2KdS. A generic private state has the form

φAA′BB′ = U(ΦAB ⊗ χA′B′)U †, (3)

where U is a “twisting unitary” [95], χA′B′ is the state
of the shield, and ΦAB is the maximally entangled state

ΦAB = |Φ〉AB 〈Φ| , |Φ〉AB := d
−1/2
K

dK−1
∑

i=0

|i〉A |i〉B . (4)

By making local measurements on AB and tracing out
the shield A′B′, Alice and Bob share an ideal private
state which is completely factorized from the eavesdrop-
per (Eve), i.e., of the form [95]

τABe =

(

d−1
K

dK−1
∑

i=0

|i〉A 〈i| ⊗ |i〉B 〈i|
)

⊗ τe, (5)

with τe is an arbitrary state for Eve’s system e. It is
important to note that system e can also be embedded
in an infinite-dimensional Hilbert space. In fact, even if
Alice and Bob employ DV systems, Eve may resort to hy-
brid DV-CV interactions with a CV environment under
her control. However, let us also notice that, even if Eve

resorts to a CV environment, its effective Hilbert space
will still be finite-dimensional, just because the minimum
purification of Alice and Bob’s state needs a DV system.
The shared randomness in the classical systems A and

B provides log2 dK secret bits. Thus, the n-use target
state φn in the previous adaptive protocol is such that

log2 dK := nRn. (6)

The local dimension dK defines the number of secret bits
and is exponential in n for both DV and CV systems. On
the other hand, the dimension dS of the shield system is
not specified and may be super-exponential in DVs or
even infinite in CVs. For DV systems, it is well known
that we may restrict the effective size of dS to be at most
exponential in n. In fact, there is the following result.

Lemma 1 (Shield [96, 97]) The effective increase of
the shield size dS is at most exponential in the number
n of copies or channel uses, i.e., log2 dS ≤ κn for some
constant κ. More precisely, for any protocol, we can de-
sign an approximate protocol with the same asymptotic
rate while having an at most exponential increase of dS.

The proof is based on the fact that, for any protocol,
one can consider an approximate protocol with the same
asymptotic rate but split into m = n/n0 identical and
independent blocks of size n0. These blocks provide m
copies which are subject to key distillation via one-way
CCs. This distillation procedure has a classical communi-
cation cost (number of bits exchanged in the CCs) which
is linear in the number m of copies [98]. Using argu-
ments from Ref. [95], this implies that the shield size dS
increases at most exponentially in m < n. See [99] for
more mathematical details.
Thus, for DV systems, the previous lemma allows us

to restrict Eq. (1) to adaptive protocols P for which the
shield size grows at most exponentially. For CV systems,
this lemma can still be used after a suitable truncation
of the Hilbert space, as explained in the next section.

III. GENERAL WEAK-CONVERSE BOUND

A. Relative entropy of entanglement

In order to bound the various two-way capacities in
Eq. (2), one can resort to the REE. Let us recall that the
REE of a quantum state ρ is defined as [84–86]

ER(ρ) = inf
σs

S(ρ||σs), (7)

where σs is a separable state and

S(ρ||σs) := Tr [ρ(log2 ρ− log2 σs)] (8)

is the quantum relative entropy [84]. Note that we may
also consider the regularized version

E∞
R (ρ) := lim

n
n−1ER(ρ

⊗n) ≤ ER(ρ) . (9)
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Consider now a DV quantum channel E , with Choi
matrix ρE := I ⊗ E(Φ), where I is the identity channel
and Φ is a maximally-entangled state (e.g., a Bell state
for qubits). Then, we may consider the entanglement
flux of the channel as the REE of its Choi matrix [77]

Φ(E) := ER(ρE). (10)

This is a measure of the entanglement (REE) which may
be transmitted via a single use of the channel.

B. Extension to asymptotic states

Let us now extend the definition of REE to asymptotic
states. This is a step which is introduced to simplify the
notation in following formulas. Recall that an asymp-
totic state σ is the limit of a sequence of bona-fide states
σµ, i.e., σ := limµ σ

µ. This formulation is very natu-
ral for CV systems where the maximally-entangled state
Φ is itself asymptotic. In fact, this is the ideal Einstein-
Podolsky-Rosen (EPR) state which is realized as the limit
of two-mode squeezed vacuum (TMSV) states Φµ, i.e.,
Φ := limµ Φ

µ. Here the parameter µ := n̄ + 1/2 quan-
tifies both the amount of squeezing (entanglement) be-
tween the two modes and the local energy, i.e., the mean
number of thermal photons in each mode. Also note that
the Choi matrix of a bosonic channel E is an asymptotic
state which is defined by the limit

ρE := lim
µ

ρµE , ρµE := I ⊗ E(Φµ). (11)

Now, recall that, given two sequences of states σµ
1 and

σµ
2 , such that ||σµ

k −σk||
µ→ 0 for k = 0 or 1, we may write

the relative entropy between the limit states σ1 and σ2

as the following

S(σ1||σ2) ≤ lim inf
µ→∞

S(σµ
1 ||σµ

2 ). (12)

This is known as the lower semi-continuity of the relative
entropy, a property which is valid at any dimension [2,
Theorem 11.6]. Following this property, we extend the
definition of REE to an asymptotic state σ := limµ σ

µ as
follows [77]

ER(σ) := inf
σµ
s

lim inf
µ→∞

S(σµ||σµ
s ), (13)

where σµ
s is a sequence of separable states converging in

trace norm, i.e., ||σµ
s −σs|| → 0 for separable σs. Thanks

to Eq. (13), we may extend the definition of entanglement
flux in Eq. (10) to bosonic channels, so that [77]

Φ(E) := inf
σµ
s

lim inf
µ→∞

S(ρµE ||σµ
s ). (14)

C. Weak-converse upper bound for private

communication

Once we have clarified how REE is generally defined
for states and asymptotic states, including Choi matrices,

we may provide the following result, which bounds the
two-way capacities of an arbitrary quantum channel.

Theorem 2 ([77]) For any quantum channel E (at any
dimension, finite or infinite), the generic two-way capac-
ity C(E) of Eq. (1) satisfies the weak converse bound

C(E) ≤ E⋆

R (E) := sup
P

lim
n

n−1ER(ρ
n
ab) , (15)

where ρn
ab

is the output of an n-use protocol P.

The first and complete proof of this Theorem first ap-
peared in the second arXiv version of PLOB back in
2015 [100]. It is repeated here for the sake of complete-
ness so to avoid misinterpretations. Let us start with the
case of DV systems and then we show the extension to
CV systems via truncation arguments.
Assume that the total dimension of Alice’s and Bob’s

registers a and b is equal to d. Even though these regis-
ters may be generally composed by a countable number
of quantum systems, after n uses of the channel, only a
finite number of systems will effectively contribute to the
generation of a secret key. In fact, we know that the tar-
get private state φn, and the effective output state ρn

ab
(ε-

close to the target), has dimension d = d2KdS which is at
most exponential in the number of uses n (see Lemma 1
on the “shield”). In other words, any protocol can be
replaced with an approximate protocol with this expo-
nential scaling. Thus, we may write

log2 d ≤ αnRn, (16)

for some constant α. See also Eq. (21) of Ref. [100].
Because ‖ρn

ab
− φn‖ ≤ ε, we may then write the

Fannes-type inequality [101]

|ER(ρ
n
ab
)− ER(φ

n)| ≤ 4ε log2 d+ 2H2(ε), (17)

where H2 is the binary Shannon entropy [102]. Using
Eq. (16) and nRn ≤ ER(φ

n) [95], the previous inequality
implies [100]

Rn ≤ ER(ρ
n
ab
) + 2H2(ε)

(1 − 4εα)n
. (18)

Taking the limit for n → ∞ (asymptotic rate) and ε → 0
(weak converse), we derive

lim
n

Rn ≤ lim
n

n−1ER(ρ
n
ab) . (19)

Optimizing over all protocols P , we find Eq. (15). It is
clear that, without loss of generality, the optimization
in Eq. (15) can be implicitly reduced to protocols with
exponential scaling of the shield system.
Let us extend the proof to CV systems. Assume that,

after the last LOCC Λn, Alice and Bob apply a trace-
preserving LOCC Td so that the protocol becomes Td ◦
P = {Λ0,Λ1, · · · ,Λn,Td} whose truncated d-dimensional

output state ρn,d
ab

= Td(ρ
n
ab
) is ε-close to a DV private
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state with nRn,d bits. We may then repeat the previous
derivation for DVs, which here leads to

Rn,d ≤ ER(ρ
n,d
ab

) + 2H2(ε)

(1− 4εα)n
. (20)

It is pedantic to say that Lemma 1 still applies. In
fact, the truncated protocol Td◦P can be stopped after n0

uses, and then repeated m times in an i.i.d. fashion, with
n = n0m. One-way key distillation is then applied to the

m DV output copies (ρn0,d
ab

)⊗m. This implies a number
of bits of CC which is linear in m which, in turn, leads
to an (at most) exponential scaling of the shield size dS
in m. In other words, we may write log2 dS(m) ≤ κm for
constant κ. This automatically implies log2 dS(n) ≤ κnn
where lim infn κn = κ, because it is always possible to
find sub-sequences (n0, 2n0, 3n0, . . .) of n achieving the
lower limit κ. As a result, we may always impose the
condition in Eq. (16) for the total dimension d of the
private state, because one can always find sub-sequences
of n that make it valid as a lower limit.
Now, because Td is a trace-preserving LOCC, we ex-

ploit the monotonicity of the REE

ER(ρ
n,d
ab

) ≤ ER(ρ
n
ab), (21)

and rewrite Eq. (20) as

Rn,d ≤ ER(ρ
n
ab
) + 2H2(ε)

(1− 4αε)n
. (22)

For large n and small ε, this leads to

lim
n

Rn,d ≤ lim
n

n−1ER(ρ
n
ab
). (23)

An important observation is that the upper bound does
no longer depend on d. As a consequence, in the opti-
mization ofRn,d over all protocols Td◦P we can implicitly
remove the truncation. Explicitly, we may write

K(E) = sup
d

sup
Td◦P

lim
n

Rn,d

≤ sup
P

lim
n

n−1ER(ρ
n
ab
) := E⋆

R (E). (24)

Remark 3 (Original 2015 proof) The steps of this
proof are the same as those in the original 2015
proof [100]. The truncation argument is described after
Eq. (23) of Ref. [100], where we introduced a cut-off for
the total Hilbert space at the output (which therefore ap-
plies to both the key and shield systems). Under this cut-
off, we repeated the derivation for DV systems. Exactly,
as here we used to the monotonicity of the REE to write
an upper bound independent from the truncated dimen-
sion. Exploiting this independence, the cut-off was re-
laxed in the final expression following the same reasoning
as above. Note that the published version of PLOB [77]
contains other equivalent proofs which have been given
for the sake of completeness. One of these proofs is com-
pletely independent from the details of the shield system.

D. Rebuttal of some unfounded claims

Unfortunately, our truncation argument has been mis-
understood. Believing that the truncation was not ap-
plied to the shield system, an author recently claimed
that the shield size was unbounded in our 2015 proof for
CV channels [103]. This is clearly not the case because a
truncation is applied to the total output state (key plus
shield system). As a result of this misunderstanding,
this author started to claim “rigorous proofs” of results
in PLOB (e.g., see Ref. [104]). Not only these claims
are unfounded, but also in stark contradiction with other
statements made by the same author [105, 106].
We also noticed that Ref. [105] would claim “full

justification” of the “statements” presented in other
works [67, 88, 91] which are based on the squashed en-
tanglement. Refs. [67, 88, 91] would be “wrong” because
of the potential unboundedness of the shield size in CV
systems. Let us stress that these proofs are to be con-
sidered correct, because it is easily and implicitly under-
stood that a truncation argument as the one discussed
above applies and reduces the private state to an effec-
tive DV state. Such a truncation can then be released in
all the final bounds derived in Refs. [67, 88, 91].

IV. SIMULATION OF QUANTUM CHANNELS

To simplify the upper bound of Eq. (15) into a single-
letter quantity, PLOB [77] has devised the technique of
teleportation stretching, which reduces an adaptive pro-
tocol (with any communication task) into a correspond-
ing block protocol (with the same original task). The
first ingredient in this technique is the LOCC simulation
of a quantum channel, which allows one to “stretch” a
channel into a quantum state. The second step is the
exploitation of this simulation in the adaptive protocol,
so that all channel transmissions are replaced by a tensor
product of quantum states. Let us start with the review
of the first step, i.e., channel simulation.

A. LOCC simulation of a quantum channel

For any quantum channel E , we may consider an LOCC
simulation. This consists of an LOCC T and a resource
state σ such that, for any input state ρ, the output of the
channel can be expressed as [77]

E(ρ) = T (ρ⊗ σ). (25)

A channel E which is LOCC-simulable with a resource
state σ as in Eq. (25) is also called “σ-stretchable” [77].
For the same channel E there may be different choices for
T and σ, so that the simulation may be optimized de-
pending on the task under study. Furthermore, the sim-
ulation can also be asymptotic. This means that we may



6

consider sequences of resource states σµ such that [107]

Eµ(ρ) = T (ρ⊗ σµ). (26)

and define a quantum channel as a point-wise limit

E(ρ) = lim
µ

Eµ(ρ). (27)

This can be expressed in terms of the Bures fidelity as

lim
µ

F [Eµ(ρ), E(ρ)] = 1, (28)

where F (ρ, ρ′) := Tr
√√

ρρ′
√
ρ for states ρ and ρ′.

A simple criterion that enables us to identify a good
LOCC simulation for a quantum channel is that of tele-
portation covariance. A quantum channel E is said to be
teleportation covariant if, for any teleportation unitary
U , i.e., Pauli operators in DVs and phase-space displace-
ments in CVs [80], we may write the following

E(UρU †) = V E(ρ)V † , (29)

for some other unitary V [77]. Note that this is a property
of many channels, including Pauli and erasure channels
in DVs, and bosonic Gaussian channels in CVs. Channels
with this property are “Choi-stretchable”, which means
that they can be simulated by using their Choi matrix as
resource state. More precisely, we can state the following

Criterion 4 (Tele-covariance/Choi-stretchability)
A teleportation-covariant channel E is Choi-stretchable
via teleportation, i.e., it can be simulated by teleporting
input states ρ over its Choi matrix ρE . For a DV
channel, this means

E(ρ) = T (ρ⊗ ρE), (30)

where T is teleportation. For a CV channel, this means

E(ρ) = lim
µ

Eµ(ρ), Eµ(ρ) = T (ρ⊗ ρµE), (31)

where T is the LOCC of a (modified) BK teleportation
protocol and the sequence ρµE defines the asymptotic Choi
matrix for large µ.

B. Error in the simulation of bosonic channels

In order to better clarify the previous criterion for CV
bosonic channels, let us recall the details of the BK tele-
portation protocol. In the standard formulation, the pro-
tocol is implemented by using a TMSV state Φµ as re-
source state. This means that Alice’s input state ρa and
part a′ of a shared TMSV state Φµ

a′B are detected by a
CV Bell detection (composed of a balanced beamsplitter
whose output ports are measured by two conjugate ho-
modyne detectors). The complex outcome α of the Bell
detection is communicated to Bob, who applies the con-
ditional phase-space displacementD(−α) on his mode B.

In this way, Bob obtains the output state ρB which is a
teleported version ρµa of the input one ρa.
Therefore, let us call T the BK teleportation LOCC,

i.e., the LOs given by the Bell POVM and the condi-
tional displacements, suitably averaged over all the Bell
outcomes. The output state can be written as

ρµa = T (ρa ⊗ Φµ) = Iµ(ρa), (32)

where Iµ is the BK teleportation channel. This channel
can be locally (i.e., point-wise) described by an additive-
noise Gaussian channel with added noise [114, 116]

ξ = 2µ−
√

4µ2 − 1 . (33)

As a result, one has the point-wise convergence of the
BK protocol [79, 93]: for any energy-bounded state (i.e.,
a ‘point’) ρa, we may write

lim
µ

F (ρµa , ρa) = 1. (34)

The discussion can be automatically extended to con-
sidering ancillary systems, so that the input can be taken
as a bipartite state ρAa whose part a is teleported while
part A is just subject to the identity channel IA. In this
case, we have the output state

ρµAa = IA ⊗ T (ρAa ⊗ Φµ) = IA ⊗ Iµ(ρAa), (35)

and we may write the limit

lim
µ

F (ρµAa, ρAa) = 1. (36)

We may formulate this limit in an equivalent way. In
fact, for any input state ρAa (or ‘point’), let us define the
corresponding teleportation infidelity at energy µ as

εBK(µ, ρAa) := 1− F (ρµAa, ρAa). (37)

Then, we may write the point-wise limit

lim
µ

εBK(µ, ρAa) = 0. (38)

Consider now a teleportation-covariant bosonic chan-
nel E , i.e., satisfying [77]

E [D(α)ρD(−α)] = VαE(ρ)V †
α , (39)

for a set of output unitaries Vα. Then consider its µ-
energy simulation Eµ. This can be realized as in Eq. (31)
where the resource state is the quasi-Choi matrix ρµE :=
I ⊗E(Φµ) and T is the LOCC of a modified BK protocol
where the output correction unitaries are given by V †

α .
For any energy-constrained input state ρa, the simulated
output state can be written as

Eµ(ρa) = E ◦ Iµ(ρa) = T (ρa ⊗ ρµE), (40)

as also shown in Fig. 2. Because Eµ = E◦Iµ and E = E◦I,
we may write

lim
µ

F [Eµ(ρa), E(ρa)] ≥ lim
µ

F [Iµ(ρa), I(ρa)] = 1, (41)



7

Φ�

�

A

B

�
a

�(−�)




Bell

��

��

A

B

a

��




Bell

ℰ�

ℰ

ℰ

(a) (b)

�

†

�

FIG. 2: BK protocol and teleportation simulation. (a) We
represent the standard protocol where a TMSV Φµ and a tele-
portation LOCC T (Bell detection and conditional displace-
ments) are used to teleport an input state ρa. The input state
is equal to Iµ(ρa) where Iµ is the BK teleportation channel.
In general we may consider another bosonic channel E at the
output so that we have the composition Eµ = E ◦ Iµ, as in
Eq. (40). (b) If the channel is teleportation-covariant, then
we may commute it with the displacement operators D(−α)
up to introducing the modified corrections V †

α . As a result
the resource state will become the quasi-Choi matrix ρµE and
the teleportation LOCC T will be re-defined over the new
correction operators V †

α . The channel Eµ can be represented
as Eµ(ρa) = T (ρa ⊗ ρµE) as in Eq. (40).

i.e., we have the point-wise limit promised in Eq. (31).
This can be extended to the presence of ancillary sys-

tems A. In fact, given the teleportation-covariant bosonic
channel IA ⊗ E , its output ρAB := IA ⊗ E(ρAa) can be
simulated by

ρµAB := IA ⊗ Eµ(ρAa) (42)

= IA ⊗ E ◦ Iµ(ρAa) = IA ⊗ T (ρAa ⊗ ρµE). (43)

In other words, we may write the point-wise limit

lim
µ

F (ρµAB, ρAB) = 1. (44)

Alternatively, we may write this limit in terms of the
infidelity

lim
µ

εBK(ρ
µ
AB, ρAB) = 0 (45)

εBK(ρ
µ
AB, ρAB) := 1− F (ρµAB, ρAB). (46)

C. Considerations for bosonic Gaussian channels

It is very important to note that the previous limit are
point-wise and performed over energy-constrained input
states. The situation can be completely different when,
at the input, we also include asymptotic states, defined
as the limit of sequences of states for increasing energy.
In fact, in the presence of an unbounded input alpha-
bet, one needs to take special care on how the limits are
performed. To explore this issue, consider the case of
single-mode bosonic Gaussian channels.

Consider a bosonic mode with vectorial quadrature
x̂ = (q̂, p̂)T with [q̂, p̂] = i. Then, consider a single-mode
Gaussian channel E acting on an input state with mean
value x̄ = (q̄, p̄)T and covariance matrix (CM) V. Its
action is described by the transformation

x̄ → Tx̄ + d, V → TVTT +N, (47)

where d ∈ R2 is a displacement, while transmission ma-
trix T and the noise matrix N are 2 × 2 real matrices,
with NT = N ≥ 0 and

detN ≥ (detT− 1)
2
. (48)

Up to input/output unitary transformations, any such
channel can be reduced to a canonical form [5, 108–110]
characterized by zero displacement (d = 0) and diago-
nal matrices T and N. Among these forms the phase-
insensitive ones are the thermal-loss channel, the quan-
tum amplifier and the additive-noise Gaussian channel.
These channels can be described by

x̄ → √
ηx̄, V → ηV + νI, (49)

where η ∈ R, ν ≥ 0, and I := diag(1, 1). In particular,
we have the following specifications of Eq. (49):

• Thermal-loss channel Eη,n̄ is characterized by trans-
missivity η ∈ [0, 1] and mean thermal number
n̄ ≥ 0, so that ν = (1 − η)(n̄ + 1/2). The lossy
channel, or pure-loss channel, corresponds to n̄ = 0.

• Quantum amplifier Eg,n̄ is characterized by gain
η = g > 1 and mean thermal number n̄ ≥ 0, so
that ν = (g − 1)(n̄+ 1/2). A quantum-limited am-
plifier corresponds to the specific case n̄ = 0.

• Additive-noise Gaussian channel Eξ has transmis-
sivity η = 1 and additive noise ν = ξ ≥ 0.

There are other canonical forms which are instead sen-
sitive to phase. These are the forms in the classes A2,
B1 and D according to the terminology introduced by
Holevo [108] and summarized in Table I of Ref. [5]. For
instance, a B1 canonical form is described by

x̄ → x̄, V → V + diag(0, 1), (50)

so that a vacuum noise unit is added to the momentum
quadrature only.

Given a Gaussian channel E and its simulation Eµ

based on the BK protocol, we may consider the corre-
sponding output states ρAB := IA ⊗ E(ρAa) and ρµAB :=
IA ⊗ Eµ(ρAa) for an energy-constrained input state ρAa.
We may then write the limit in Eq. (44). However, the
limit in Eq. (44) becomes ambiguous and problematic if
we allow for an energy-unbounded alphabet, which means
to include asymptotic states with diverging energy at the
input.
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For instance, consider an input sequence of TMSV
states Φµ̃

Aa with increasing squeezing µ̃. Compute the

actual output ρAB(µ̃) = IA ⊗ E(Φµ̃
Aa) and the simulated

output ρµAB(µ̃) := IA ⊗Eµ(Φµ̃
Aa) for some simulation en-

ergy µ. It is easy to find Gaussian channels, such as the
identity channel (see Appendix A) or the B1 canonical
form (see Ref. [111]), such that the fidelity tends to zero
in the limit of µ̃ → ∞ for any finite µ, i.e.,

lim
µ̃

F [ρµAB(µ̃), ρAB(µ̃)] = 0 . (51)

By comparing Eqs. (44) and (51), we see that the joint
limit in µ̃ (energy of the input) and µ (energy of the
simulation) is not mathematically defined. This issue
can be solved in two ways:

• Specifying a precise order of the limits, i.e., first
in the simulation energy µ and then in the input
energy µ̃ or size of the alphabet. This exploits the
fact that the underlying BK teleportation protocol
strongly converges to the identity channel (as we
further discuss in Sec. IVD).

• Bounding the size of the input alphabet imposing
an energy constraint. For this more elegant solu-
tion we need to introduce the energy-constrained
diamond distance. This exploits the fact that the
BK teleportation protocol converges to the identity
channel according to the energy-constrained uni-
form topology (as we further discuss in Sec. IVE).

D. Topologies of convergence in the BK protocol

and teleportation simulation of bosonic channels

The previous considerations can be formalized in terms
of different topologies of convergence associated with
the BK teleportation protocol. Consider a µ-energy
BK protocol, where a teleportation LOCC T (Bell plus
conditional displacements) is performed over a TMSV
state Φµ with finite energy µ. Given an input energy-
constrained state ρAa, we may write its teleported ver-
sion ρµAa as in Eq. (35). We also know [79, 93] that we
may write the point-wise limit of Eq. (38) for the infi-
delity εBK(µ, ρAa) := 1 − F (ρµAa, ρAa). By taking the
supremum, it is trivial to write the strong convergence
limit

sup
ρAa

[

lim
µ

εBK(µ, ρAa)

]

= 0. (52)

This is also trivially extended to teleportation simula-
tion. In fact, for the finite-energy simulation Eµ of a
teleportation-covariant bosonic channel E , we may write
the point-wise limit of Eq. (44) that leads to

sup
ρAa

[

lim
µ

εBK(ρ
µ
AB, ρAB)

]

= 0. (53)

It is clear, from the reasonings on the order of the lim-
its in Sec. IVC, that the BK protocol does not converge
uniformly to the identity channel. In fact, Eq. (51) writ-
ten for E = I implies that, for any finite µ, we have

F [IA ⊗ Iµ(Φµ̃
Aa),Φ

µ̃
Aa]

µ̃→ 0 , (54)

so that εBK(µ,Φ
µ̃
Aa)

µ̃→ 1. Because of this limit, we have

sup
ρAa

εBK(µ, ρAa) = 1, for any µ, (55)

and, therefore,

lim
µ

[

sup
ρAa

εBK(µ, ρAa)

]

= 1. (56)

In diamond distance, this is equivalently to state that

‖I − Iµ‖⋄ = 2, for any µ. (57)

In fact, recall that the diamond distance between two
quantum channels E1 and E2 is defined as

‖E1 − E2‖⋄ := sup
ρAa

‖IA ⊗ E1(ρAa)− IA ⊗ E2(ρAa)‖ ,

(58)
where ‖·‖ is the trace norm. For any two states ρ and ρ′,
we may then write the Fuchs-van de Graaf inequality

‖ρ− ρ′‖ ≥ 2 [1− F (ρ, ρ′)] . (59)

Therefore, it is easy to see that Eq. (54) implies Eq. (57),
by using Eqs. (58) and (59).
This non-convergence is also true for the teleportation

simulation of a generic bosonic channel. However, for
most of the single-mode bosonic Gaussian channels, the
teleportation simulation uniformly converges to the chan-
nels. In fact, given an arbitrary single-mode Gaussian
channel E with teleportation simulation Eµ, we may write

lim
µ

‖E − Eµ‖⋄ = 0, (60)

if and only if its noise matrix N has full rank, i.e.,
rank(N) = 2 [111]. For Gaussian channels with
rank(N) < 2 and other bosonic channels, we need to
replace the uniform convergence of Eq. (60) with a no-
tion of bounded-uniform convergence which is based on
an energy-constrained version of the diamond distance.

E. Energy-constrained diamond distance

A more useful definition of diamond distance for
bosonic channels involves the introduction of an energy
constraint at the input [77, 112]. Following PLOB, we
impose an energy constraint on the entire input space,
including the ancillas. In fact, consider the following set
of energy-constrained bipartite states

DN := {ρAa | Tr(N̂ρAa) ≤ N}, (61)
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where N̂ is the total number operator associated to the
input a and all the ancillas A. One can check that DN is
a compact set [113]. Then, for two bosonic channels, E1
and E2, we may define the energy-constrained diamond
distance as

‖E1 − E2‖⋄N := sup
ρAa∈DN

‖IA ⊗E1(ρAa)−IA ⊗E2(ρAa)‖ .

(62)
Now, for any bounded alphabet DN with energy N ,

consider the energy-constrained diamond distance be-
tween a (teleportation-covariant) bosonic channel E and
its teleportation simulation Eµ. This defines the simula-
tion error

δ(µ,N) := ‖E − Eµ‖⋄N . (63)

Because DN is compact, the point-wise limit in Eq. (44)
implies the following uniform limit

δ(µ,N)
µ→ 0 for any finite N, (64)

or, equivalently, we may write

lim
µ

[

sup
ρAa∈DN

εBK(ρ
µ
AB, ρAB)

]

= 0. (65)

As a result, when we consider the asymptotic simulation
in Eq. (31) for an arbitrary bosonic channel, we may
consider it either as a point-wise limit or as a uniform
limit while assuming an energy-constrained alphabet DN

at the input (as in Ref. [77]).

F. Finite-resource simulation of Gaussian channels

Very recently, a different type of simulation has been
introduced for Gaussian channels [114, 115]. As shown
in Ref. [116], these simulations are not optimal as the
asymptotic ones, but they may still provide very good
approximations of the results in PLOB. According to
Ref. [114], a phase-insensitive Gaussian channel Eη,ν can
be simulated as follows

Eη,ν(ρ) = Tη(ρ⊗ σν), (66)

where Tη denotes the LOCC of a (modified) BK telepor-
tation protocol with gain

√
η [79], and σν is a zero-mean

two-mode Gaussian state with CM

V(σν ) =
1

2

(

aI cZ
cZ bI

)

, (67)

where the elements in the CM are equal to [114]

a =
b+ (η − 1)e−2r

η
, c =

b− e−2r

√
η

,

b =
− |η − 1|+ ηe2r + e−2r

−e2r |η − 1|+ η + 1
, (68)

and the entanglement parameter r ≥ 0 is connected to
the channel parameter via the relation

ν =
e−2r

2
(η + 1). (69)

For the specific case of a pure-loss channel, the previous
simulation cannot be used because, for this channel, one
has ν = (1 − η)/2 and, therefore, b becomes singular
in Eq. (68). For the pure loss channel, a finite-resource
simulation is just provided by teleporting with gain

√
η

over a Gaussian state with CM [116, 117]

ση =

(

aI
√

a2 − 1/4Z
√

a2 − 1/4Z aI

)

, a =
η + 1

2(1− η)
.

(70)

V. TELEPORTATION STRETCHING OF

ADAPTIVE PROTOCOLS

A. Stretching with non-asymptotic simulations

Thanks to the LOCC-simulation of a quantum channel,
we may completely simplify the structure of an adaptive
protocol for quantum/private communication. Let us
start with the simple case of non-asymptotic simulations.
Consider an adaptive protocol with n transmissions over
a channel E which admits an LOCC-simulation (T , σ).
Then, we can reduce the output state ρn

ab
into a tensor-

product of resource states σ⊗n up to a trace-preserving
LOCC Λ̄. In other words, we may write [77]

ρn
ab

= Λ̄
(

σ⊗n
)

. (71)

As depicted in Fig. 3, the procedure goes as follows:

• Each transmission through E is replaced by its sim-
ulation (T , σ);

• The resource state σ is stretched “back in time”
while T is included in the LOCCs;

• All the LOCCs including the register preparation
are collapsed into a single LOCC Λ̄, which is trace-
preserving after averaging over measurements.

B. Stretching with asymptotic simulations

Consider now an adaptive protocol with n transmis-
sions over a quantum channel E which can be simulated
asymptotically by using an LOCC T and a sequence of
resource states σµ, as in Eqs. (26) and (27). The proce-
dure is more involved because we need to carefully control
the propagation of the simulation error from the channel
E to the final output state ρn

ab
.

Let us replace each transmission through E with an
imperfect channel Eµ(ρ) := T (ρ⊗ σµ) based on a finite-
energy resource state σµ. Assuming that, in each ith
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FIG. 3: Teleportation stretching of an adaptive point-to-point protocol [77]. (a) Consider the generic ith transmission through
channel E between two adaptive LOCCs Λi−1 and Λi. (b) The channel can be simulated by an LOCC T and a resource state
σ. (c) The resource state σ is stretched back in time out of the adaptive LOCCs while T becomes part of the LOCCs of the
simulated protocol. (d) By repeating the operation at point (c) for all the n transmissions, we accumulate the tensor-product
state σ⊗n. All the LOCCs (and also the initial state of the registers) are collapsed into a single LOCC Λ̄, which is trace-
preserving after averaging over all measurements. The final result is a block protocol where the output state ρnab is obtained
by applying Λ̄ to the resource states σ⊗n. This is the decomposition in Eq. (71).

transmission, the local registers are bounded in energy
so that the total input state ρaaib belongs to a bounded
alphabet DN , we may write the imperfect simulation
with error δ(µ,N) := ‖E − Eµ‖⋄N as in Eq. (63). We
then need to propagate δ(µ,N) throughout the pro-
tocol and quantify the trace distance between the ac-
tual output ρn

ab
:= ρab(E⊗n) and the simulated output

ρn,µ
ab

:= ρab(Eµ⊗n). For any finite N , we find [77]

‖ρnab − ρn,µ
ab

‖ ≤ nδ(µ,N) . (72)

The proof exploits basic properties of the trace dis-
tance. Starting from the register state ρ0

ab
, we write

ρn
ab

= Λn ◦ E ◦ Λn−1 · · · ◦ Λ1 ◦ E(ρ0ab), (73)

ρn,µ
ab

= Λn ◦ Eµ ◦ Λn−1 · · · ◦ Λ1 ◦ Eµ(ρ0ab), (74)

where we implicitly assume that channels E and Eµ are
applied to the input system ai in the i-th transmission,

so that E(µ) = Ia ⊗ E(µ)
ai ⊗ Ib. For simplicity, assume

n = 2. We may apply the “peeling” argument [77]

‖ρ2ab − ρ2,µ
ab

‖
(1)

≤ ‖E ◦ Λ1 ◦ E(ρ0ab)− Eµ ◦ Λ1 ◦ Eµ(ρ0
ab
)‖

(2)

≤ ‖E ◦ Λ1 ◦ E(ρ0ab)− E ◦ Λ1 ◦ Eµ(ρ0
ab
)‖

+ ‖E ◦ Λ1 ◦ Eµ(ρ0
ab
)− Eµ ◦ Λ1 ◦ Eµ(ρ0

ab
)‖

(1)

≤ ‖E(ρ0
ab
)− Eµ(ρ0

ab
)‖

+ ‖E [Λ1 ◦ Eµ(ρ0ab)]− Eµ[Λ1 ◦ Eµ(ρ0ab)]‖
(3)

≤ 2‖E − Eµ‖✸N , (75)

where we use the monotonicity of the relative entropy
under maps (1), the triangle inequality (2) and the defi-
nition of energy-constrained diamond distance (3). Gen-
eralization to n ≥ 2 provides the result in Eq. (72).
The next step is the stretching of the simulated proto-

col, i.e., the decomposition of the state ρµ,n
ab

. By repeat-
ing the steps in Fig. 3 with Eµ in the place of the original

channel E , we derive the decomposition ρµ,n
ab

= Λ̄ (σµ⊗n)
for a trace-preserving LOCC Λ̄. For any energy con-
straint N , we may therefore write

∥

∥ρnab − Λ̄
(

σµ⊗n
)
∥

∥ ≤ nδ(µ,N) . (76)

For finite energy N and number of uses n, we may take
the limit of µ → ∞ and get the asymptotic stretching

∥

∥ρn
ab

− Λ̄(σµ⊗n)
∥

∥

µ→ 0. (77)

VI. SINGLE-LETTER UPPER BOUNDS

The most crucial insight of PLOB [77] has been
the combination of the channel’s REE, as expressed
by the general weak converse bound in Eq. (15), with
the adaptive-to-block reduction realized by teleportation
stretching, as expressed by Eqs. (71) and (77). This has
been the novel recipe that led PLOB to the computation
of extremely simple single-letter upper bounds for all the
two-way capacities of a quantum channel. This entire
technique of “channel’s REE and teleportation stretch-
ing” has been later used as a tool in a number of other
works [66, 83, 116, 118] and is at the core of WTB [92]
and other follow-up papers.

A. Bounds for channels with standard simulations

Let us start with a quantum channel having a stan-
dard (non-asymptotic) simulation with resource state σ.
Let us compute the REE of the output state ρn

ab
of an

adaptive protocol over this channel. By using the decom-
position in Eq. (71), we derive

ER(ρ
n
ab)

(1)

≤ ER(σ
⊗n)

(2)

≤ nER(σ) , (78)

where we use the monotonicity of the REE under trace-
preserving LOCCs in (1), and its subadditivity over ten-
sor products in (2). By replacing Eq. (78) in Eq. (15), we
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then find the single-letter upper bound [77, Theorem 5]

C(E) ≤ E∞
R (σ) ≤ ER(σ) . (79)

In particular, if the channel E is teleportation-covariant,
it is Choi-stretchable, and we may write [77, Theorem 5]

C(E) ≤ ER(ρE) = Φ(E), (80)

so that the entanglement flux of the channel Φ(E) bounds
all its two-way assisted capacities. The computation of
the single-letter quantity Φ(E) is very simple.

B. Formulas for Pauli and erasure channels

Consider a qubit Pauli channel P whose action on an
input state ρ is given by

P(ρ) = p0ρ+ p1XρX + p2Y ρY + p3ZρZ, (81)

where X , Y , and Z are Pauli operators [1] and {pk}
is a probability distribution. It is easy to check
that P is teleportation covariant and, therefore, Choi-
stretchable. Computing its entanglement flux Φ(P), one
finds that [77]

C(P) ≤ Φ(P) = 1−H2(pmax), (82)

if pmax := max{pk} ≥ 1/2, while Φ = 0 otherwise.
The result can be generalized to arbitrary finite dimen-
sion [77].
A particular type of Pauli channel is the depolarizing

channel Pdepol, which is defined by

Pdepol(ρ) = (1− p)ρ+ pI/2, (83)

for some probability p. Specifying Eq. (82), we find [77]

C(Pdepol) ≤ Φ(Pdepol) = 1−H2 (3p/4) , (84)

for p ≤ 2/3, while Φ = 0 otherwise. Another type of
Pauli channel is the dephasing channel Pdeph, defined by

Pdeph(ρ) = (1− p)ρ+ pZρZ, (85)

where p is the probability of a phase flip. For this chan-
nel, we compute the entanglement flux [77]

Φ(Pdeph) = 1−H2(p) . (86)

This upper bound coincides with a lower bound to the
capacity which is given by the one-way distillability of
the Choi matrix, i.e., D1(ρPdeph

). The latter is lower
bounded by the maximum between the coherent [119,
120] and reverse coherent [89, 90] information. Because
Φ(Pdeph) = D1(ρPdeph

), the dephasing channel is also
called “distillable” and its two-way capacity is completely
determined. We have [77]

C(Pdeph) = 1−H2(p) . (87)

Note that this also proves Q2(Pdeph) = Q(Pdeph), where
the latter was derived in Ref. [121].
Consider now an erasure channel which is a non-Pauli

channel described by

Eerase(ρ) = (1− p)ρ+ p |e〉 〈e| , (88)

where p is the probability of getting an orthogonal era-
sure state |e〉. This channel is teleportation covariant and
also distillable, therefore we may compute [77]

C(Eerase) = Φ(Eerase) = 1− p . (89)

Remark 5 Note that only the Q2 of the erasure chan-
nel was previously known [87], so that the novel result
here is about the secret key capacity, i.e., K(Eerase) =
P2(Eerase) = 1− p. Simultaneously with Ref. [77], an in-
dependent study of the erasure channel has been provided
in Ref. [88] which computed the secret key capacity K
from the squashed entanglement of this channel.

C. Bounds for channels with asymptotic

simulations

Consider now a quantum channel E which is described
by an asymptotic simulation, with an associated sequence
of resource states σµ. For any input alphabet of finite
energy N and for any finite number of channel uses n,
we may write the output of the adaptive protocol as
ρn
ab

= limµ Λ̄(σ
µ⊗n) according to the trace norm limit

in Eq. (77). Computing the REE on the (finite-energy)
output state ρn

ab
we find [77]

ER(ρ
n
ab
) = inf

σs

S(ρn
ab
||σs)

(1)

≤ inf
σµ
s

S

[

lim
µ

Λ̄(σµ⊗n) || lim
µ

σµ
s

]

(2)

≤ inf
σµ
s

lim inf
µ

S
[

Λ̄(σµ⊗n) || σµ
s

]

(3)

≤ inf
σµ
s

lim inf
µ

S
[

Λ̄(σµ⊗n) || Λ̄(σµ
s )
]

(4)

≤ inf
σµ
s

lim inf
µ

S
(

σµ⊗n || σµ
s

)

(5)
= ER(σ

⊗n), (90)

where: (1) σµ
s is a sequence of separable states such that

‖σs − σµ
s ‖

µ→ 0 for separable σs; (2) we use the lower
semi-continuity of the relative entropy [2]; (3) we use
that Λ̄(σµ

s ) are specific types of sequences; (4) we use the
monotonicity of the relative entropy under Λ̄; and (5) we
use the definition of REE for asymptotic states given in
Eq. (13).
By replacing in Eq. (15), we derive

C(E|N) ≤ lim
n

n−1ER(σ
⊗n) = E∞

R (σ) ≤ ER(σ) , (91)
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where we also consider the fact that the capacity is com-
puted assuming an input alphabet with bounded energy
N . Because the upper bound does no depend on N , we
may extend the result to the supremum and write the
final result [77, Theorem 5]

C(E) = sup
N

C(E|N) ≤ E∞
R (σ) ≤ ER(σ) . (92)

Exactly as in PLOB, the energy constraint is released at
the very end of the calculations.
In particular, for a quantum channel which is tele-

portation covariant, we may write the simulation with
σµ = ρµE , i.e., considering a Choi sequence. Then,
Eq. (92) becomes again [77, Theorem 5]

C(E) ≤ ER(ρE) = Φ(E), (93)

where the entanglement flux is defined as in Eq. (14).
Note that we may simplify the upper bound by mak-
ing a specific choice σ̃µ

s for the separable sequence σµ
s in

Eq. (14), so that

Φ(E) ≤ lim inf
µ

S (ρµE || σ̃µ
s ) . (94)

D. Formulas for Gaussian channels

A single-mode Gaussian channel is teleportation co-
variant and therefore admits a teleportation simulation in
terms of a Choi sequence ρµE . We may bound the generic
two-way capacity by using Eq. (94) with a suitable sep-
arable sequence σ̃µ

s . Since ρµE is Gaussian, we may also
choose σ̃µ

s to be Gaussian (see PLOB on how to build
this separable state following ideas in Refs. [122–124]).
The next step is to develop a formula for comput-

ing the relative entropy between two arbitrary Gaus-
sian states. Given n modes with quadratures x̂ =
(q̂1, . . . , q̂n, p̂1, . . . , p̂n)

T , consider the symplectic form

Ω =

(

0 1
−1 0

)

⊗ In, (95)

where In is the n × n identity matrix. Using the Gibbs
representation for Gaussian states [125], one can prove
the following [77, Theorem 7]

Theorem 6 (Relative entropy for Gaussian states)
Given two arbitrary n-mode Gaussian states ρ1(x1,V1)
and ρ2(x2,V2), with mean values xi and CMs Vi, their
relative entropy is given by

S(ρ1||ρ2) = −Σ(V1,V1) + Σ(V1,V2) , (96)

where we have defined

Σ(V1,V2) =
ln det

(

V2 +
iΩ
2

)

+Tr(V1G2) + δTG2δ

2 ln 2
,

(97)
with δ = x1 − x2 and G2 = 2iΩ coth−1(2iV2Ω).

Remark 7 Note that this formula expresses the relative
entropy directly in terms of the statistical moments of
the Gaussian states, without the need of performing the
symplectic diagonalization of the CMs. In fact, Eq. (97)
enables the use of matrix functions, which are imple-
mented in most numerical and symbolic software pack-
ages. By contrast, a full symplectic diagonalization needs
to be carried out in previous formulations [126, 127]. In
Refs. [126, 127], the practical problem is not the com-
putation of the symplectic spectrum of a CM V (which
is relatively easy) but the derivation of the symplectic

matrix S performing the diagonalization SVST = W
into the diagonal Williamson form W [5]. For this ma-
trix S, we know closed formulas only in very particu-
lar cases, e.g., for specific types of two-mode Gaussian
states [128] as those appearing in problems of quantum
illumination [129–132] and quantum reading [133, 134].

Using Theorem 6 for the computation of the relative
entropy in Eq. (94), PLOB established the tightest known
upper bounds for the two-way quantum and private ca-
pacities of all single-mode phase insensitive Gaussian
channels. In fact, let us introduce the entropic function

h(x) := (x+ 1) log2(x+ 1)− x log2 x. (98)

Then, we may write the following results [77].

• For a thermal-loss channel Eη,n̄ with transmissivity
η ∈ [0, 1] and mean thermal number n̄ ≥ 0, one
finds

C(Eη,n̄) ≤ − log2
[

(1− η)ηn̄
]

− h(n̄), (99)

for n̄ < η/(1− η), while C = 0 otherwise.

• For a quantum amplifier Eg,n̄ with gain g > 1 and
mean thermal number n̄ ≥ 0, one has

C(Eg,n̄) ≤ log2

(

gn̄+1

g − 1

)

− h(n̄), (100)

for n̄ < (g − 1)−1, while C = 0 otherwise

• For an additive-noise Gaussian channel Eξ with ad-
ditive noise ξ ≥ 0, one writes

C(Eξ) ≤
ξ − 1

ln 2
− log2 ξ, (101)

for ξ < 1, while C = 0 otherwise.

More strongly, for a bosonic lossy channel Eη with
transmissivity η, PLOB showed that the upper bound
Φ(Eη) coincides with the lower bound D1(ρEη

), the lat-
ter being already known from past computations using
the reverse coherent information [90]. Therefore, a lossy
channel is distillable and the two-way capacities are all
equal (D2 = Q2 = K = P2) and given by [77]

C(Eη) = − log2(1− η) . (102)
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In particular, the secret-key capacity K of the lossy
channel gives the maximum rate achievable by point-to-
point QKD protocols. At high loss η ≃ 0, one finds the
optimal rate-loss scaling K ≃ 1.44η secret bits per chan-
nel use. This result is known as repeaterless or PLOB
bound, and establishes the exact benchmark that a quan-
tum repeater must surpass in order to be effective.
This result also proves the strict separation Q2(Eη) >

Q(Eη), where Q is the unassisted quantum capacity [119,
120]. It is then interesting to note that the capacity in
Eq. (102) coincides with the maximum discord [135] that
can be distributed through the lossy channel, supporting
the operational interpretation of discord as a resource for
quantum cryptography [136]. One can also check, using
the tools in Ref. [137], that this discord corresponds to
Gaussian discord [138, 139].
In conclusion, a quantum-limited amplifier Eg with

gain g > 1 is also distillable, i.e., Φ(Eg) = D1(ρEg
). As

a result, all the two-way capacities are equal and given
by [77]

C(Eg) = − log2
(

1− g−1
)

. (103)

In particular, this also proves that Q2(Eg) coincides with
the unassisted quantum capacity Q(Eg) [140, 141].

E. Amplitude damping channel

The amplitude damping channel is a very important
model of decoherence in spin chains and networks [142,
143], especially when we consider the transfer of quantum
information, e.g., in a quantum chip architecture. De-
spite this, the inherent asymmetry of this channel makes
it the hardest to study. In the qubit computational basis
{|0〉 , |1〉}, the action of this channel is expressed by

Edamp(ρ) =
∑

i=0,1AiρA
†
i , (104)

where p is the damping probability and

A0 := |0〉 〈0|+
√

1− p |1〉 〈1| , A1 :=
√
p |0〉 〈1| . (105)

One can check that Edamp is not teleportation-
covariant. However, it is still LOCC simulable thanks
to the decomposition

Edamp = ECV→DV ◦ Eη(p) ◦ EDV→CV, (106)

where:

• EDV→CV teleports the spin qubit into a single-rail
bosonic qubit [80];

• Eη(p) is a lossy channel with transmissivity η(p) :=
1− p;

• ECV→DV teleports the single-rail qubit back to the
original qubit.

For this reason, Edamp is stretchable into the asymp-
totic Choi matrix of the lossy channel Eη(p) by means
of a simulating LOCC which combines the local maps
ECV→DV and EDV→CV with the BK protocol. In this
way, PLOB showed that

C(Edamp) ≤ min{1,− log2 p}. (107)

Let us notice that squashed entanglement can beat
this upper bound as shown in PLOB and Ref. [88]. The
REE bound in Eq. (107) is very simple but performs well
only in the regime of high damping (p > 0.9). Finally,
notice that the amplitude damping proves the need of
a dimension-independent theory for channel simulation
even if we restrict ourself to DV channels.

VII. MAXIMUM TOLERABLE NOISE IN

QUANTUM KEY DISTRIBUTION

In this section we provide a study which complements
the one in Ref. [77, Figure 6], where we plotted the op-
timal key rate versus distance of several QKD protocols,
in comparison with the PLOB bound. Here we study the
optimal security thresholds which are achieved by setting
the key rates equal to zero.
Consider a thermal-loss channel Eη,n̄ with transmissiv-

ity η and mean thermal number n̄. From the variance
parameter ω = n̄ + 1/2, we define the so-called “excess
noise” ε of the channel by setting

ω =
1

2
+

ηε

1− η
, (108)

which leads to

ε = η−1(1− η)n̄. (109)

For any protocol, we may write an optimal rate in terms
of these channel parameters, i.e., R = R(η, ε). The se-
curity threshold is then achieved by setting R = 0 which
provides the maximum tolerable excess noise as a func-
tion of the transmissivity, i.e., ε = ε(η). Now the crucial
question is the following: What is the maximum excess
noise that is tolerable in QKD? I.e., optimizing over all
QKD protocols?
It is easy to write an upper bound to the security

threshold associated with the secret key capacity of the
thermal-loss channel. In fact, from Eq. (99), we see that
K(Eη,n̄) = 0, corresponds to the entanglement-breaking
value n̄ = η/(1 − η). By replacing in Eq. (109), we
find that the maximum tolerable excess noise is upper-
bounded by εUB = 1 for any value of the transmissivity
η. For the lower bound, we may consider the maximum
key rate achievable by using the reverse coherent infor-
mation [89], which is equal to [90]

RLB = − log2(1− η)− s (ω) , (110)
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where

s(x) :=

(

x+
1

2

)

log2

(

x+
1

2

)

−
(

x− 1

2

)

log2

(

x− 1

2

)

.

(111)
Using Eq. (108) in Eq. (110), we may numerically com-
pute RLB(η, ε) = 0 and find the lower bound εLB. As we
can see from Fig. 4, there is a huge gap between εLB and
εUB.
Can we reduce this gap? From Refs. [90, 144], we know

that the use of trusted noise at the receiver station may
improve the performance of a one-way CV-QKD protocol
performed in reverse reconciliation. Such an idea has
been also explored in a recent work [145]. Both Refs. [90,
145] show that rate associated with the reverse coherent
information can be beaten by a CV-QKD protocol based
on trusted noise when non-zero excess noise is present
in the channel. Here we show an equivalent CV-QKD
protocol which outperforms the security threshold εLB
associated with the reverse coherent information.
The protocol consists of Alice preparing Gaussian-

modulated squeezed states, e.g., by homodyning one part
of TMSV states in her hands. It is easy to see that, for
a TMSV state with parameter µ, the local homodyne
in q̂ on one mode projects the other mode into a dis-
placed q-squeezed state with variance µ−1. Alice ran-
domly switches between q- and p-squeezed states follow-
ing Ref. [146]. The squeezed states are sent through the
thermal-loss channel whose output is measured by Bob.
Before detection Bob applies an additive noise Gaussian
channel Eξ, so that the output quadratures are trans-
formed according to x̂ → x̂ + ζ, where ζ is a classical
Gaussian variable with variance ξ ≥ 0. Then, he per-
forms homodyne detection, switching between the mea-
surement of the q̂ and p̂ quadrature.
After the parties reconcile their bases, perform error

correction and privacy amplification, they will share an
asymptotic key rate R = (IAB − χBE)/2, where IAB is
Alice and Bob’s mutual information (ignoring the ba-
sis reconciliation), and χBE is the corresponding Eve’s
Holevo information on Bob’s outcomes. The factor 1/2
accounts for the basis reconciliation. After some algebra,
we compute

IAB =
1

2
log2

ηµ+ (1− η)ω + ξ

ηµ−1 + (1− η)ω + ξ
(112)

µ→ 1

2
log2

ηµ

(1 − η)ω + ξ
, (113)

and, for large Gaussian modulation (µ ≫ 1/2), we get

χBE =
1

2
log2

(1− η)ηµ

ω + ξ(1− η)
+ s(ω)− s (ν̄) , (114)

where the symplectic eigenvalue ν̄ is given by

ν̄ =

√

ω [1 + 4ωξ(1− η)]

4[ω + ξ(1− η)]
. (115)
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FIG. 4: Security thresholds in terms of maximum tolera-
ble excess noise ε as a function of the loss in the channel
(dB). Protocols are secure below their corresponding thresh-
olds. The red line is the upper bound εUB = 1 coming from
the entanglement flux (REE bound) of the thermal-loss chan-
nel [77]. The blue line is the lower bound εLB computed from
the reverse coherent information [89, 90]. The black dashed
line is the security threshold which is obtained from the key-
rate of Eq. (116), for the one-way trusted noise protocol de-
scribed in the text. This is an improved lower bound, but still
far to close the gap with the upper bound. Finally, we also
show the security thresholds corresponding to the one-way no-
switching protocol [148] and the two-way protocols [17] with
coherent states (solid line) and largely-thermal states [149]
(green dashed line).

Therefore, from Eqs. (112) and (114), we compute the
asymptotic and high-modulation rate

R =
1

4
log2

ω + ξ(1− η)

(1− η) [(1 − η)ω + ξ]
+

s (ν̄)− s(ω)

2
. (116)

The previous rate is a function of the main parameters,
i.e., R = R(η, ε, ξ). Setting R = 0, we derive the thresh-
old ε = ε(η, ξ) which is maximal in the limit of large
trusted noise ξ ≫ 0. The limit ε∞ := limξ ε(η, ξ) beats
εLB as shown in Fig. 4, therefore establishing the best-
known lower bound. Unfortunately, this is still far from
εUB so that it remains an open problem to establish the
maximum value of tolerable excess noise in QKD.

Remark 8 Note that the previous protocol can be im-
plemented in a coherent fashion, where Alice distributes
TMSV states whose her kept modes and Bob’s output
modes (from the channel) are stored in quantum mem-
ories. The parties may then agree to perform a joint
random sequence of q- and p- homodyne detections, so
that no basis reconciliation is needed. In this way they
can reach a key rate which is the double of the one in
Eq. (116). This coherent protocol is equivalent to the
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one described in Ref. [145], where the parties use quan-
tum memories and the trusted noise is created by a beam
splitter of transmissivity ηd mixing the output with a ther-
mal mode with variance γ. One can check that the rates
are equal by setting

ξ =
1− ηd
ηd

γ. (117)

Remark 9 As one can check, if we set Bob’s trusted
noise to zero (ξ = 0), then the rate in Eq. (116) be-
comes equal to half the rate RLB in Eq. (110). Assuming
a coherent implementation as discussed in the previous
remark, then the rate becomes equal to the rate RLB in
Eq. (110). Taking the limit for low loss η ≃ 0 and low
noise ω ≃ 1, i.e., low thermal photon number n̄ ≃ 0, one
may derive the expansion

RLB ≃ (η − n̄) log2 e + n̄ log2 n̄, (118)

which is the rate studied in Ref. [147]. Note that
Ref. [147] also investigated the use of trusted noise at
Bob’s side in order to increase the security threshold of
the basic squeezed-state protocol [146].

For comparison, in Fig. 4, we also show the op-
timal threshold of the one-way protocol based on
Gaussian-modulated coherent states and heterodyne de-
tection [148], whose ideal reverse reconciliation rate is
given by the formula

R = log2
2

e

η

(1− η) [η + 2ω (1− η) + 1]

+ s

[

1 + 2ω (1− η)

2η

]

− s (ω) . (119)

Then, in Fig. 4, we also show the optimal threshold of
the two-way protocol [17] which is based on the Gaus-
sian modulation of thermal states (with variance V0) and
homodyne detection at the output. Its ideal reverse rec-
onciliation rate is given by [149]

R(V0) =
1

2
log2

η2V0 + ω + η3 (ω − V0)

(1− η) [(1− η2)ω + ηV0]
+s (ν̄2)−s (ω) ,

(120)
where

ν̄2 =

√

ω [1 + 4η2V0ω + η3(1− 4ωV0)]

4 [η2V0 + ω + η3(ω − V0)]
. (121)

In particular, we consider the limit of coherent states
(V0 = 1/2) and that of largely-thermal states (V0 ≫ 1).

VIII. GENERAL METHODOLOGY

Here we discuss how the methodology devised in PLOB
for point-to-point protocols (and extended in Ref. [66] to
end-to-end protocols) can be applied to any entanglement
measure E with suitable properties. For simplicity, here
we start considering DV systems. Then we extend the
arguments to CV systems via truncation.

A. Main ingredients

Assume that E is an entanglement measure that sat-
isfies the following conditions:

(1) Normalization. For a target state φn encoding
nRn bits (e.g., ebits or private bits), we have

E(φn) ≥ nRn. (122)

(2) Continuity. For d-dimensional ρ and σ such that
‖ρ− σ‖ ≤ ε, we have the Fannes-type inequality

|E(ρ)− E(σ)| ≤ g(ε) log2 d+ h(ε), (123)

where g, h are regular functions going to zero in ε.

(3) Monotonicity. For any trace-preserving LOCC Λ̄,
we may write the data processing inequality

E
[

Λ̄(ρ)
]

≤ E(ρ) . (124)

(4) Subadditivity. For any ρ and σ, we may write

E(ρ⊗ σ) ≤ E(ρ) + E(σ) , (125)

so that the regularization satisfies

E∞(ρ) := lim
n

n−1E(ρ⊗n) ≤ E(ρ) . (126)

It is clear that these properties are satisfied by the REE
ER [84] with the specific choice

g(ε) = 4ε, h(ε) = 2H2(ε), (127)

where H2 is the binary Shannon entropy. They are also
satisfied by the squashed entanglement Esq [150] with

g(ε) = 16
√
ε, h(ε) = 2H2(2

√
ε). (128)

Consider now an arbitrary adaptive protocol P be-
tween two users, Alice and Bob. This protocol may be
point-to-point over a quantum channel [77] or an end-to-
end protocol along a repeater chain or within a quantum
network [66]. After n uses, assume that Alice and Bob’s
output is ε close to a d-dimensional target state φn. By
applying Eqs. (122) and (123), we derive

Rn ≤ E(ρn
ab
) + g(ε) log2 d+ h(ε)

n
. (129)

Now assume the following property for the target state,
which is certainly true for a maximally entangled state
and also for a private state.

(5) Exponential size. The effective total dimension of
the target state grows at most exponentially

d ≤ 2αnn, (130)

where lim infn αn = α for constant α. In particular,
for a maximally-entangled state αn = α = 1.
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Combining Eq. (129) and (130), and taking the limit
for large n we derive

lim
n

Rn ≤ lim
n

E(ρn
ab
)

n
+ lim inf

n
g(ε)αn + lim

n

h(ε)

n
(131)

= lim
n

n−1E(ρn
ab
) + g(ε)α . (132)

Then, by taking the limit for small ε, we derive the weak
converse bound

lim
n

Rn ≤ lim
n

n−1E(ρnab) . (133)

Finally, consider the optimization over all protocols P
(more precisely, over the equivalent class that satisfies
the property in Eq. (130) on the exponential size). This
leads to

C := sup
P

lim
n

Rn ≤ sup
P

lim
n

n−1E(ρn
ab
) , (134)

where C may be a two-way assisted capacity over a quan-
tum channel, or an end-to-end capacity of a repeater
chain or a quantum network.
The next step is to simplify the upper bound in

Eq. (134) to a single-letter quantity via a suitable de-
composition of the output state. For simplicity, restrict
the analysis to point-to-point protocols over a quantum
channel (generalization to repeaters and networks goes
along the lines of Ref. [66] and requires the introduction
of additional tools from network information theory). We
know that we have the following powerful tool [77].

(6) Teleportation stretching. Simulating a channel E
with a resource state σ, we may re-organize any
point-to-point (generally-adaptive) protocol in a
block form so as to decompose its output as

ρn
ab

= Λ̄(σ⊗n), (135)

for a trace-preserving LOCC Λ̄.

By replacing Eq. (134) into (135), and exploiting
the properties of monotonicity and subadditivity in
Eqs. (124) and (125), we achieve and generalize the main
insight of PLOB, i.e., the simplification

C(E) ≤ E∞(σ⊗n) ≤ E(σ), (136)

where σ = ρE if E is teleportation covariant.

B. Channel approximations

It is clear that the technique can be extended to bound
the capacity of a quantum channel E which is approxi-
mated by another channel Ẽ whose simulation is known
and based on some resource state σ̃. Consider two DV
channels E and Ẽ with diamond distance

||E − Ẽ||⋄ ≤ δ . (137)

For the same adaptive protocol P = {Λ0, . . . ,Λn}, con-
sider the output state generated by n transmissions over
these two channels, i.e.,

ρnab := Λn ◦ E ◦ Λn−1 · · · ◦ Λ1 ◦ E(ρ0ab), (138)

ρ̃nab := Λn ◦ Ẽ ◦ Λn−1 · · · ◦ Λ1 ◦ Ẽ(ρ0ab), (139)

where we also have ρ̃n
ab

= Λ̄(σ̃⊗n) by applying teleporta-
tion stretching to the simulable channel.
Using our previous “peeling argument”, we may evolve

Eq. (137) into an error on the output state

‖ρn
ab

− ρ̃n
ab
‖ ≤ nδ . (140)

Then, assume that P is optimized for E so that ρn
ab

approximates a target state φn with nRn bits, i.e.,
‖ρn

ab
− φn‖ ≤ ε. Using the triangle inequality, we write

‖ρ̃nab − φn‖ ≤ ε′ := ε+ nδ . (141)

For small enough ε′, this leads to

Rn ≤ E(ρ̃n
ab
) + g(ε′) log2 d+ h(ε′)

n
. (142)

Using stretching and Eq. (130), we have

Rn ≤ E(σ̃) + αng(ε
′) +

h(ε′)

n
. (143)

Note that the upper bound is the same for any P , so
that it is also true if we consider the supremum over P .
This is therefore an upper bound for the n-use two-way
capacity of the channel E . In other words, for n uses and
epsilon security ε, we may write the secret key capacity

K(E , n, ε) ≤ E(σ̃) + αng(ε+ nδ) +
h(ε+ nδ)

n
. (144)

It is clear that, in order to be valid, we need to have
nδ small enough. This is not a problem in the case of
one-shot capacity (n = 1), for which we just have

K(1)(E , ε) := K(E , 1, ε) ≤ E(σ̃) + α1g(ε+ δ) + h(ε+ δ) .
(145)

The problem occurs for large n, where nδ may explode.

C. Sequences of channels

The previous problem is certainly solved in the case of
a sequence of simulable channels converging in diamond
norm, i.e., for Ẽµ such that

δµ := ||E − Ẽµ||⋄
µ→ 0 . (146)

In such a case we may simultaneously write

Simulation error: ‖ρnab − ρ̃µ,n
ab

‖ ≤ nδµ
µ→ 0, (147)

Epsilon closeness: ‖ρn
ab

− φn‖ ≤ ε, (148)

Stretching: ρ̃µ,n
ab

= Λ̄(σ̃µ⊗n). (149)
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Using the triangle inequality, we therefore have

∥

∥Λ̄(σ̃µ⊗n)− φn
∥

∥ ≤ εµ := ε+ nδµ. (150)

By applying Eqs. (122)-(125) and Eq. (130), we get

Rn ≤ E(σ̃µ) + αng(εµ) +
h(εµ)

n
. (151)

Taking the limit of large µ, this becomes

Rn ≤ lim
µ

E(σ̃µ) + αng(ε) +
h(ε)

n
. (152)

Then, for large n and small ε, we find the weak converse

lim
n

Rn ≤ lim
µ

E(σ̃µ) . (153)

By optimizing over P , we get

K(E) ≤ lim
µ

E(σ̃µ) . (154)

D. Infinite dimension

The previous approach with sequences of channels is
particularly useful for CV systems. As we know from
PLOB, we need to use a truncation argument which is
then released at the very end. Let us assume Alice and
Bob use a trace-preserving truncation LOCC Td on their

output state ρn,d
ab

= Td(ρ
n
ab
). See Ref. [77, Supplemen-

tary Note 1] on how to build this local CV-DV map-
ping. Also assume that the input alphabet is energy-
constrained, so that we have DN with bounded energy
N . This latter condition may also be realized by apply-
ing Td before each transmission. In this case, we will
have an energy constraint depending on the truncated
dimension, i.e., N = N(d).
Let us consider the energy-constrained diamond dis-

tance between the original channel and the sequence of
simulable channels Ẽµ. For any finite N , assume that

δNµ := ||E − Ẽµ||⋄N
µ→ 0 . (155)

For the truncated output ρn,d
ab

(approximating a target

state φn,d with nRn,d bits) and its simulation ρ̃µ,n,d
ab

(ob-

tained by replacing E with Ẽµ in the protocol), we may
write the following (for any d and associated N)

Simulation error:
∥

∥

∥
ρn,d
ab

− ρ̃µ,n,d
ab

∥

∥

∥
≤ nδNµ

µ→ 0, (156)

Epsilon closeness:
∥

∥

∥
ρn,d
ab

− φn,d
∥

∥

∥
≤ ε, (157)

Stretching: ρ̃µ,n,d
ab

= Λ̄d(σ̃
µ⊗n). (158)

Using the triangle inequality, we therefore have

∥

∥Λ̄d(σ̃
µ⊗n)− φn,d

∥

∥ ≤ εµ := ε+ nδµ. (159)

Using Eq. (130) and previous reasonings, we get

Rn,d ≤ E(σ̃µ) + αng(εµ) +
h(εµ)

n
. (160)

Taking the limit of large µ, this becomes

Rn,d ≤ lim inf
µ

E(σ̃µ) + αng(ε) +
h(ε)

n
, (161)

where we use the inferior limit to account for the fact
that σ̃µ may be an unbounded sequence of states.
Then, for large n and small ε, we find

lim
n

Rn,d ≤ lim inf
µ

E(σ̃µ) . (162)

By optimizing over the protocols P (i.e., over the equiv-
alent exponential-size class of P), we then get

K(E|N) := sup
P

lim
n

Rn,d ≤ lim inf
µ

E(σ̃µ) . (163)

It is clear that the upper bound does not depend on the
constraintN , so that this constraint (and the truncation)
can be relaxed. In other words, we have

K(E) := sup
N

K(E|N) ≤ lim inf
µ

E(σ̃µ) . (164)

Note that this result holds for an entanglement mea-
sure E with the desired properties above, such as the
squashed entanglement or the REE. If we specify the re-
sult to the REE, then this procedure is an alternate proof
of the one given in Sec. VIC. Note that, setting E = ER,
Eq. (164) becomes

K(E) ≤ lim inf
µ

ER(σ̃
µ) = lim inf

µ
inf
σs

S(σ̃µ||σs)

= inf
σµ
s

lim inf
µ

S(σ̃µ||σµ
s ) := ER(σ̃), (165)

where we use the definition in Eq. (13) with σ̃ := limµ σ̃
µ.

IX. LITERATURE ON CHANNEL

SIMULATION AND PROTOCOL REDUCTION

Let us here discuss the precursory ideas that were in
the literature before the full generalization devised in
PLOB. Besides this section, one may also read the Sup-
plementary Notes 8 and 9 in Ref. [77]. A summary of
the following discussion is given in Table I, where we
make a direct comparison between PLOB and previous
approaches and methodologies.
The first insight was introduced in 1996 by BDSW [69].

This was based on the standard teleportation protocol
for DV systems and allowed these authors to simulate
“generalized depolarizing channels”, later known as Pauli
channels [1]. The restriction of this original technique to
Pauli channels was first shown in Ref. [71] and later re-
examined in Ref. [118]. BDSW first recognized that a
Pauli channel P can be simulated by teleporting over its
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BDSW, HHH99
[69, 70]

MH12,W12
[74, 75]

LM15
[76]

GC02,NFC09
[72, 73]

PLOB
[77]

Simulated

channels

Pauli

channels P [69].

Sub-class of

DV channels [70]

All DV channels

but probabilistically.

If tele-covariant, then

deterministically

Tele-covariant

DV channels

Gaussian

channels

Any channel

(DV & CV)

LOCC simulable

by resource state σ

Amplitude

damping

Not

simulable

Probabilistically

simulable

Not

simulable

Not

simulable
Simulable

Criterion N/A
Tele-covariance

(for DV)

Tele-covariance

(for DV)
N/A

Tele-covariance

(for DV & CV)

Simulation

error
N/A

Probability of

teleportation
N/A

Not

controlled

Yes. Controlled

for CV channels

Protocol

task
QC QC QC QC

Any task

(QC, ED, QKD)

Type of

reduction

QC → ED

Reduction to

ent. distillation

QC → ED

Reduction to

ent. distillation

QC → PPT

Reduction to

PPT distillation

QC → ED

with Gaussian

LOCCs [73]

Adaptive protocol

→ block protocol.

Task-preserving

(any dim, DV/CV)

Type of

bound

Q1(P) ≤ D1(ρP)

(extended to 2-way

CCs) [69, Sec. V]

Q2(E) ≤ d2D2(ρE)

in finite dim d

[74, Theorem 14]

Bounds to DV quantum

capacities restricted to

PPT-preserving codes

N/A

Q2(E) ≤ K(E) ≤ ER(σ)

σ = ρE if tele-covariant

(any dim, DV/CV)

TABLE I: Comparison between PLOB and previous literature on channel simulation and protocol reduction.

Choi matrix ρP . See Ref. [69, Section V]. This specific
case was later re-considered as a property of mutual re-
producibility between states and channels [70]. Let us
remark that Ref. [70] also explored the possibility to ex-
tend channel simulation beyond teleportation by using
more general LOCCs. In principle, this allowed them to
simulate more channels but still a sub-class of DV chan-
nels, due to the specific use of finite-dimensional and non-
asymptotic LOCCs (e.g., see Eq. (11) in Ref. [70]).

Similar simulation ideas, but in the setting of quan-
tum computing, were considered in Ref. [151] (see also
the more recent Ref. [152]) where a unitary U is stored in
its Choi matrix ρU . This unitary is then applied to some
input state ρ by teleporting such input over ρU . This is
also known as “quantum gate teleportation”. It shows
that teleportation is a primitive for quantum computa-
tion. Likewise, teleportation can be expressed in terms
of primitive quantum computational operations [153].
Quantum gate teleportation is also at the heart of linear-
optical quantum computing based on linear optics and
probabilistic gates [154] (see also Ref. [80] for a general
overview on these applications of teleportation).

Using the teleportation simulation of a Pauli channel
P , BDSW first showed how to transform a quantum com-
munication (QC) protocol into an entanglement distilla-
tion (ED) protocol over its Choi matrix ρP . We call this
technique “reduction to entanglement distillation”. This
allowed them to prove the following bound on the one-
way quantum capacity

Q1(P) ≤ D1(ρP), (166)

whereD1 is the one-way distillability. This result was im-
plicitly extended to two-way CC, so that they also wrote

Q2(P) ≤ D2(ρP). (167)

Reduction to entanglement distillation (QC→ED) was
originally formulated in an asymptotic fashion, i.e., for
large n, which is sufficient to prove Eqs. (166) and (167).
More recently, in 2012, Refs. [74, 75] considered the

probabilistic simulation of an arbitrary DV quantum
channel E via teleportation. This is done by assuming
that Alice and Bob only picks the Bell outcome cor-
responding to the identity operator, which occurs with
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probability p = d−2, where d is the dimension of the
input system. This version can also be traced back to
the probabilistic approach of Ref. [154]. In the presence
of a probability of success associated with the simula-
tion, one can derive upper bounds similar to those of
BDSW but with a suitable pre-factor. In fact, adopt-
ing the probabilistic simulation and BDSW’s reduction
to entanglement distillation (QC→ED), Ref. [74] showed

Q2(E) ≤ p−1D2(ρE), (168)

for an arbitrary DV channel E . Let us remark that
Refs. [74, 75] also identified the property of teleportation
covariance for DV channels, realizing that these channels
can be simulated deterministically, i.e., with an associ-
ated success probability p = 1.
In 2015, Ref. [76] too identified the criterion of telepor-

tation covariance of DV channels and considered the (de-
terministic) simulation of such channels over their Choi
matrices. In particular, Ref. [76] assumed the possibil-
ity of more general teleportation protocols as those in-
troduced in Ref. [155]. Because these simulations are
non-asymptotic, the class of DV channels is limited and,
for instance, it cannot include the amplitude damping
channel. Ref. [76] adopted a variation of the BDSW ar-
gument to simplify quantum communication. In fact,
they showed how to simplify positive-partial transpose
(PPT) preserving codes over a teleportation covariant
channel into PPT-distillation over copies of its Choi ma-
trix. Thanks to this “reduction to PPT distillation”,
they were able to write one-shot upper bounds for PPT-
preserving code quantum capacities.
In the framework of CV systems, Ref. [72] first stud-

ied the simulation of single-mode Gaussian channels by
using the BK protocol. Due to the nature of the topics
studied in that paper (which is about the impossibility
to distill entanglement from Gaussian entangled states
with Gaussian LOCCs), no control of the simulation error
was considered. The same approach was later followed
by Ref. [73]. The latter used the channel simulation to
reduce a Gaussian quantum error correcting code into
Gaussian entanglement distillation.
Within this general context, PLOB introduced the

most general type of channel simulation in a quantum
communication scenario, where an LOCC and a resource
state are used to simulate an arbitrary quantum chan-
nel at any dimension (finite or infinite). See Eqs. (25)-
(27). PLOB also established teleportation covariance as a
criterion to identify Choi-stretchable (i.e., teleportation-
simulable) channels at any dimension. In particular,
PLOB extended the technique by developing a rigorous
theory of asymptotic channel simulation, which is crucial
not only for bosonic channels but also for the determin-
istic asymptotic simulation of DV channels, such as the
amplitude damping channel.
Using channel simulation, PLOB showed how to sim-

plify an arbitrary adaptive protocol implemented over
an arbitrary channel at any dimension, finite or infinite
(teleportation stretching). Differently from previous ap-

proaches (which were about reduction to entanglement
distillation), teleportation stretching works by preserv-
ing the original communication task. This means that
an adaptive protocol of quantum communication (QC),
entanglement distribution (ED) or quantum key distribu-
tion (QKD), is reduced to a corresponding block protocol
with exactly the same original task (QC, ED, or QKD).
In particular, the output state is decomposed in terms
of a tensor product of resource states as in Eqs. (71)
and (77).
The adaptive-to-block reduction of a private communi-

cation protocol has been first introduced in PLOB. Most
importantly, PLOB has shown how to combine this re-
duction with the properties of an entanglement measure
as the REE. The entire recipe of “REE plus teleportation
stretching” has led to the determination of the tightest
known upper bound for the secret key capacity (and the
other two-way assisted capacities) of a quantum channel
at any dimension. See Eqs. (79) and (92).
These techniques developed by PLOB were picked up

and exploited in a series of follow-up papers, including
WTB [92]. More recently, Ref. [114] introduced a simula-
tion of Gaussian channels based on finite-energy resource
states. This was promptly combined with the techniques
of PLOB in Ref. [116] to derive sub-optimal approxi-
mations of previously-established weak converse bounds
for private communication. Finally note that the non-
local simulations [156–158] based on deterministic ver-
sions of the programmable quantum gate array [159] are
clearly not suitable for quantum and private communi-
cation where Alice and Bob can only implement LOCCs.

X. STRONG CONVERSE RATES

A. Preliminary comments

At the end of February 2016, four months after the
first version of PLOB appeared on the arXiv, the follow-
up paper WTB [92] also appeared. An explicit timeline
of the contributions is provided in Table II for the sake
of clarity. As we can see, the first version of PLOB [77]
appeared in October 2015. The first arXiv version of
PLOB already contained the most important result for
the pure-loss channel (PLOB bound). Full details of the
methodology were included in the second arXiv version in
December 2015 [100]. All the other two-way capacities
and bounds were collected in a twin paper [160] which
also appeared in December 2015 and was later merged
in the published version of PLOB [77]. In a few words,
the main results were all proven in 2015, well before the
appearance of WTB. Subsequent arXiv versions of PLOB
only added refinements and minor clarifications.
Using the methodology devised in PLOB, WTB stud-

ied how the previously-established weak converse bounds
for teleportation-covariant channels are also strong con-
verse bounds. In private communication, a weak con-
verse bound means that perfect secret keys cannot be
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Date: Manuscripts on the arXiv: Main contents:

29 Oct 2015 First version of PLOB [77]
Introduces the secret-key capacity of the lossy channel

(PLOB bound) − log
2
(1− η).

8 Dec 2015 Second version of PLOB [100]

Includes the general methodology: (i) the REE weak converse bound

and (ii) its reduction by teleportation stretching to single letter.

PLOB bound extended to the thermal-loss channel.

15 Dec 2015
First version of Ref. [160]

(merged in published PLOB)

Extends the results to all teleportation-covariant channels, including:

Pauli, erasure channels, and bosonic Gaussian channels.

5 Jan 2016
Third version of PLOB

and first version of Ref. [66]

Ref. [66] extends methods and results of PLOB to repeater-assisted

quantum communications and arbitrary quantum networks.

29 Feb 2016 First version of WTB [92]
Use methods of PLOB to study the strong converse property of the

bounds established in PLOB for teleportation-covariant channels.

TABLE II: Timeline of the main results established in the early arXiv versions of PLOB, before the appearance of the follow-up
analysis by WTB on the arXiv.

established at rates above the bound. A strong converse
bound is a refinement according to which even imperfect
secret keys (ε-secure with ε > 0) cannot be shared at
rates above the bound for many uses. Let us clarify some
important points about this paper besides discussing and
fixing its technical error.
Even though WTB does not adopt the terminology

introduced by PLOB (teleportation stretching, stretch-
able channels etc.), one can easily check that WTB ex-
ploits exactly the methodology previously introduced by
PLOB. In fact, WTB combines the following ingredients

• A notion of channel’s REE to bound key generation

• Teleportation stretching to simplify adaptive pro-
tocols for private communication.

In a few words, WTB adopts the entire reduction idea
of PLOB, which is based on using channel’s REE on top
of teleportation stretching. This is what allows them to
write single-letter upper bounds.
To be more precise, WTB first defines “classical pre-

and post-processing (CPPP) protocols”. These are non-
adaptive protocols where the remote parties are limited
to a single rounds of initial and final LOCCs. In this con-
text, they derive strong converse rates for CPPP-assisted
private communication (see Ref. [92, Theorem 13]). To
generalize the approach and include adaptive proto-
cols with unlimited two-way CCs (over teleportation-
covariant channels), they then employ channel’s REE and
teleportation stretching. This allows them to write their
Theorems 12 and 19, which are the strong converse ver-
sions of Ref. [77, Theorem 5] in PLOB.

Indeed, for a teleportation-covariant channel E , WTB
wrote the strong converse bound [92, Theorem 19]

K(E) ≤ Φ(E) +
√

V (E)
n

ϕ−1(ε) +O
(

logn

n

)

, (169)

for n ≥ 1 channel uses and security parameter ε ∈ (0, 1),
where Φ(E) = ER(ρE) is the weak converse bound estab-
lished in PLOB, and

ϕ(a) =

∫ a

−∞

dx e−x2/2/
√
2π. (170)

The entropic variance V (E) in Eq. (169) is defined as

V (E) =











supσs
V (ρE ||σs), for 2ε < 1,

infσs
V (ρE ||σs), for 2ε ≥ 1,

(171)

where V (ρ||σ) = Tr
{

ρ[log ρ− log σ − S(ρ||σ)]2
}

, and
the supremum/infimum are taken over the set of sepa-
rable states σs that achieve the minimum in ER(ρE).
Using a Chebyshev-like bound, one may write the

strong converse bound also as [92]

K(E) ≤ Φ(E) +
√

V (E)
n(1− ε)

+
C(ε)

n
, (172)

where

C(ε) := log2 6 + 2 log2

(

1 + ε

1− ε

)

. (173)

As a consequence, the weak-converse bounds for dephas-
ing, erasure and other DV channels established in PLOB
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would also be strong converse rates, according to Propo-
sitions 22 and 23 stated in WTB [92].
Finally, WTB [92] attempts to generalize the above

result to CV systems in Theorem 24. If their Theo-
rem 24 were true, then also the PLOB bounds for Gaus-
sian channels would be strong converse rates. Unfortu-
nately, WTB does not rigorously prove its Theorem 24.
In fact, following an incorrect interpretation of the BK
protocol, WTB assumes that CV teleportation asymptot-
ically induces a perfect quantum channel (i.e., an identity
channel) independently from the size of the input alpha-
bet of quantum states. By contrast, we know that the BK
teleportation channel does not uniformly converge to the
identity channel. As a result, the bounds for Gaussian
channels stated in Ref. [92, Theorem 24] are technically
equal to infinity.

B. Claims and mathematical issues

Let us describe the problem in detail. WTB makes the
following equivalent claims on the strong-converse bound.

• WTB claim ([92, Theorem 24]). Consider an
ε-secure key generation protocol over n uses of a
phase-insensitive Gaussian channel E , which may
be a thermal-loss channel (Eη,n̄), a quantum am-
plifier (Eg,n̄) or an additive-noise Gaussian channel
(Eξ). For any ε ∈ (0, 1) and n ≥ 1, one has the
upper bound of Eq. (172) for the secret key rate,
where Φ(E) is the weak-converse bound established
in PLOB, and the “unconstrained relative entropy
variance” V (E) is respectively given by

V (Eη,n̄) = n̄(n̄+ 1) log22 [η(n̄+ 1)/n̄] ,

V (Eg,n̄) = n̄(n̄+ 1) log22
[

g−1(n̄+ 1)/n̄
]

V (Eξ) = (1− ξ)2/ ln2 2 . (174)

In particular, for a pure loss channel (Eη,0) and a
quantum-limited amplifier (Eg,0), one has

K(E) ≤ Φ(E) + C(ε)

n
. (175)

• WTB claim ([92], with simulation error). The
above claim is obtained starting from a finite simu-
lation energy µ and then taking the limit of µ → ∞.
For any security parameter ε ∈ (0, 1), number of
channel uses n ≥ 1 and simulation energy µ with
“infidelity” εTP(n, µ), one may write the following
upper bound for the secret key rate of a phase in-
sensitive Gaussian channel E

K(E) ≤ Φ(E) + ∆(n, µ), (176)

where Φ(E) is the weak-converse bound established
in PLOB. Here ∆(n, µ) has the asymptotic expan-

sion

∆(n, µ) ≃
√

2V (E) +O(µ−1)

n[1− ε(n, µ)]

+
C[ε(n, µ)]

n
+O(µ−1) , (177)

at fixed n and large µ, where

ε(n, µ) := min

{

1,
[√

ε+
√

εTP(n, µ)
]2
}

. (178)

For a pure loss channel (Eη,0) and a quantum-
limited amplifier (Eg,0), one has Eq. (176), with

∆(n, µ) ≃ n−1C[ε(n, µ)] +O(µ−1). (179)

In the previous claim, the problem is the infidelity pa-
rameter

εTP(n, µ) := 1− F (ρn
ab
, ρµ,n

ab
), (180)

between the output of the protocol ρn
ab

and the output of
the simulated protocol ρµ,n

ab
[in WTB denoted with ζnAB

and ζ′AB(n, µ)]. In fact, WTB (wrongly) argues that [92]

“continuous variable teleportation

induces a perfect quantum channel

when infinite energy is available,”

(181)

and then writes [92, Eq. (178)]

lim sup
µ

εTP(n, µ) = 0, for any n. (182)

The fact that this quantity goes to zero is a crucial step
in WTB’s proof. In fact, if this is true, then we may write
limµ ε(n, µ) = ε and safely replace this in Eq. (177). By
contrast, if Eq. (182) does not hold and we get

lim sup
µ

εTP(n, µ) = 1, for any n, (183)

then limµ ε(n, µ) = 1, and we have ∆(n, µ) = ∞ both
in Eqs. (177) and (179). In this case, one would have
proven the trivial upper bound

K(E) ≤ Φ(E) +∞. (184)

Unfortunately, Eq. (183) is the actual technical result
which can be derived following the steps of the proof
presented in WTB [92]. This means that WTB proves
the trivial bound in Eq. (184), not Eq. (172) or Eq. (175).

C. Technical gap and exploding bound

The first problem is that Eq. (182) is essentially given
without any mathematical derivation. To be more pre-
cise, it is not proven how the error “Eµ 6= E” in the simu-
lation of the Gaussian channel E (in each single transmis-
sion) is propagated into an overall error “ρµ,n

ab
6= ρn

ab
” for



22

the n-use output of the adaptive protocol ρn
ab
, which is

exactly what εTP is about according to the definition in
Eq. (180). For instance, what is the dependence of such
an output error with respect to the number n of channel
uses? Can this error explode?
Said in other words, the fundamental gap in WTB’s

proof is the absence of a peeling argument [77] as the one
discussed in Sec. VB [See Eq. (75)], which shows how the
simulation error on the channel ‖E − Eµ‖✸N propagates
through the adaptive protocol and is transformed into a
corresponding simulation error on the n-use output state
‖ρn

ab
− ρn,µ

ab
‖. This is a crucial technique for the sim-

plification of an adaptive protocol [77], which is based
on a suitable combination of triangle inequality and data
processing (monotonicity) of the relative entropy.
Because of the absence of any peeling argument able

to quantify the infidelity εTP(n, µ) in terms of the chan-
nel simulation error “Eµ 6= E”, we may safely say that
WTB’s proof does not really apply to adaptive proto-
cols. As further discussed in Ref. [111], peeling argu-
ments could be formulated assuming various topologies of
convergences (strong, uniform, or bounded-uniform) but
none of these formulations can be found in WTB, where
the peculiar convergence properties of the BK protocol
are clearly not known and completely ignored.
The second problem is that Eq. (182) is not even

proven for a single use (n = 1), and the reasoning fol-
lowed in WTB leads exactly to the opposite result of
Eq. (183). In fact, let us assume a single use (n = 1) of
a trivial adaptive protocol (Λ1 = I), so that

ρ1
ab

= E(ρ0
ab
), ρ1,µ

ab
= Eµ(ρ0

ab
), (185)

where ρ0
ab

is initial state of the registers, and the channels
are meant to be applied to the input system a1, i.e., E =
Ia ⊗ Ea1

⊗ Ib and Eµ = Ia ⊗ Eµ
a1

⊗ Ib. Then, we may
write their infidelity as

εTP(1, µ) = 1− F (ρ1ab, ρ
µ,1
ab

) (186)

= 1− F [E(ρ0
ab
), Eµ(ρ0

ab
)] (187)

≥ 1− F [ρ0ab, Iµ
a1
(ρ0ab)], (188)

where we exploit the monotonicity of the fidelity under
the maps E = E ◦ I and Eµ = E ◦ Iµ.
Now the “proof idea” in WTB is based on the state-

ment in (181), which is unfortunately not sufficient to
send εTP(1, µ) to zero in the limit of large µ. In fact,
this statement fails if, at the input, we consider asymp-
totic states whose energy µ̃ “competes” with the one µ
of the resource state. It is clear that these states need
to be included among all possible inputs, because we are
studying unconstrained quantum and private capacities,
for which the input alphabet is energy-unbounded.
Therefore, as possible input, assume that Alice sends

part a1 of a TMSV state Φµ̃
aa1

with energy µ̃. This means

that we may decompose ρ0
ab

= ρ0
a
⊗Φµ̃

aa1
⊗ ρ0

b
, and write

εTP(1, µ) ≥ 1− F [Φµ̃
aa1

, Ia ⊗ Iµ
a1
(Φµ̃

aa1
)], (189)

by using the multiplicativity of the fidelity. Now, from
Secs. IVB and IVC, we know that, depending on the
order of the limits, we may write the two opposite results

lim
µ̃

lim
µ

εTP(1, µ) ≥ 0 (190)

and

lim
µ

lim
µ̃

εTP(1, µ) = 1. (191)

In WTB there is no consideration of the unbounded-
ness of the input alphabet, and the authors just consider
lim supµ εTP. This generic limit does not imply any spe-
cific order of the limits between the simulation energy µ
and the input energy µ̃ of the alphabet. Therefore, for
an unbounded alphabet, one must have

lim sup
µ

εTP = max{lim
µ

lim
µ̃

εTP, lim
µ̃

lim
µ

εTP} . (192)

It is clear that this leads to

lim sup
µ

εTP(1, µ) = 1 . (193)

By extending the reasoning to arbitrary n (via the peel-
ing argument), one obtains Eq. (183) and, therefore, the
explosion of the bound as in Eq. (184).
Here it is important to remark that the ambiguity in

Eq. (192) is not addressed or noted in any part of WTB.
In WTB there is no discussion related to uniform con-
vergence, associated with the first order of the limits in
Eq. (192), or strong convergence, associated with the sec-
ond order of the limits in Eq. (192). The only discus-
sion or motivation we can find is the statement reported
in (181) which suggests the (wrong) assumption of uni-
form convergence, so that the BK teleportation channel
Iµ would “induce” the identity channel I (“perfect quan-
tum channel”) when µ → ∞ (i.e., for infinite energy). We
know that this is not true, because

lim
µ→∞

‖Iµ − I‖⋄ = 2 . (194)

Let us stress that, in an infinite-dimensional Hilbert
space, considering “an arbitrary protocol” [92] does not
necessarily mean that the protocol is energy-bounded.
Among the key-generation protocols to be considered in
the derivation of upper bounds for the (unconstrained)
secret key capacity of bosonic channels, one clearly needs
to include protocols based on asymptotic input states.
The energy of the input state can diverge in each single
use of the protocol or as a monotonic function in the
number n of the uses. For instance, one may just use
TMSV states with increasing energy as µ̃ ≃ O(n) or any
other scaling in n. For any simulation energy µ, we can

always consider a diverging sequence so that εTP(n, µ)
n→

1. In other words, we generally have

lim sup
n,µ

εTP(n, µ) = 1 . (195)

As a consequence, the joint limit for large µ and n in
the term ∆(n, µ) of Eq. (176) is not defined, and we can
easily get the explosion ∆(n, µ) → ∞.



23

D. Fixing the mathematical issues

Let us know rigorously prove the WTB claim. We
modify the derivation under the assumption of an energy
constraint on the input alphabet, which leads us to write
an energy-constrained version of Eq. (176). Only at the
very end, the enforced constraint can be relaxed once we
have proven that the upper bound does not depend on it.
The key step is to prove a rigorous version of Eq. (182)
that removes the issue associated with the asymptotic
states (unbounded alphabet). The present proof is based
on the bounded-uniform convergence of the BK protocol.
See Ref. [111] for other proofs that are based on other
topologies of convergence (e.g., strong convergence).
Following PLOB, let us restrict Alice’s and Bob’s reg-

isters to a finite-energy alphabet DN as in Eq. (61) where
N is maximum mean number of photons. We then con-
sider the energy-constrained diamond distance ‖·‖⋄N be-
tween a Gaussian state E and its simulation Eµ which
defines a simulation error δ(µ,N) as in Eq. (63). For any
fixed energy, we may now state that the simulation is

asymptotically perfect, i.e., δ(µ,N)
µ→ 0 as in Eq. (64).

The next step is to propagate this error to the output
state as done in PLOB and explained in Sec. VB. For
any energy constraint N (bounded alphabet) and finite-
energy simulation µ of the Gaussian channel, we may
bound the trace distance between the actual output ρn

ab

and the simulated output ρµ,n
ab

as in Eq. (72). In other
words, we may use our peeling argument and write

δ(n, µ,N) := ‖ρnab − ρµ,n
ab

‖ ≤ nδ(µ,N). (196)

Using the Fuchs-van der Graaf relation in Eq. (59), we
may now correctly write the infidelity as

εTP(n, µ,N) := 1− F (ρnab, ρ
µ,n
ab

) ≤ nδ(µ,N)

2
. (197)

Using the triangle inequality for the trace distance
d(ρ, σ) =

√

1− F (ρ, σ), one finds that Eq. (178) has to
be changed into the following

ε(n, µ,N) := min

{

1,
[√

ε+
√

εTP(n, µ,N)
]2
}

. (198)

As a result, for any n and N , we may derive the energy-
constrained version of Eq. (176) which reads

K(E|N) ≤ Φ(E) + ∆(n, µ,N), (199)

whereK(E|N) is the reduced key rate associated with the
use of an energy-constrained alphabet, Φ(E) is the weak
converse in PLOB, and ∆ has the asymptotic expansion

∆(n, µ,N) ≃
√

2V (E) +O(µ−1)

n[1− ε(n, µ,N)]

+
C[ε(n, µ,N)]

n
+O(µ−1) , (200)

with a more simplified expression for the pure-loss chan-
nel and the quantum-limited amplifier.
Now, for any number of channel uses n and any energy

constraint N for the input alphabet, we may safely take

the limit in µ. In these conditions, δ(µ,N)
µ→ 0 implies

lim sup
µ

ε(n, µ,N) = ε , (201)

so that we may write the upper bound

K(E|N) ≤ Φ(E) + ∆, ∆ =

√

2V (E)
n(1− ε)

+
C(ε)

n
. (202)

Here we note that the bound Φ(E) +∆ does not depend
on N . We can therefore relax the energy constraint by
extending the inequality to the supremum

K(E) := sup
N

K(E|N)

≤ Φ(E) +
√

2V (E)
n(1− ε)

+
C(ε)

n
, (203)

which rigorously proves the WTB claim (strong converse)
for noisy Gaussian channels. It is easy to see that we may
similarly show the claim in Eq. (175) for the pure-loss
channel and the quantum-limited amplifier.

E. Further details and technical issues

There are other technical issues in WTB’s treatment
of bosonic Gaussian channels that can be automatically
fixed by correctly applying the tools in PLOB. One of
these issues is related with the treatment of the Bell de-
tection which is energy-unbounded for CV systems (be-
ing a projection onto infinitely-squeezed displaced TMSV
states). To be completely rigorous, this measurement
needs to be treated as a sequence of Gaussian measure-
ments with increasing energy. These measurements are
quasi-projections onto finite-squeezed displaced TMSV
states D(α)ΦµD(−α), with D(α) being the displacement
operator with amplitude α [5].
Thus, more precisely, the asymptotic simulation of a

bosonic Gaussian channel E must also involve a sequence
of LOCCs Tµ (including the finite-squeezing Bell mea-
surements) which means that the simulating channel Eµ

should be modified into the following form [77]

Eµ(ρ) = Tµ(ρ⊗ ρµE), (204)

where ρµE is the usual quasi-Choi matrix. As a conse-
quence, the teleportation stretching of a protocol over
a bosonic Gaussian channel E involves a sequence of
LOCCs Λ̄µ, so that it takes the form [77]

||ρn
ab

− Λ̄µ(ρ
µ⊗n
E )|| µ→ 0, (205)

where we need to consider the simultaneous infinite-
energy limit in both the Choi-sequence ρµE and the
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LOCCs Λ̄µ. For the sake of simplicity, we have omit-
ted this further technical detail in this review, but this
aspect has been fully accounted in PLOB. Unfortunately,
no approximation of the CV Bell detection has been dis-
cussed or considered in WTB. Furthermore, this problem
also affects all the derivations presented in Ref. [104].

XI. CONCLUSION

In this manuscript we have reviewed recent results and
techniques in the field of quantum and private commu-
nications. We have started with the definition of adap-
tive protocols which are based on LOs assisted by two-
way CCs. Optimizing over these adaptive LOCCs, one
can define the various two-way assisted capacities (Q2,
D2, P2 and K) associated with a quantum channel. In
particular, the secret key capacity of the channel is de-
fined starting from the notion of private state which is
a suitable cryptographic generalization of a maximally-
entangled state. Following PLOB, we have then intro-
duced the relative entropy of entanglement as a general
weak converse upper bound for the secret key capacity
for quantum channels of any dimension (finite or infinite).
The first rigorous proof of this result was presented back
in 2015 [100] and exploits a truncation argument for the
case of CV channels. In this regard, we have also demys-
tified some unfounded claims made in recent literature.
We have then presented the most general kind of sim-

ulation for a quantum channel in a quantum or private
communication scenario. This must be based on LOs
performed by the two remote users. In fact, it is gener-
ally defined as an LOCC applied to a resource state, and
this formulation may also be asymptotic, i.e., involving
the limit of sequence of states, which is particularly rele-
vant for CV channels. Such a general LOCC simulation,
first considered in PLOB [77], has a number of precursory
ideas based on teleportation that have been developed in
the last 20 years or so [69–76].
In the context of channel simulation, we have discussed

the important criterion of teleportation covariance, which
is a way to determine if a quantum channel is Choi-
stretchable, i.e., simulable by teleportation over its Choi
matrix. This criterion was first identified for DV chan-
nels [74–76] and then extended to channels of any di-
mension [77]. Most importantly, we have fully clarified
how to handle the asymptotic (and optimal) simulation
of bosonic Gaussian channels, for which the simulation
error must be carefully controlled and correctly defined
in terms of energy-constrained diamond distance.
The tool of channel simulation is at the core of the most

powerful techniques of protocol reduction. This was first
shown in the teleportation-based approach of BDSW [69]
with the formulation of a protocol reduction into entan-
glement distillation that was later picked up by several
other works [73, 74, 76]. More recently, PLOB showed
how channel simulation (standard or asymptotic) is even
more powerful and can be used to reduce any adaptive

protocol into a block protocol, while preserving the origi-
nal quantum task. This method of teleportation stretch-
ing has been already widely exploited in recent literature,
not only in the area of quantum/private communication,
but also in those of quantum channel discrimination and
quantum metrology (e.g., see Refs. [81, 82]).

With all the ingredients in our hands, we have dis-
cussed how their combination leads to the computation
of single-letter upper bounds for the two-way capacities
of quantum channels at any dimension (finite or infinite).
Some of these upper bounds coincide with corresponding
lower bounds, and fully establish the two-way capaci-
ties of fundamental quantum channels, such as the lossy
channel. In order to fully clarify the procedure, we have
separately discussed the results involving standard non-
asymptotic simulations from those that require asymp-
totic simulations (important for bosonic Gaussian chan-
nels). While this recipe was designed in PLOB [77] for
the relative entropy of entanglement, here we also discuss
its full generality and applicability to other entanglement
measures, including the squashed entanglement.

There are a number of questions still open. What are
the two-way capacities (Q2 = D2 and P2 = K) of the
depolarizing channel? Same question for the amplitude
damping channel. In the CV setting, the two-way capac-
ities are still to be determined for all the “noisy” single-
mode phase insensitive Gaussian channels, where the en-
vironment is not just the vacuum. The most notable case
is the thermal-loss channel for its importance in QKD.
From this point of view, this paper has also faced another
crucial question, what is the maximum excess noise that
is tolerable in QKD? Our study shows that the gap be-
tween upper and lower bound is still too large. Perhaps
these questions may be closed by following the approach
recently put forward in Ref. [161] where port-based tele-
portation [80, 162–164] is adopted as more general tool
for channel simulation and protocol stretching.

In conclusion, we have also re-considered the deriva-
tions of the follow-up work WTB [92], which aimed at
proving the strong converse property of the previous up-
per bounds established in PLOB. Because of a problem
associated with the unboundedness of the alphabet in the
teleportation of CV channels, the treatment of bosonic
Gaussian channels was affected by a technical issue that
we fix in this paper. Furthermore, we also fill a funda-
mental gap in the proof of WTB which was not properly
designed for adaptive protocols, due to the absence of a
crucial peeling argument [77]. In this was, we provide
a complete and rigorous proof of the claims presented
in WTB in relation to the strong converse bounds for
private communication over Gaussian channels. Further
validations can also be found in Ref. [111].

Let us conclude by saying that, despite the lack of tech-
nical rigor in treating the simulation of bosonic Gaussian
channels, we think that it is fair to attribute to WTB [92]
the derivation of their strong converse bounds. By con-
trast, let us stress that WTB did not play any role in the
derivation of the previous weak converse bounds (and
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two-way assisted capacities) for the same channels, be-
cause these results were already and rigorously estab-
lished in PLOB [77], which also laid down the main
methodology.
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Appendix A: Fidelity limits in the BK teleportation

protocol

To explicitly show Eq. (51), recall that a TMSV state

Φµ̃
Aa is a bipartite Gaussian state with zero mean value

and CM of the form

V = Vq ⊕ ZVqZ, (A1)

where Z := diag(1− 1) and Vq is explicitly given by

Vq(µ̃) =

(

µ̃
√

µ̃2 − 1/4
√

µ̃2 − 1/4 µ̃

)

. (A2)

Now assume that we apply the BK protocol to mode
a of the input state Φµ̃

Aa by using a TMSV state Φµ
a′B as

a resource. The ideal CV Bell detection on modes a and
a′, and the CC of the outcome realizes the BK channel
Iµ from mode a to mode B. This is locally (i.e., point-
wise) equivalent to an additive-noise Gaussian channel

with added noise [114, 116] ξ = 2µ −
√

4µ2 − 1. When

applied to Φµ̃
Aa, we get the output Φ

µ,µ̃
Aa := IA⊗Iµ

a (Φ
µ̃
Aa)

whose CM Vµ,µ̃ has the form in Eq. (A1) with

Vµ,µ̃
q =

(

µ̃
√

µ̃2 − 1/4
√

µ̃2 − 1/4 µ̃+ ξ

)

. (A3)

Using the formula for the quantum fidelity between
arbitrary multimode Gaussian states [125], we find

F (µ, µ̃) := F
(

Φµ,µ̃
Aa ,Φ

µ̃
Aa

)

(A4)

=
1

4

√

1− 4µ̃
[

√

4µ2 − 1 + µ̃− 2µ (1 + 2µ̃ξ)
]

.

We can easily check the asymptotic expansions

F (µ, µ̃) ≃ 1−O(µ−1), for large µ, (A5)

F (µ, µ̃) ≃ O(µ̃−1), for large µ̃, (A6)

which imply the opposite limits in Eqs. (44) and (51),
when E = I.


