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results.
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1. Introduction

The last few years have witnessed important new developments in the theory and practice of pattern clas-
sification. The introduction of new and effective techniques of handling high-dimensional problems – such as
boosting and support vector machines – have revolutionized the practice of pattern recognition. At the same
time, the better understanding of the application of empirical process theory and concentration inequalities
have led to effective new ways of studying these methods and provided a statistical explanation for their suc-
cess. These new tools have also helped develop new model selection methods that are at the heart of many
classification algorithms.

The purpose of this survey is to offer an overview of some of these theoretical tools and give the main ideas of
the analysis of some of the important algorithms. This survey does not attempt to be exhaustive. The selection
of the topics is largely biased by the personal taste of the authors. We also limit ourselves to describing the
key ideas in a simple way, often sacrificing generality. In these cases the reader is pointed to the references for
the sharpest and more general results available. References and bibliographical remarks are given at the end of
each section, in an attempt to avoid interruptions in the arguments.

2. Basic model

The problem of pattern classification is about guessing or predicting the unknown class of an observation. An
observation is often a collection of numerical and/or categorical measurements represented by a d-dimensional
vector x but in some cases it may even be a curve or an image. In our model we simply assume that x ∈ X

Keywords and phrases. Pattern recognition, statistical learning theory, concentration inequalities, empirical processes, model
selection.

∗ The authors acknowledge support by the PASCAL Network of Excellence under EC grant no. 506778. The work of the third
author was supported by the Spanish Ministry of Science and Technology and FEDER, grant BMF2003-03324.
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where X is some abstract measurable space equipped with a σ-algebra. The unknown nature of the observation
is called a class . It is denoted by y and in the simplest case takes values in the binary set {−1, 1}.

In these notes we restrict our attention to binary classification. The reason is simplicity and that the binary
problem already captures many of the main features of more general problems. Even though there is much to
say about multiclass classification, this survey does not cover this increasing field of research.

In classification, one creates a function g : X → {−1, 1} which represents one’s guess of y given x. The
mapping g is called a classifier . The classifier errs on x if g(x) �= y.

To formalize the learning problem, we introduce a probabilistic setting, and let (X,Y ) be an X × {−1, 1}-
valued random pair, modeling observation and its corresponding class. The distribution of the random pair
(X,Y ) may be described by the probability distribution of X (given by the probabilities �{X ∈ A} for all
measurable subsets A of X ) and η(x) = �{Y = 1|X = x}. The function η is called the a posteriori probability.
We measure the performance of classifier g by its probability of error

L(g) = �{g(X) �= Y }.

Given η, one may easily construct a classifier with minimal probability of error. In particular, it is easy to see
that if we define

g∗(x) =
{

1 if η(x) > 1/2
−1 otherwise

then L(g∗) ≤ L(g) for any classifier g. The minimal risk L∗ def= L(g∗) is called the Bayes risk (or Bayes error).
More precisely, it is immediate to see that

L(g) − L∗ = �
[
�{g(X) �=g∗(X)} |2η(X) − 1|] ≥ 0 (1)

(see, e.g., [72]). The optimal classifier g∗ is often called the Bayes classifier. In the statistical model we focus
on, one has access to a collection of data (Xi, Yi), 1 ≤ i ≤ n. We assume that the data Dn consists of a sequence
of independent identically distributed (i.i.d.) random pairs (X1, Y1), . . . , (Xn, Yn) with the same distribution as
that of (X,Y ).

A classifier is constructed on the basis of Dn = (X1, Y1, . . . , Xn, Yn) and is denoted by gn. Thus, the value
of Y is guessed by gn(X) = gn(X ;X1, Y1, . . . , Xn, Yn). The performance of gn is measured by its (conditional)
probability of error

L(gn) = �{gn(X) �= Y |Dn}.
The focus of the theory (and practice) of classification is to construct classifiers gn whose probability of error is
as close to L∗ as possible.

Obviously, the whole arsenal of traditional parametric and nonparametric statistics may be used to attack this
problem. However, the high-dimensional nature of many of the new applications (such as image recognition, text
classification, micro-biological applications, etc.) leads to territories beyond the reach of traditional methods.
Most new advances of statistical learning theory aim to face these new challenges.

Bibliographical remarks. Several textbooks, surveys, and research monographs have been written on pattern
classification and statistical learning theory. A partial list includes Fukunaga [97], Duda and Hart [77], Vapnik
and Chervonenkis [231], Devijver and Kittler [70], Vapnik [227,228], Breiman, Friedman, Olshen, and Stone [53],
Natarajan [175], McLachlan [169], Anthony and Biggs [10], Kearns and Vazirani [117], Devroye, Györfi, and
Lugosi [72], Ripley [185], Vidyasagar [233]. Kulkarni, Lugosi, and Venkatesh [128], Anthony and Bartlett [9],
Duda, Hart, and Stork [78], Lugosi [144], and Mendelson [171].

3. Empirical risk minimization and Rademacher averages

A simple and natural approach to the classification problem is to consider a class C of classifiers g : X →
{−1, 1} and use data-based estimates of the probabilities of error L(g) to select a classifier from the class.
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The most natural choice to estimate the probability of error L(g) = �{g(X) �= Y } is the error count

Ln(g) =
1
n

n∑
i=1

�{g(Xi) �=Yi}.

Ln(g) is called the empirical error of the classifier g.
First we outline the basics of the theory of empirical risk minimization (i.e., the classification analog of

M -estimation). Denote by g∗n the classifier that minimizes the estimated probability of error over the class:

Ln(g∗n) ≤ Ln(g) for all g ∈ C.

Then the probability of error
L(g∗n) = � {g∗n(X) �= Y |Dn}

of the selected rule is easily seen to satisfy the elementary inequalities

L(g∗n) − inf
g∈C

L(g) ≤ 2 sup
g∈C

|Ln(g) − L(g)| , (2)

L(g∗n) ≤ Ln(g∗n) + sup
g∈C

|Ln(g) − L(g)|.

We see that by guaranteeing that the uniform deviation supg∈C |Ln(g) − L(g)| of estimated probabilities from
their true values is small, we make sure that the probability of the selected classifier g∗n is not much larger than
the best probability of error in the class C and at the same time the empirical estimate Ln(g∗n) is also good.

It is important to note at this point that bounding the excess risk by the maximal deviation as in (2) is quite
loose in many situations. In Section 5 we survey some ways of obtaining improved bounds. On the other hand,
the simple inequality above offers a convenient way of understanding some of the basic principles and it is even
sharp in a certain minimax sense, see Section 5.5.

Clearly, the random variable nLn(g) is binomially distributed with parameters n and L(g). Thus, to obtain
bounds for the success of empirical error minimization, we need to study uniform deviations of binomial random
variables from their means. We formulate the problem in a somewhat more general way as follows. Let
X1, . . . , Xn be independent, identically distributed random variables taking values in some set X and let F be
a class of bounded functions X → [−1, 1]. Denoting expectation and empirical averages by Pf = �f(X1) and
Pnf = (1/n)

∑n
i=1 f(Xi), we are interested in upper bounds for the maximal deviation

sup
f∈F

(Pf − Pnf).

Concentration inequalities are among the basic tools in studying such deviations. The simplest, yet quite
powerful exponential concentration inequality is the bounded differences inequality.

Theorem 3.1 (bounded differences inequality). Le g : Xn → R be a function of n variables such that for some
nonnegative constants c1, . . . , cn,

sup
x1,...,xn,

x′
i∈X

|g(x1, . . . , xn) − g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci , 1 ≤ i ≤ n.

Let X1, . . . , Xn be independent random variables. The random variable Z = g(X1, . . . , Xn) satisfies

� {|Z −�Z| > t} ≤ 2e−2t2/C

where C =
∑n

i=1 c
2
i .



326 S. BOUCHERON, O. BOUSQUET AND G. LUGOSI

The bounded differences assumption means that if the i-th variable of g is changed while keeping all the
others fixed, the value of the function cannot change by more than ci.

Our main example for such a function is

Z = sup
f∈F

|Pf − Pnf |.

Obviously, Z satisfies the bounded differences assumption with ci = 2/n and therefore, for any δ ∈ (0, 1), with
probability at least 1 − δ,

sup
f∈F

|Pf − Pnf | ≤ � sup
f∈F

|Pf − Pnf | +
√

2 log 1
δ

n
· (3)

This concentration result allows us to focus on the expected value, which can be bounded conveniently by a
simple symmetrization device. Introduce a “ghost sample” X ′

1, . . . , X
′
n, independent of the Xi and distributed

identically. If P ′
nf = (1/n)

∑n
i=1 f(X ′

i) denotes the empirical averages measured on the ghost sample, then by
Jensen’s inequality,

� sup
f∈F

|Pf − Pnf | = � sup
f∈F

(
�

[
|P ′

nf − Pnf |
∣∣∣X1, . . . , Xn

])
≤ � sup

f∈F
|P ′

nf − Pnf | .

Let now σ1, . . . , σn be independent (Rademacher) random variables with �{σi = 1} = �{σi = −1} = 1/2,
independent of the Xi and X ′

i. Then

� sup
f∈F

|P ′
nf − Pnf | = �

[
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

(f(X ′
i) − f(Xi)

∣∣∣∣∣
]

= �

[
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σi(f(X ′
i) − f(Xi)

∣∣∣∣∣
]

≤ 2�

[
sup
f∈F

1
n

∣∣∣∣∣
n∑

i=1

σif(Xi)

∣∣∣∣∣
]
.

Let A ∈ Rn be a bounded set of vectors a = (a1, . . . , an), and introduce the quantity

Rn(A) = � sup
a∈A

1
n

∣∣∣∣∣
n∑

i=1

σiai

∣∣∣∣∣ .
Rn(A) is called the Rademacher average associated with A. For a given sequence x1, . . . , xn ∈ X , we write
F(xn

1 ) for the class of n-vectors (f(x1), . . . , f(xn)) with f ∈ F . Thus, using this notation, we have deduced the
following.

Theorem 3.2. With probability at least 1 − δ,

sup
f∈F

|Pf − Pnf | ≤ 2�Rn(F(Xn
1 )) +

√
2 log 1

δ

n
·

We also have

sup
f∈F

|Pf − Pnf | ≤ 2Rn(F(Xn
1 )) +

√
2 log 2

δ

n
·
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The second statement follows simply by noticing that the random variable Rn(F(Xn
1 ) satisfies the conditions

of the bounded differences inequality. The second inequality is our first data-dependent performance bound. It
involves the Rademacher average of the coordinate projection of F given by the data X1, . . . , Xn. Given the
data, one may compute the Rademacher average, for example, by Monte Carlo integration. Note that for a given
choice of the random signs σ1, . . . , σn, the computation of supf∈F

1
n

∑n
i=1 σif(Xi) is equivalent to minimizing

−∑n
i=1 σif(Xi) over f ∈ F and therefore it is computationally equivalent to empirical risk minimization.

Rn(F(Xn
1 )) measures the richness of the class F and provides a sharp estimate for the maximal deviations. In

fact, one may prove that

1
2
�Rn(F(Xn

1 )) − 1
2
√
n
≤ � sup

f∈F
|Pf − Pnf | ≤ 2�Rn(F(Xn

1 )))

(see, e.g., van der Vaart and Wellner [225]).
Next we recall some of the simple structural properties of Rademacher averages.

Theorem 3.3 (properties of Rademacher averages). Let A,B be bounded subsets of Rn and let c ∈ R be a
constant. Then

Rn(A ∪B) ≤ Rn(A) +Rn(B) , Rn(c ·A) = |c|Rn(A) , Rn(A⊕B) ≤ Rn(A) +Rn(B)

where c · A = {ca : a ∈ A} and A ⊕ B = {a+ b : a ∈ A, b ∈ B}. Moreover, if A = {a(1), . . . , a(N)} ⊂ Rn is a
finite set, then

Rn(A) ≤ max
j=1,...,N

‖a(j)‖
√

2 logN
n

(4)

where ‖ · ‖ denotes Euclidean norm. If absconv(A) =
{∑N

j=1 cja
(j) : N ∈ N,

∑N
j=1 |cj | ≤ 1, a(j) ∈ A

}
is the

absolute convex hull of A, then
Rn(A) = Rn(absconv(A)). (5)

Finally, the contraction principle states that if φ : R → R is a function with φ(0) = 0 and Lipschitz constant
Lφ and φ ◦A is the set of vectors of form (φ(a1), . . . , φ(an)) ∈ Rn with a ∈ A, then

Rn(φ ◦A) ≤ LφRn(A).

Proof. The first three properties are immediate from the definition. Inequality (4) follows by Hoeffding’s in-
equality which states that if X is a bounded zero-mean random variable taking values in an interval [α, β], then
for any s > 0, � exp(sX) ≤ exp

(
s2(β − α)2/8

)
. In particular, by independence,

� exp

(
s
1
n

n∑
i=1

σiai

)
=

n∏
i=1

� exp
(
s
1
n
σiai

)
≤

n∏
i=1

exp
(
s2a2

i

2n2

)
= exp

(
s2‖a‖2

2n2

)
.

This implies that

esRn(A) = exp

(
s� max

j=1,...,N

1
n

n∑
i=1

σia
(j)
i

)
≤ � exp

(
s max

j=1,...,N

1
n

n∑
i=1

σia
(j)
i

)

≤
N∑

j=1

�es 1
n

∑n
i=1 σia

(j)
i ≤ N max

j=1,...,N
exp
(
s2‖a(j)‖2

2n2

)
·

Taking the logarithm of both sides, dividing by s, and choosing s to minimize the obtained upper bound for
Rn(A), we arrive at (4).
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The identity (5) is easily seen from the definition. For a proof of the contraction principle, see Ledoux and
Talagrand [133]. �

Often it is useful to derive further upper bounds on Rademacher averages. As an illustration, we consider
the case when F is a class of indicator functions. Recall that this is the case in our motivating example in
the classification problem described above when each f ∈ F is the indicator function of a set of the form
{(x, y) : g(x) �= y}. In such a case, for any collection of points xn

1 = (x1, . . . , xn), F(xn
1 ) is a finite subset

of Rn whose cardinality is denoted by SF (xn
1 ) and is called the vc shatter coefficient (where vc stands for

Vapnik-Chervonenkis). Obviously, SF (xn
1 ) ≤ 2n. By inequality (4), we have, for all xn

1 ,

Rn(F(xn
1 )) ≤

√
2 log SF (xn

1 )
n

(6)

where we used the fact that for each f ∈ F ,
∑

i f(Xi)2 ≤ n. In particular,

� sup
f∈F

|Pf − Pnf | ≤ 2�

√
2 log SF (Xn

1 )
n

·

The logarithm of the vc shatter coefficient may be upper bounded in terms of a combinatorial quantity, called
the vc dimension. If A ⊂ {−1, 1}n, then the vc dimension of A is the size V of the largest set of indices
{i1, . . . , iV } ⊂ {1, . . . , n} such that for each binary V -vector b = (b1, . . . , bV ) ∈ {−1, 1}V there exists an
a = (a1, . . . , an) ∈ A such that (ai1 , . . . , aiV ) = b. The key inequality establishing a relationship between
shatter coefficients and vc dimension is known as Sauer’s lemma which states that the cardinality of any set
A ⊂ {−1, 1}n may be upper bounded as

|A| ≤
V∑

i=0

(
n

i

)
≤ (n+ 1)V

where V is the vc dimension of A. In particular,

log SF (xn
1 ) ≤ V (xn

1 ) log(n+ 1)

where we denote by V (xn
1 ) the vc dimension of F(xn

1 ). Thus, the expected maximal deviation � supf∈F |Pf −
Pnf | may be upper bounded by 2�

√
2V (Xn

1 ) log(n+ 1)/n. To obtain distribution-free upper bounds, introduce
the vc dimension of a class of binary functions F , defined by

V = sup
n,xn

1

V (xn
1 ).

Then we obtain the following version of what has been known as the Vapnik-Chervonenkis inequality:

Theorem 3.4 (Vapnik-Chervonenkis inequality). For all distributions one has

� sup
f∈F

(Pf − Pnf) ≤ 2

√
2V log(n+ 1)

n
·

Also,

� sup
f∈F

(Pf − Pnf) ≤ C

√
V

n

for a universal constant C.
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The second inequality, that allows to remove the logarithmic factor, follows from a somewhat refined analysis
(called chaining).

The vc dimension is an important combinatorial parameter of the class and many of its properties are well
known. Here we just recall one useful result and refer the reader to the references for further study: let G be
an m-dimensional vector space of real-valued functions defined on X . The class of indicator functions

F =
{
f(x) = �g(x)≥0 : g ∈ G}

has vc dimension V ≤ m.

Bibliographical remarks. Uniform deviations of averages from their expectations is one of the central prob-
lems of empirical process theory. Here we merely refer to some of the comprehensive coverages, such as Shorack
and Wellner [197], Giné [98], van der Vaart and Wellner [225], Vapnik [229], Dudley [83]. The use of empirical
processes in classification was pioneered by Vapnik and Chervonenkis [230,231] and re-discovered 20 years later
by Blumer, Ehrenfeucht, Haussler, and Warmuth [41], Ehrenfeucht, Haussler, Kearns, and Valiant [88]. For
surveys see Natarajan [175], Devroye [71] Anthony and Biggs [10], Kearns and Vazirani [117], Vapnik [228,229],
Devroye, Györfi, and Lugosi [72], Ripley [185], Vidyasagar [233], Anthony and Bartlett [9].

The bounded differences inequality was formulated explicitly first by McDiarmid [166] (see also the sur-
veys [167]). The martingale methods used by McDiarmid had appeared in early work of Hoeffding [109],
Azuma [18], Yurinksii [240, 241], Milman and Schechtman [174]. Closely related concentration results have
been obtained in various ways including information-theoretic methods (see Ahlswede, Gács, and Körner [1],
Marton [154–156], Dembo [69], Massart [158] and Rio [183]), Talagrand’s induction method [211,214,215] (see
also McDiarmid [168], Luczak and McDiarmid [143], Panchenko [176–178]) and the so-called “entropy method”,
based on logarithmic Sobolev inequalities, developed by Ledoux [132],[131], see also Bobkov and Ledoux [42],
Massart [159], Rio [183], Boucheron, Lugosi, and Massart [45, 46], Bousquet [47], and Boucheron, Bousquet,
Lugosi, and Massart [44].

Symmetrization was at the basis of the original arguments of Vapnik and Chervonenkis [230,231]. We learnt
the simple symmetrization trick shown above from Giné and Zinn [99] but different forms of symmetrization
have been at the core of obtaining related results of similar flavor, see also Anthony and Shawe-Taylor [11],
Cannon, Ettinger, Hush, Scovel [55], Herbrich and Williamson [108], Mendelson and Philips [172].

The use of Rademacher averages in classification was first promoted by Koltchinskii [124] and Bartlett,
Boucheron, and Lugosi [24], see also Koltchinskii and Panchenko [126,127], Bartlett and Mendelson [29], Bartlett,
Bousquet, and Mendelson [25], Bousquet, Koltchinskii, and Panchenko [50], Kégl, Linder, and Lugosi [13],
Mendelson [170].

Hoeffding’s inequality appears in [109]. For a proof of the contraction principle we refer to Ledoux and
Talagrand [133].

Sauer’s lemma was proved independently by Sauer [188], Shelah [196], and Vapnik and Chervonenkis [230].
For related combinatorial results we refer to Frankl [90], Haussler [106], Alesker [7], Alon, Ben-David, Cesa-
Bianchi, and Haussler [8], Szarek and Talagrand [208], Cesa-Bianchi and Haussler [60], Mendelson and Ver-
shynin [173,187].

The second inequality of Theorem 3.4 is based on the method of chaining, and was first proved by Dudley [81].
The question of how supf∈F |Pf−Pnf | behaves has been known as the Glivenko-Cantelli problem and much

has been said about it. A few key references include Vapnik and Chervonenkis [230, 232], Dudley [79, 81, 82],
Talagrand [209, 210, 212, 216], Dudley, Giné, and Zinn [84], Alon, Ben-David, Cesa-Bianchi, and Haussler [8],
Li, Long, and Srinivasan [138], Mendelson and Vershynin [173].

The vc dimension has been widely studied and many of its properties are known. We refer to Cover [63],
Dudley [80, 83], Steele [202], Wenocur and Dudley [236], Assouad [15], Khovanskii [118], Macintyre and
Sontag [149], Goldberg and Jerrum [101], Karpinski and A. Macintyre [114], Koiran and Sontag [121], Anthony
and Bartlett [9], and Bartlett and Maass [28].
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4. Minimizing cost functions: some basic ideas behind boosting and support

vector machines

The results summarized in the previous section reveal that minimizing the empirical risk Ln(g) over a class
C of classifiers with a vc dimension much smaller than the sample size n is guaranteed to work well. This
result has two fundamental problems. First, by requiring that the vc dimension be small, one imposes serious
limitations on the approximation properties of the class. In particular, even though the difference between the
probability of error L(gn) of the empirical risk minimizer is close to the smallest probability of error infg∈C L(g)
in the class, infg∈C L(g) − L∗ may be very large. The other problem is algorithmic: minimizing the empirical
probability of misclassification L(g) is very often a computationally difficult problem. Even in seemingly simple
cases, for example when X = Rd and C is the class of classifiers that split the space of observations by a
hyperplane, the minimization problem is np hard.

The computational difficulty of learning problems deserves some more attention. Let us consider in more
detail the problem in the case of half-spaces. Formally, we are given a sample, that is a sequence of n vectors
(x1, . . . , xn) from R

d and a sequence of n labels (y1, . . . , yn) from {−1, 1}n, and in order to minimize the empirical
misclassification risk we are asked to find w ∈ Rd and b ∈ R so as to minimize

# {k : yk · (〈w, xk〉 − b) ≤ 0} .
Without loss of generality, the vectors constituting the sample are assumed to have rational coefficients, and the
size of the data is the sum of the bit lengths of the vectors making the sample. Not only minimizing the number
of misclassification errors has been proved to be at least as hard as solving any np-complete problem, but even
approximately minimizing the number of misclassification errors within a constant factor of the optimum has
been shown to be np-hard.

This means that, unless p =np, we will not be able to build a computationally efficient empirical risk
minimizer for half-spaces that will work for all input space dimensions. If the input space dimension d is fixed,
an algorithm running in O(nd−1 logn) steps enumerates the trace of half-spaces on a sample of length n. This
allows an exhaustive search for the empirical risk minimizer. Such a possibility should be considered with
circumspection since its range of applications would extend much beyond problems where input dimension is
less than 5.

4.1. Margin-based performance bounds

An attempt to solve both of these problems is to modify the empirical functional to be minimized by intro-
ducing a cost function. Next we describe the main ideas of empirical minimization of cost functionals and its
analysis. We consider classifiers of the form

gf (x) =
{

1 if f(x) ≥ 0
−1 otherwise

where f : X → R is a real-valued function. In such a case the probability of error of g may be written as

L(gf ) = �{sgn(f(X)) �= Y } ≤ ��f(X)Y <0.

To lighten notation we will simply write L(f) = L(gf ). Let φ : R → R+ be a nonnegative cost function such
that φ(x) ≥ �x>0. (Typical choices of φ include φ(x) = ex, φ(x) = log2(1+ex), and φ(x) = (1+x)+.) Introduce
the cost functional and its empirical version by

A(f) = �φ(−f(X)Y ) and An(f) =
1
n

n∑
i=1

φ(−f(Xi)Yi).

Obviously, L(f) ≤ A(f) and Ln(f) ≤ An(f).
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Theorem 4.1. Assume that the function fn is chosen from a class F based on the data (Z1, . . . , Zn) def=
(X1, Y1), . . . , (Xn, Yn). Let B denote a uniform upper bound on φ(−f(x)y) and let Lφ be the Lipschitz constant
of φ. Then the probability of error of the corresponding classifier may be bounded, with probability at least 1− δ,
by

L(fn) ≤ An(fn) + 2Lφ�Rn(F(Xn
1 )) +B

√
2 log 1

δ

n
·

Thus, the Rademacher average of the class of real-valued functions f bounds the performance of the classifier.

Proof. The proof similar to the argument of the previous section:

L(fn) ≤ A(fn)
≤ An(fn) + sup

f∈F
(A(f) −An(f))

≤ An(fn) + 2�Rn(φ ◦ H(Zn
1 )) +B

√
2 log 1

δ

n

(where H is the class of functions X × {−1, 1} → R of the form −f(x)y, f ∈ F)

≤ An(fn) + 2Lφ�Rn(H(Zn
1 )) +B

√
2 log 1

δ

n

(by the contraction principle of Th. 3.3)

= An(fn) + 2Lφ�Rn(F(Xn
1 )) +B

√
2 log 1

δ

n
· �

4.1.1. Weighted voting schemes

In many applications such as boosting and bagging, classifiers are combined by weighted voting schemes which
means that the classification rule is obtained by means of functions f from a class

Fλ =

⎧⎨
⎩f(x) =

N∑
j=1

cjgj(x) : N ∈ N,

N∑
j=1

|cj | ≤ λ, g1, . . . , gN ∈ C
⎫⎬
⎭ (7)

where C is a class of base classifiers, that is, functions defined on X , taking values in {−1, 1}. A classifier of this
form may be thought of as one that, upon observing x, takes a weighted vote of the classifiers g1, . . . , gN (using
the weights c1, . . . , cN ) and decides according to the weighted majority. In this case, by (5) and (6) we have

Rn(Fλ(Xn
1 )) ≤ λRn(C(Xn

1 )) ≤ λ

√
2VC log(n+ 1)

n

where VC is the vc dimension of the base class.
To understand the richness of classes formed by weighted averages of classifiers from a base class, just consider

the simple one-dimensional example in which the base class C contains all classifiers of the form g(x) = 2�x≤a−1,
a ∈ R. Then VC = 1 and the closure of Fλ (under the L∞ norm) is the set of all functions of total variation
bounded by 2λ. Thus, Fλ is rich in the sense that any classifier may be approximated by classifiers associated
with the functions in Fλ. In particular, the vc dimension of the class of all classifiers induced by functions in
Fλ is infinite. For such large classes of classifiers it is impossible to guarantee that L(fn) exceeds the minimal
risk in the class by something of the order of n−1/2 (see Sect. 5.5). However, L(fn) may be made as small as
the minimum of the cost functional A(f) over the class plus O(n−1/2).
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Summarizing, we have obtained that if Fλ is of the form indicated above, then for any function fn chosen
from Fλ in a data-based manner, the probability of error of the associated classifier satisfies, with probability
at least 1 − δ,

L(fn) ≤ An(fn) + 2Lφλ

√
2VC log(n+ 1)

n
+B

√
2 log 1

δ

n
· (8)

The remarkable fact about this inequality is that the upper bound only involves the vc dimension of the class
C of base classifiers which is typically small. The price we pay is that the first term on the right-hand side is
the empirical cost functional instead of the empirical probability of error. As a first illustration, consider the
example when γ is a fixed positive parameter and

φ(x) =

⎧⎨
⎩

0 if x ≤ −γ
1 if x ≥ 0
1 + x/γ otherwise.

In this case B = 1 and Lφ = 1/γ. Notice also that �x>0 ≤ φ(x) ≤ �x>−γ and therefore An(f) ≤ Lγ
n(f) where

Lγ
n(f) is the so-called margin error defined by

Lγ
n(f) =

1
n

n∑
i=1

�f(Xi)Yi<γ .

Notice that for all γ > 0, Lγ
n(f) ≥ Ln(f) and the Lγ

n(f) is increasing in γ. An interpretation of the margin
error Lγ

n(f) is that it counts, apart from the number of misclassified pairs (Xi, Yi), also those which are well
classified but only with a small “confidence” (or “margin”) by f . Thus, (8) implies the following margin-based
bound for the risk:

Corollary 4.2. For any γ > 0, with probability at least 1 − δ,

L(fn) ≤ Lγ
n(fn) + 2

λ

γ

√
2VC log(n+ 1)

n
+

√
2 log 1

δ

n
· (9)

Notice that, as γ grows, the first term of the sum increases, while the second decreases. The bound can be
very useful whenever a classifier has a small margin error for a relatively large γ (i.e., if the classifier classifies
the training data well with high “confidence”) since the second term only depends on the vc dimension of the
small base class C. This result has been used to explain the good behavior of some voting methods such as
AdaBoost, since these methods have a tendency to find classifiers that classify the data points well with a
large margin.

4.1.2. Kernel methods

Another popular way to obtain classification rules from a class of real-valued functions which is used in kernel
methods such as Support Vector Machines (SVM) or Kernel Fisher Discriminant (KFD) is to consider balls of
a reproducing kernel Hilbert space.

The basic idea is to use a positive definite kernel function k : X × X → R, that is, a symmetric function
satisfying

n∑
i,j=1

αiαjk(xi, xj) ≥ 0,

for all choices of n, α1, . . . , αn ∈ R and x1, . . . , xn ∈ X . Such a function naturally generates a space of functions
of the form

F =

{
f(·) =

n∑
i=1

αik(xi, ·) : n ∈ N, αi ∈ R, xi ∈ X
}
,



THEORY OF CLASSIFICATION: A SURVEY OF SOME RECENT ADVANCES 333

which, with the inner product 〈∑αik(xi, ·),
∑
βjk(xj , ·)〉 def=

∑
αiβjk(xi, xj) can be completed into a Hilbert

space.
The key property is that for all x1, x2 ∈ X there exist elements fx1 , fx2 ∈ F such that k(x1, x2) = 〈fx1 , fx2〉.

This means that any linear algorithm based on computing inner products can be extended into a non-linear
version by replacing the inner products by a kernel function. The advantage is that even though the algorithm
remains of low complexity, it works in a class of functions that can potentially represent any continuous function
arbitrarily well (provided k is chosen appropriately).

Algorithms working with kernels usually perform minimization of a cost functional on a ball of the associated
reproducing kernel Hilbert space of the form

Fλ =

⎧⎨
⎩f(x) =

N∑
j=1

cjk(xj , x) : N ∈ N,

N∑
i,j=1

cicjk(xi, xj) ≤ λ2, x1, . . . , xN ∈ X
⎫⎬
⎭ . (10)

Notice that, in contrast with (7) where the constraint is of 	1 type, the constraint here is of 	2 type. Also, the
basis functions, instead of being chosen from a fixed class, are determined by elements of X themselves.

An important property of functions in the reproducing kernel Hilbert space associated with k is that for all
x ∈ X ,

f(x) = 〈f, k(x, ·)〉.
This is called the reproducing property. The reproducing property may be used to estimate precisely the
Rademacher average of Fλ. Indeed, denoting by �σ expectation with respect to the Rademacher variables
σ1, . . . , σn, we have

Rn(Fλ(Xn
1 )) =

1
n
�σ sup

‖f‖≤λ

n∑
i=1

σif(Xi)

=
1
n
�σ sup

‖f‖≤λ

n∑
i=1

σi〈f, k(Xi, ·)〉

=
λ

n
�σ

∥∥∥∥∥
n∑

i=1

σik(Xi, ·)
∥∥∥∥∥

by the Cauchy-Schwarz inequality, where ‖ · ‖ denotes the norm in the reproducing kernel Hilbert space. The
Kahane-Khinchine inequality states that for any vectors a1, . . . , an in a Hilbert space,

1√
2
�

∥∥∥∥∥
n∑

i=1

σiai

∥∥∥∥∥
2

≤
(
�

∥∥∥∥∥
n∑

i=1

σiai

∥∥∥∥∥
)2

≤ �

∥∥∥∥∥
n∑

i=1

σiai

∥∥∥∥∥
2

.

It is also easy to see that

�

∥∥∥∥∥
n∑

i=1

σiai

∥∥∥∥∥
2

= �

n∑
i,j=1

σiσj〈ai, aj〉 =
n∑

i=1

‖ai‖2,

so we obtain

λ

n
√

2

√√√√ n∑
i=1

k(Xi, Xi) ≤ Rn(Fλ(Xn
1 )) ≤ λ

n

√√√√ n∑
i=1

k(Xi, Xi).

This is very nice as it gives a bound that can be computed very easily from the data. A reasoning similar
to the one leading to (9), using the bounded differences inequality to replace the Rademacher average by its
empirical version, gives the following.
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Corollary 4.3. Let fn be any function chosen from the ball Fλ. Then, with probability at least 1 − δ,

L(fn) ≤ Lγ
n(fn) + 2

λ

γn

√√√√ n∑
i=1

k(Xi, Xi) +

√
2 log 2

δ

n
·

4.2. Convex cost functionals

Next we show that a proper choice of the cost function φ has further advantages. To this end, we consider
nonnegative convex nondecreasing cost functions with limx→−∞ φ(x) = 0 and φ(0) = 1. Main examples of φ
include the exponential cost function φ(x) = ex used in AdaBoost and related boosting algorithms, the logit
cost function φ(x) = log2(1 + ex), and the hinge loss (or soft margin loss) φ(x) = (1 + x)+ used in support
vector machines. One of the main advantages of using convex cost functions is that minimizing the empirical
cost An(f) often becomes a convex optimization problem and is therefore computationally feasible. In fact,
most boosting and support vector machine classifiers may be viewed as empirical minimizers of a convex cost
functional.

However, minimizing convex cost functionals have other theoretical advantages. To understand this, assume,
in addition to the above, that φ is strictly convex and differentiable. Then it is easy to determine the function
f∗ minimizing the cost functional A(f) = �φ(−Y f(X). Just note that for each x ∈ X ,

� [φ(−Y f(X)|X = x] = η(x)φ(−f(x)) + (1 − η(x))φ(f(x))

and therefore the function f∗ is given by

f∗(x) = argminα hη(x)(α)

where for each η ∈ [0, 1], hη(α) = ηφ(−α)+ (1− η)φ(α). Note that hη is strictly convex and therefore f∗ is well
defined (though it may take values ±∞ if η equals 0 or 1). Assuming that hη is differentiable, the minimum is
achieved for the value of α for which h′η(α) = 0, that is, when

η

1 − η
=

φ′(α)
φ′(−α)

·

Since φ′ is strictly increasing, we see that the solution is positive if and only if η > 1/2. This reveals the important
fact that the minimizer f∗ of the functional A(f) is such that the corresponding classifier g∗(x) = 2�f∗(x)≥0−1 is
just the Bayes classifier. Thus, minimizing a convex cost functional leads to an optimal classifier. For example,
if φ(x) = ex is the exponential cost function, then f∗(x) = (1/2) log(η(x)/(1 − η(x))). In the case of the logit
cost φ(x) = log2(1 + ex), we have f∗(x) = log(η(x)/(1 − η(x))).

We note here that, even though the hinge loss φ(x) = (1 + x)+ does not satisfy the conditions for φ used
above (e.g., it is not strictly convex), it is easy to see that the function f∗ minimizing the cost functional equals

f∗(x) =
{

1 if η(x) > 1/2
−1 if η(x) < 1/2.

Thus, in this case the f∗ not only induces the Bayes classifier but it equals to it.
To obtain inequalities for the probability of error of classifiers based on minimization of empirical cost

functionals, we need to establish a relationship between the excess probability of error L(f) − L∗ and the
corresponding excess cost functional A(f) − A∗ where A∗ = A(f∗) = inff A(f). Here we recall a simple
inequality of Zhang [242] which states that if the function H : [0, 1] → R is defined by H(η) = infα hη(α) and
the cost function φ is such that for some positive constants s ≥ 1 and c ≥ 0∣∣∣∣12 − η

∣∣∣∣
s

≤ cs(1 −H(η)) , η ∈ [0, 1] ,
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then for any function f : X → R,

L(f) − L∗ ≤ 2c (A(f) −A∗)1/s
. (11)

(The simple proof of this inequality is based on the expression (1) and elementary convexity properties of hη. )
In the special case of the exponential and logit cost functions H(η) = 2

√
η(1 − η) and H(η) = −η log2 η − (1−

η) log2(1 − η), respectively. In both cases it is easy to see that the condition above is satisfied with s = 2 and
c = 1/

√
2.

Theorem 4.4. (Excess risk of convex risk minimizers.) Assume that fn is chosen from a class Fλ defined
in (7) by minimizing the empirical cost functional An(f) using either the exponential of the logit cost function.
Then, with probability at least 1 − δ,

L(fn) − L∗ ≤ 2

⎛
⎝2Lφλ

√
2VC log(n+ 1)

n
+B

√
2 log 1

δ

n

⎞
⎠

1/2

+
√

2
(

inf
f∈Fλ

A(f) −A∗
)1/2

.

Proof.

L(fn) − L∗ ≤
√

2 (A(fn) −A∗)1/2

≤
√

2
(
A(fn) − inf

f∈Fλ

A(f)
)1/2

+
√

2
(

inf
f∈Fλ

A(f) −A∗
)1/2

≤ 2

(
sup

f∈Fλ

|A(f) −An(f)|
)1/2

+
√

2
(

inf
f∈Fλ

A(f) −A∗
)1/2

(just like in (2))

≤ 2

⎛
⎝2Lφλ

√
2VC log(n+ 1)

n
+B

√
2 log 1

δ

n

⎞
⎠

1/2

+
√

2
(

inf
f∈Fλ

A(f) −A∗
)1/2

with probability at least 1 − δ, where at the last step we used the same bound for supf∈Fλ
|A(f) − An(f)| as

in (8). �

Note that for the exponential cost function Lφ = eλ and B = λ while for the logit cost Lφ ≤ 1 and B = λ.
In both cases, if there exists a λ sufficiently large so that inff∈Fλ

A(f) = A∗, then the approximation error
disappears and we obtain L(fn) − L∗ = O

(
n−1/4

)
. The fact that the exponent in the rate of convergence

is dimension-free is remarkable. (We note here that these rates may be further improved by applying the
refined techniques resumed in Sect. 5.3, see also [40].) It is an interesting approximation-theoretic challenge to
understand what kind of functions f∗ may be obtained as a convex combination of base classifiers and, more
generally, to describe approximation properties of classes of functions of the form (7).

Next we describe a simple example when the above-mentioned approximation properties are well understood.
Consider the case when X = [0, 1]d and the base class C contains all “decision stumps”, that is, all classifiers
of the form s+i,t(x) = �x(i)≥t − �x(i)<t and s−i,t(x) = �x(i)<t − �x(i)≥t, t ∈ [0, 1], i = 1, . . . , d, where x(i) denotes
the i-th coordinate of x. In this case the vc dimension of the base class is easily seen to be bounded by
VC ≤ �2 log2(2d)�. Also it is easy to see that the closure of Fλ with respect to the supremum norm contains all
functions f of the form

f(x) = f1(x(1)) + · · · + fd(x(d))

where the functions fi : [0, 1] → R are such that |f1|TV + · · · + |fd|TV ≤ λ where |fi|TV denotes the total
variation of the function fi. Therefore, if f∗ has the above form, we have inff∈Fλ

A(f) = A(f∗). Recalling that
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the function f∗ optimizing the cost A(f) has the form

f∗(x) =
1
2

log
η(x)

1 − η(x)

in the case of the exponential cost function and

f∗(x) = log
η(x)

1 − η(x)

in the case of the logit cost function, we see that boosting using decision stumps is especially well fitted to the
so-called additive logistic model in which η is assumed to be such that log(η/(1−η)) is an additive function (i.e.,
it can be written as a sum of univariate functions of the components of x). Thus, when η permits an additive
logistic representation then the rate of convergence of the classifier is fast and has a very mild dependence on
the dimension.

Consider next the case of the hinge loss φ(x) = (1 + x)+ often used in Support Vector Machines and related
kernel methods. In this case H(η) = 2 ∈ (η, 1 − η) and therefore inequality (11) holds with c = 1/2 and s = 1.
Thus,

L(fn) − L∗ ≤ A(fn) −A∗

and the analysis above leads to even better rates of convergence. However, in this case f∗(x) = 2�η(x)≥1/2 − 1
and approximating this function by weighted sums of base functions may be more difficult than in the case of
exponential and logit costs. Once again, the approximation-theoretic part of the problem is far from being well
understood, and it is difficult to give recommendations about which cost function is more advantageous and
what base classes should be used.

Bibliographical remarks. For results on the algorithmic difficulty of empirical risk minimization, see Johnson
and Preparata [112], Vu [234], Bartlett and Ben-David [26], Ben-David, Eiron, and Simon [32].

Boosting algorithms were originally introduced by Freund and Schapire (see [91, 94, 189]), as adaptive ag-
gregation of simple classifiers contained in a small “base class”. The analysis based on the observation that
AdaBoost and related methods tend to produce large-margin classifiers appears in Schapire, Freund, Bartlett,
and Lee [190], and Koltchinskii and Panchenko [127]. It was Breiman [51] who observed that boosting performs
gradient descent optimization of an empirical cost function different from the number of misclassified samples,
see also Mason, Baxter, Bartlett, and Frean [157], Collins, Schapire, and Singer [61], Friedman, Hastie, and
Tibshirani [95]. Based on this view, various versions of boosting algorithms have been shown to be consistent
in different settings, see Breiman [52], Bühlmann and Yu [54], Blanchard, Lugosi, and Vayatis [40], Jiang [111],
Lugosi and Vayatis [146], Mannor and Meir [152], Mannor, Meir, and Zhang [153], Zhang [242]. Inequality (8)
was first obtained by Schapire, Freund, Bartlett, and Lee [190]. The analysis presented here is due to Koltchinskii
and Panchenko [127].

Other classifiers based on weighted voting schemes have been considered by Catoni [57–59], Yang [239],
Freund, Mansour, and Schapire [93].

Kernel methods were pioneered by Aizerman, Braverman, and Rozonoer [2–5], Vapnik and Lerner [226],
Bashkirov, Braverman, and Muchnik [31], Vapnik and Chervonenkis [231], and Specht [201].

Support vector machines originate in the pioneering work of Boser, Guyon, and Vapnik [43], Cortes and
Vapnik [62]. For surveys we refer to Cristianini and Shawe-Taylor [65], Smola, Bartlett, Schölkopf, and
Schuurmans [199], Hastie, Tibshirani, and Friedman [104], Schölkopf and Smola [191].

The study of universal approximation properties of kernels and statistical consistency of Support Vector
Machines is due to Steinwart [203–205], Lin [140,141], Zhou [243], and Blanchard, Bousquet, and Massart [39].

We have considered the case of minimization of a loss function on a ball of the reproducing kernel Hilbert
space. However, it is computationally more convenient to formulate the problem as the minimization of a
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regularized functional of the form

min
f∈F

1
n

n∑
i=1

φ(−Yif(Xi)) + λ‖f‖2.

The standard Support Vector Machine algorithm then corresponds to the choice of φ(x) = (1 + x)+.
Kernel based regularization algorithms were studied by Kimeldorf and Wahba [120] and Craven and

Wahba [64] in the context of regression. Relationships between Support Vector Machines and regularization
were described by Smola, Schölkopf, and Müller [200] and Evhgeniou, Pontil, and Poggio [89]. General proper-
ties of regularized algorithms in reproducing kernel Hilbert spaces are investigated by Cucker and Smale [68],
Steinwart [204], Zhang [242].

Various properties of the Support Vector Machine algorithm are investigated by Vapnik [228,229], Schölkopf
and Smola [191], Scovel and Steinwart [193] and Steinwart [206,207].

The fact that minimizing an exponential cost functional leads to the Bayes classifier was pointed out by
Breiman [52], see also Lugosi and Vayatis [146], Zhang [242]. For a comprehensive theory of the connection
between cost functions and probability of misclassification, see Bartlett, Jordan, and McAuliffe [27]. Zhang’s
lemma (11) appears in [242]. For various generalizations and refinements we refer to Bartlett, Jordan, and
McAuliffe [27] and Blanchard, Lugosi, and Vayatis [40].

5. Tighter bounds for empirical risk minimization

This section is dedicated to the description of some refinements of the ideas described in the earlier sections.
What we have seen so far only used “first-order” properties of the functions that we considered, namely their
boundedness. It turns out that using “second-order” properties, like the variance of the functions, many of the
above results can be made sharper.

5.1. Relative deviations

In order to understand the basic phenomenon, let us go back to the simplest case in which one has a fixed
function f with values in {0, 1}. In this case, Pnf is an average of independent Bernoulli random variables with
parameter p = Pf . Recall that, as a simple consequence of (3), with probability at least 1 − δ,

Pf − Pnf ≤
√

2 log 1
δ

n
· (12)

This is basically tight when Pf = 1/2, but can be significantly improved when Pf is small. Indeed, Bernstein’s
inequality gives, with probability at least 1 − δ,

Pf − Pnf ≤
√

2Var(f) log 1
δ

n
+

2 log 1
δ

3n
· (13)

Since f takes its values in {0, 1}, Var(f) = Pf(1−Pf) ≤ Pf which shows that when Pf is small, (13) is much
better than (12).

5.1.1. General inequalities

Next we exploit the phenomenon described above to obtain sharper performance bounds for empirical risk
minimization. Note that if we consider the difference Pf−Pnf uniformly over the class F , the largest deviations
are obtained by functions that have a large variance (i.e., Pf is close to 1/2). An idea is to scale each function
by dividing it by

√
Pf so that they all behave in a similar way. Thus, we bound the quantity

sup
f∈F

Pf − Pnf√
Pf

·
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The first step consists in symmetrization of the tail probabilities. If nt2 ≤ 2,

�

{
sup
f∈F

Pf − Pnf√
Pf

≥ t

}
≤ 2�

{
sup
f∈F

P ′
nf − Pnf√

(Pnf + P ′
nf)/2

≥ t

}
.

Next we introduce Rademacher random variables, obtaining, by simple symmetrization,

2�

{
sup
f∈F

P ′
nf − Pnf√

(Pnf + P ′
nf)/2

≥ t

}
= 2�

[
�σ

{
sup
f∈F

1
n

∑n
i=1 σi(f(X ′

i) − f(Xi))√
(Pnf + P ′

nf)/2
≥ t

}]

(where �σ is the conditional probability, given the Xi and X ′
i). The last step uses tail bounds for individual

functions and a union bound over F(X2n
1 ), where X2n

1 denotes the union of the initial sample Xn
1 and of the

extra symmetrization sample X ′
1, . . . , X

′
n.

Summarizing, we obtain the following inequalities:

Theorem 5.1. Let F be a class of functions taking binary values in {0, 1}. For any δ ∈ (0, 1), with probability
at least 1 − δ, all f ∈ F satisfy

Pf − Pnf√
Pf

≤ 2

√
log SF(X2n

1 ) + log 4
δ

n
·

Also, with probability at least 1 − δ, for all f ∈ F ,

Pnf − Pf√
Pnf

≤ 2

√
log SF(X2n

1 ) + log 4
δ

n
·

As a consequence, we have that for all s > 0, with probability at least 1 − δ,

sup
f∈F

Pf − Pnf

Pf + Pnf + s/2
≤ 2

√
log SF (X2n

1 ) + log 4
δ

sn
(14)

and the same is true if P and Pn are permuted. Another consequence of Theorem 5.1 with interesting applica-
tions is the following. For all t ∈ (0, 1], with probability at least 1 − δ,

∀f ∈ F , Pnf ≤ (1 − t)Pf implies Pf ≤ 4
log SF(X2n

1 ) + log 4
δ

t2n
· (15)

In particular, setting t = 1,

∀f ∈ F , Pnf = 0 implies Pf ≤ 4
log SF (X2n

1 ) + log 4
δ

n
·

5.1.2. Applications to empirical risk minimization

It is easy to see that, for non-negative numbers A,B,C ≥ 0, the fact that A ≤ B
√
A + C entails A ≤

B2 + B
√
C + C so that we obtain from the second inequality of Theorem 5.1 that, with probability at least

1 − δ, for all f ∈ F ,

Pf ≤ Pnf + 2

√
Pnf

log SF (X2n
1 ) + log 4

δ

n
+ 4

log SF (X2n
1 ) + log 4

δ

n
·
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Corollary 5.2. Let g∗n be the empirical risk minimizer in a class C of vc dimension V . Then, with probability
at least 1 − δ,

L(g∗n) ≤ Ln(g∗n) + 2

√
Ln(g∗n)

2V log(n+ 1) + log 4
δ

n
+ 4

2V log(n+ 1) + log 4
δ

n
·

Consider first the extreme situation when there exists a classifier in C which classifies without error. This
also means that for some g′ ∈ C, Y = g′(X) with probability one. This is clearly a quite restrictive assumption,
only satisfied in very special cases. Nevertheless, the assumption that infg∈C L(g) = 0 has been commonly
used in computational learning theory, perhaps because of its mathematical simplicity. In such a case, clearly
Ln(g∗n) = 0, so that we get, with probability at least 1 − δ,

L(g∗n) − inf
g∈C

L(g) ≤ 4
2V log(n+ 1) + log 4

δ

n
· (16)

The main point here is that the upper bound obtained in this special case is of smaller order of magnitude
than in the general case (O(V lnn/n) as opposed to O

(√
V lnn/n

)
). One can actually obtain a version which

interpolates between these two cases as follows: for simplicity, assume that there is a classifier g′ in C such that
L(g′) = infg∈C L(g). Then we have

Ln(g∗n) ≤ Ln(g′) = Ln(g′) − L(g′) + L(g′).

Using Bernstein’s inequality, we get, with probability 1 − δ,

Ln(g∗n) − L(g′) ≤
√

2L(g′) log 1
δ

n
+

2 log 1
δ

3n
,

which, together with Corollary 5.2, yields:

Corollary 5.3. There exists a constant C such that, with probability at least 1 − δ,

L(g∗n) − inf
g∈C

L(g) ≤ C

⎛
⎝
√

inf
g∈C

L(g)
V logn+ log 1

δ

n
+
V logn+ log 1

δ

n

⎞
⎠ .

5.2. Noise and fast rates

We have seen that in the case where f takes values in {0, 1} there is a nice relationship between the variance
of f (which controls the size of the deviations between Pf and Pnf) and its expectation, namely, Var(f) ≤ Pf .
This is the key property that allows one to obtain faster rates of convergence for L(g∗n) − infg∈C L(g).

In particular, in the ideal situation mentioned above, when infg∈C L(g) = 0, the difference L(g∗n)− infg∈C L(g)
may be much smaller than the worst-case difference supg∈C(L(g)−Ln(g)). This actually happens in many cases,
whenever the distribution satisfies certain conditions. Next we describe such conditions and show how the finer
bounds can be derived.

The main idea is that, in order to get precise rates for L(g∗n) − infg∈C L(g), we consider functions of the
form �g(X) �=Y − �g′(X) �=Y where g′ is a classifier minimizing the loss in the class C, that is, such that L(g′) =
infg∈C L(g). Note that functions of this form are no longer non-negative.

To illustrate the basic ideas in the simplest possible setting, consider the case when the loss class F is a finite
set of N functions of the form �g(X) �=Y −�g′(X) �=Y . In addition, we assume that there is a relationship between



340 S. BOUCHERON, O. BOUSQUET AND G. LUGOSI

the variance and the expectation of the functions in F given by the inequality

Var(f) ≤
(
Pf

h

)α

(17)

for some h > 0 and α ∈ (0, 1]. By Bernstein’s inequality and a union bound over the elements of C, we have
that, with probability at least 1 − δ, for all f ∈ F ,

Pf ≤ Pnf +

√
2(Pf/h)α log N

δ

n
+

4 log N
δ

3n
·

As a consequence, using the fact that Pnf = Ln(g∗n) − Ln(g′) ≤ 0, we have with probability at least 1 − δ,

L(g∗n) − L(g′) ≤
√

2((L(g∗n) − L(g′))/h)α log N
δ

n
+

4 log N
δ

3n
·

Solving this inequality for L(g∗n) − L(g′) finally gives that with probability at least 1 − δ,

L(g∗n) − inf
g∈G

L(g) ≤
(

2
log N

δ

nhα

) 1
2−α

. (18)

Note that the obtained rate is then faster than n−1/2 whenever α > 0. In particular, for α = 1 we get n−1 as
in the ideal case.

It now remains to show whether (17) is a reasonable assumption. As the simplest possible example, assume
that the Bayes classifier g∗ belongs to the class C (i.e., g′ = g∗) and the a posteriori probability function η is
bounded away from 1/2, that is, there exists a positive constant h such that for all x ∈ X , |2η(x) − 1| > h.
Note that the assumption g′ = g∗ is very restrictive and is unlikely to be satisfied in “practice,” especially if the
class C is finite, as it is assumed in this discussion. The assumption that η is bounded away from zero may also
appear to be quite specific. However, the situation described here may serve as a first illustration of a nontrivial
example when fast rates may be achieved. Since |�g(X) �=Y − �g∗(X) �=Y | ≤ �g(X) �=g∗(X), the conditions stated
above and (1) imply that

Var(f) ≤ �
[
�g(X) �=g∗(X)

] ≤ 1
h
�
[|2η(X) − 1|�g(X) �=g∗(X)

]
=

1
h

(L(g) − L∗).

Thus (17) holds with β = 1/h and α = 1 which shows that, with probability at least 1 − δ,

L(gn) − L∗ ≤ C
log N

δ

hn
· (19)

Thus, the empirical risk minimizer has a significantly better performance than predicted by the results of
the previous section whenever the Bayes classifier is in the class C and the a posteriori probability η stays
away from 1/2. The behavior of η in the vicinity of 1/2 has been known to play an important role in the
difficulty of the classification problem, see [72,237,238]. Roughly speaking, if η has a complex behavior around
the critical threshold 1/2, then one cannot avoid estimating η, which is a typically difficult nonparametric
regression problem. However, the classification problem is significantly easier than regression if η is far from
1/2 with a large probability.

The condition of η being bounded away from 1/2 may be significantly relaxed and generalized. Indeed, in
the context of discriminant analysis, Mammen and Tsybakov [151] and Tsybakov [219] formulated a useful
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condition that has been adopted by many authors. Let α ∈ [0, 1). Then the Mammen-Tsybakov condition may
be stated by any of the following three equivalent statements:

(1) ∃β > 0, ∀g ∈ {0, 1}X , �[�g(X) �=g∗(X)

] ≤ β(L(g) − L∗)α

(2) ∃c > 0, ∀A ⊂ X ,
∫

A

dP (x) ≤ c

(∫
A

|2η(x) − 1|dP (x)
)α

(3) ∃B > 0, ∀t ≥ 0, � {|2η(X) − 1| ≤ t} ≤ Bt
α

1−α .

We refer to this as the Mammen-Tsybakov noise condition. The proof that these statements are equivalent is
straightforward, and we omit it, but we comment on the meaning of these statements. Notice first that α has
to be in [0, 1] because

L(g) − L∗ = �
[|2η(X) − 1|�g(X) �=g∗(X)

] ≤ ��g(X) �=g∗(X).

Also, when α = 0 these conditions are void. The case α = 1 in (1) is realized when there exists an s > 0 such
that |2η(X) − 1| > s almost surely (which is just the extreme noise condition we considered above).

The most important consequence of these conditions is that they imply a relationship between the variance
and the expectation of functions of the form �g(X) �=Y − �g∗(X) �=Y . Indeed, we obtain

�
[
(�g(X) �=Y − �g∗(X) �=Y )2

] ≤ c(L(g) − L∗)α.

This is thus enough to get (18) for a finite class of functions.
The sharper bounds, established in this section and the next, come at the price of the assumption that the

Bayes classifier is in the class C. Because of this, it is difficult to compare the fast rates achieved with the
slower rates proved in Section 3. On the other hand, noise conditions like the Mammen-Tsybakov condition
may be used to get improvements even when g∗ is not contained in C. In these cases the “approximation error”
L(g′)−L∗ also needs to be taken into account, and the situation becomes somewhat more complex. We return
to these issues in Sections 5.3.5 and 8.

5.3. Localization

The purpose of this section is to generalize the simple argument of the previous section to more general
classes C of classifiers. This generalization reveals the importance of the modulus of continuity of the empirical
process as a measure of complexity of the learning problem.

5.3.1. Talagrand’s inequality

One of the most important recent developments in empirical process theory is a concentration inequality for
the supremum of an empirical process first proved by Talagrand [210] and refined later by various authors. This
inequality is at the heart of many key developments in statistical learning theory. Here we recall the following
version:

Theorem 5.4. Let b > 0 and set F to be a set of functions from X to R. Assume that all functions in F
satisfy Pf − f ≤ b. Then, with probability at least 1 − δ, for any θ > 0,

sup
f∈F

(Pf − Pnf) ≤ (1 + θ)�

[
sup
f∈F

(Pf − Pnf)

]
+

√
2(supf∈F Var(f)) log 1

δ

n
+

(1 + 3/θ)b log 1
δ

3n
,

which, for θ = 1 translates to

sup
f∈F

(Pf − Pnf) ≤ 2�

[
sup
f∈F

(Pf − Pnf)

]
+

√
2(supf∈F Var(f)) log 1

δ

n
+

4b log 1
δ

3n
·
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5.3.2. Localization: informal argument

We first explain informally how Talagrand’s inequality can be used in conjunction with noise conditions to
yield improved results. Start by rewriting the inequality of Theorem 5.4. We have, with probability at least
1 − δ, for all f ∈ F with Var(f) ≤ r,

Pf − Pnf ≤ 2�

[
sup

f∈F :Var(f)≤r

(Pf − Pnf)

]
+ C

√
r log 1

δ

n
+ C

log 1
δ

n
· (20)

Denote the right-hand side of the above inequality by ψ̃(r). Note that ψ̃ is an increasing nonnegative function.
Consider the class of functions F = {(x, y) �→ �g(x) �=y − �g∗(x) �=y : g ∈ C} and assume that g∗ ∈ C and the

Mammen-Tsybakov noise condition is satisfied in the extreme case, that is, |2η(x) − 1| > s > 0 for all x ∈ X ,
so for all f ∈ F , Var(f) ≤ 1

sPf .
Inequality (20) thus implies that, with probability at least 1 − δ, all g ∈ C satisfy

L(g) − L∗ ≤ Ln(g) − Ln(g∗) + ψ̃

(
1
s

(
sup
g∈C

L(g) − L∗
))

.

In particular, for the empirical risk minimizer gn we have, with probability at least 1 − δ,

L(gn) − L∗ ≤ ψ̃

(
1
s

(
sup
g∈C

L(g) − L∗
))

.

For the sake of an informal argument, assume that we somehow know beforehand what L(gn) is. Then we can
‘apply’ the above inequality to a subclass that only contains functions with error less than that of gn, and thus
we would obtain something like

L(gn) − L∗ ≤ ψ̃

(
1
s

(L(gn) − L∗)
)
.

This indicates that the quantity that should appear as an upper bound of L(gn)−L∗ is something like max{r :
r ≤ ψ̃(r/s)}. We will see that the smallest allowable value is actually the solution of r = ψ̃(r/s). The reason
why this bound can improve the rates is that in many situations, ψ̃(r) is of order

√
r/n. In this case the solution

r∗ of r = ψ̃(r/s) satisfies r∗ ≈ 1/(sn) thus giving a bound of order 1/n for the quantity L(gn) − L∗.
The argument sketched here, once made rigorous, applies to possibly infinite classes with a complexity

measure that captures the size of the empirical process in a small ball (i.e., restricted to functions with small
variance). The next section offers a detailed argument.

5.3.3. Localization: rigorous argument

Let us introduce the loss class F = {(x, y) �→ �g(x) �=y − �g∗(x) �=y : g ∈ C} and the star-hull of F defined by
F∗ = {αf : α ∈ [0, 1], f ∈ F}.

Notice that for f ∈ F or f ∈ F∗, Pf ≥ 0. Also, denoting by fn the function in F corresponding to the
empirical risk minimizer gn, we have Pnfn ≤ 0.

Let T : F → R+ be a function such that for all f ∈ F , Var(f) ≤ T 2(f) and also for α ∈ [0, 1], T (αf) ≤ αT (f).
An important example is T (f) =

√
Pf2.

Introduce the following two functions which characterize the properties of the problem of interest (i.e., the
loss function, the distribution, and the class of functions). The first one is a sort of modulus of continuity of
the Rademacher average indexed by the star-hull of F :

ψ(r) = �Rn{f ∈ F∗ : T (f) ≤ r}.
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The second one is the modulus of continuity of the variance (or rather its upper bound T ) with respect to the
expectation:

w(r) = sup
f∈F∗:Pf≤r

T (f).

Of course, ψ and w are non-negative and non-decreasing. Moreover, the maps x �→ ψ(x)/x and w(x)/x are
non-increasing. Indeed, for α ≥ 1,

ψ(αx) = �Rn{f ∈ F∗ : T (f) ≤ αx}
≤ �Rn{f ∈ F∗ : T (f/α) ≤ x}
≤ �Rn{αf : f ∈ F∗, T (f) ≤ x} = αψ(x).

This entails that ψ and w are continuous on ]0, 1]. In the sequel, we will also use w−1(x) def= max{u : w(u) ≤ x},
so for r > 0, we have w(w−1(r)) = r. Notice also that ψ(1) ≤ 1 and w(1) ≤ 1. The analysis below uses the
additional assumption that x �→ w(x)/

√
x is also non-increasing. This can be enforced by substituting w′(r) for

w(r) where w′(r) =
√
r supr′≥r w(r′)/

√
r′.

The purpose of this section is to prove the following theorem which provides sharp distribution-dependent
learning rates when the Bayes classifier g∗ belongs to C. In Section 5.3.5 an extension is proposed.

Theorem 5.5. Let r∗(δ) denote the minimum of 1 and of the solution of the fixed-point equation

r = 4ψ(w(r)) + w(r)

√
2 log 1

δ

n
+

8 log 1
δ

n
·

Let ε∗ denote the solution of the fixed-point equation

r = ψ(w(r)).

Then, if g∗ ∈ C, with probability at least 1 − δ, the empirical risk minimizer gn satisfies

max (L(gn) − L∗, Ln(g∗) − Ln(gn)) ≤ r∗(δ) , (21)

and

max (L(gn) − L∗, Ln(g∗) − Ln(gn)) ≤ 2
(

16ε∗ +
(

2
(w(ε∗))2

ε∗
+ 8
)

log 1
δ

n

)
. (22)

Remark 5.6. Both ψ and w may be replaced by convenient upper bounds. This will prove useful when deriving
data-dependent estimates of these distribution-dependent risk bounds.

Remark 5.7. Inequality (22) follows from Inequality (21) by observing that ε∗ ≤ r∗(δ), and using the fact that
x �→ w(x)/

√
x and x �→ ψ(x)/x are non-increasing. This shows that r∗(δ) satisfies the following inequality:

r ≤ √
r

⎛
⎝4

√
ε∗ +

w(ε∗)√
ε∗

√
2 log 1

δ

n

⎞
⎠+

8 log 1
δ

n
·

Inequality (22) follows by routine algebra.

Proof. The main idea is to weight the functions in the loss class F in order to have a handle on their variance
(which is the key to making a good use of Talagrand’s inequality). To do this, consider

Gr =
{

rf

T (f) ∨ r : f ∈ F
}
.
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At the end of the proof, we will consider r = w(r∗(δ)) or r = w(ε∗). But for a while we will work with a generic
value of r. This will serve to motivate the choice of r∗(δ).

We thus apply Talagrand’s inequality (Th. 5.4) to this class of functions. Noticing that Pg − g ≤ 2 and
Var(g) ≤ r2 for g ∈ Gr, we obtain that, on an event E that has probability at least 1− δ,

Pf − Pnf ≤ T (f) ∨ r
r

⎛
⎝2� sup

g∈Gr

(Pg − Png) + r

√
2 log 1

δ

n
+

8 log 1
δ

3n

⎞
⎠ ·

As shown in Section 3, we can upper bound the expectation on the right-hand side by 2�[Rn(Gr)]. Notice that
for f ∈ Gr, T (f) ≤ r and also Gr ⊂ F∗ which implies that

Rn(Gr) ≤ Rn{f ∈ F∗ : T (f) ≤ r}.

We thus obtain

Pf − Pnf ≤ T (f) ∨ r
r

⎛
⎝4ψ(r) + r

√
2 log 1

δ

n
+

8 log 1
δ

3n

⎞
⎠ ·

Using the definition of w, this yields

Pf − Pnf ≤ w(Pf) ∨ r
r

⎛
⎝4ψ(r) + r

√
2 log 1

δ

n
+

8 log 1
δ

3n

⎞
⎠ · (23)

Then either w(Pf) ≤ r which implies Pf ≤ w−1(r) or w(Pf) ≥ r. In this latter case,

Pf ≤ Pnf +
w(Pf)
r

⎛
⎝4ψ(r) + r

√
2 log 1

δ

n
+

8 log 1
δ

3n

⎞
⎠ · (24)

Moreover, as we have assumed that x �→ w(x)/
√
x is non-increasing, we also have

w(Pf) ≤ r
√
Pf√

w−1(r)
,

so that finally (using the fact that x ≤ A
√
x+B implies x ≤ A2 + 2B),

Pf ≤ 2Pnf +
1

w−1(r)

⎛
⎝4ψ(r) + r

√
2 log 1

δ

n
+

8 log 1
δ

3n

⎞
⎠

2

. (25)

Since the function fn corresponding to the empirical risk minimizer satisfies Pnfn ≤ 0, we obtain that, on the
event E,

Pfn ≤ max

⎛
⎜⎝w−1(r),

1
w−1(r)

⎛
⎝4ψ(r) + r

√
2 log 1

δ

n
+

8 log 1
δ

3n

⎞
⎠

2
⎞
⎟⎠ .

To minimize the right-hand side, we look for the value of r which makes the two quantities in the maximum
equal, that is, w(r∗(δ)) if r∗(δ) is smaller than 1 (otherwise the first statement in the theorem is trivial).
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Now, taking r = w(r∗(δ)) in (24), as 0 ≤ Pfn ≥ r∗(δ), we also have

−Pnfn ≤ w(r∗(δ))

⎛
⎝4

ψ(w(r∗(δ)))
w(r∗(δ))

+

√
2 log 1

δ

n
+

8 log 1
δ

3w(r∗(δ))n

⎞
⎠

= r∗(δ).

This proves the first part of Theorem 5.5. �

5.3.4. Consequences

To understand the meaning of Theorem 5.5, consider the case w(x) = (x/h)α/2 with α ≤ 1. Observe that
such a choice of w is possible under the Mammen-Tsybakov noise condition. Moreover, if we assume that C
is a vc class with vc-dimension V , then it can be shown (see, e.g., Massart [160], Bartlett, Bousquet, and
Mendelson [25, 125]) that

ψ(x) ≤ Cx

√
V

n
log n

so that ε∗ is upper bounded by

C2/(2−α)

(
V logn
nhα

)1/(2−α)

.

We can plug this upper bound into inequality (22). Thus, with probability larger than 1 − δ,

L(gn) − L∗ ≤ 4
(

1
nhα

)1/(2−α)(
8(C2V logn)1/(2−α) +

(
(C2V logn)(α−1)/(2−α) + 4

)
log

1
δ

)
.

5.3.5. An extended local analysis

In the preceding sections, we assumed that the Bayes classifier g∗ belongs to the class C and in the description
of the consequences that C is a vc class (and is, therefore, relatively “small”).

As already pointed out, in realistic settings, it is more reasonable to assume that the Bayes classifier is
only approximated by C. Fortunately, the above-described analysis, the so-called peeling device, is robust and
extends to the general case. In the sequel we assume that g′ minimizes L(g) over g ∈ C, be we do not assume
that g′ = g∗.

The loss class F , its star-hull F∗ and the function ψ are defined as in Section 5.3.3, that is,

F = {(x, y) �→ �g(x) �=y − �g∗(x) �=y : g ∈ C} .

Notice that for f ∈ F or f ∈ F∗, we still have Pf ≥ 0. Also, denoting by fn the function in F corresponding
to the empirical risk minimizer gn, and by f ′ the function in F corresponding to g′, we have Pnfn − Pnf

′ ≤ 0.
Let w(·) be defined as in Section 5.3.3, that is, the smallest function satisfying w(r) ≥ supf∈F ,Pf≤r

√
Var[f ]

such that w(r)/
√
r is non-increasing. Let again ε∗ be defined as the positive solution of r = ψ(w(r)).

Theorem 5.8. For any δ > 0, let r∗(δ) denote the solution of

r = 4ψ(w(r)) + 2w(r)

√
2 log 2

δ

n
+

16 log 2
δ

3n

and ε∗ the positive solution of equation r = ψ(w(r)). Then for any θ > 0, with probability at least 1 − δ, the
empirical risk minimizer gn satisfies

L(gn) − L(g′) ≤ θ (L(g′) − L(g∗)) +
(1 + θ)2

4θ
r∗(δ) ,
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and

L(gn) − L(g′) ≤ θ (L(g′) − L(g∗)) +
(1 + θ)2

4θ

(
32ε∗ +

(
4
w2(ε∗)
ε∗

+
32
3

)
log 2

δ

n

)
.

Remark 5.9. When g′ = g∗, the bound in this theorem has the same form as the upper bound in (22).

Remark 5.10. The second bound in the Theorem follows from the first one in the same way as Inequality (22)
follows from Inequality (21). In the proof, we focus on the first bound.

The proof consists mostly of replacing the observation that Ln(gn) ≤ Ln(g∗) in the proof of Theorem 5.5 by
Ln(gn) ≤ Ln(g′).

Proof. Let r denote a positive real. Using the same approach as in the proof of Theorem 5.5, that is, by applying
Talagrand’s inequality to the reweighted star-hull F∗, we get that with probability larger than 1 − δ, for all
f ∈ F such that Pf ≥ r,

Pf − Pnf ≤ T (f) ∨ r
r

⎛
⎝4ψ(r) + r

√
2 log 2

δ

n
+

8 log 2
δ

3n

⎞
⎠ ,

while we may also apply Bernstein’s inequality to −f ′ and use the fact that
√

Var(f ′) ≤ w(Pf) for all f ∈ F :

Pnf
′ − Pf ′ ≤

√
Var(f ′)

√
2 log 2

δ

n
+

8 log 2
δ

3n
≤ (w(Pf) ∨ r)

√
2 log 2

δ

n
+

8 log 2
δ

3n
·

Adding the two inequalities, we get that, with probability larger than 1 − δ, for all f ∈ F

(Pf − Pf ′) + (Pnf
′ − Pnf) ≤ w(Pf) ∨ r

r

⎛
⎝4ψ(r) + 2r

√
2 log 2

δ

n
+

16 log 2
δ

3n

⎞
⎠ .

If we focus on f = fn, then the two terms in the left-hand-side are positive. Now we substitute w(r∗(δ)) for r
in the inequalities. Hence, using arguments that parallel the derivation of (25) we get that, on an event that
has probability larger than 1 − δ, we have either Pfn ≤ r∗(δ) or at least

Pfn − Pf ′ ≤
√
Pfn√
r∗(δ)

⎛
⎝4ψ(w(r∗(δ))) + 2w(r∗(δ))

√
2 log 2

δ

n
+

16 log 2
δ

3n

⎞
⎠ =

√
Pfn

√
r∗(δ) .

Standard computations lead to the first bound in the theorem. �

Remark 5.11. The bound of Theorem 5.8 helps identify situations where taking into account noise conditions
improves on naive risk bounds. This is the case when the approximation bias is of the same order of magnitude
as the estimation bias. Such a situation occurs when dealing with a plurality of models, see Section 8.

Remark 5.12. The bias term L(g′) − L(g∗) shows up in Theorem 5.8 because we do not want to assume any
special relationship between Var[�g(X) �=Y − �g′(X) �=Y ] and L(g) − L(g′). Such a relationship may exists when
dealing with convex risks and convex models. In such a case, it is usually wise to take advantage of it.
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5.4. Cost functions

The refined bounds described in the previous section may be carried over to the analysis of classification
rules based on the empirical minimization of a convex cost functional An(f) = (1/n)

∑n
i=1 φ(−f(Xi)Yi), over a

class F of real-valued functions as is the case in many popular algorithms including certain versions of boosting
and SVM’s. The refined bounds improve the ones described in Section 4.

Most of the arguments described in the previous section work in this framework as well, provided the loss
function is Lipschitz and there is a uniform bound on the functions (x, y) �→ φ(−f(x)y). However, some
extra steps are needed to obtain the results. On the one hand, one relates the excess misclassification error
L(f) − L∗ to the excess loss A(f) − A∗. According to [27] Zhang’s lemma (11) may be improved under the
Mammen-Tsybakov noise conditions to yield

L(f) − L(f∗) ≤
(

2sc

β1−s
(A(f) −A∗)

)1/(s−sα+α)

.

On the other hand, considering the class of functions

M = {mf(x, y) = φ(−yf(x)) − φ(−yf∗(x)) : f ∈ F},

one has to relate Var(mf ) to Pmf , and finally compute the modulus of continuity of the Rademacher process
indexed by M. We omit the often somewhat technical details and direct the reader to the references for the
detailed arguments.

As an illustrative example, recall the case when F = Fλ is defined as in (7). Then, the empirical minimizer
fn of the cost functional An(f) satisfies, with probability at least 1 − δ,

A(fn) −A∗ ≤ C

(
n− 1

2 ·V +2
V +1 +

log(1/δ)
n

)

where the constant C depends on the cost functional and the vc dimension V of the base class C. Combining
this with the above improvement of Zhang’s lemma, one obtains significant improvements of the performance
bound of Theorem 4.4.

5.5. Minimax lower bounds

The purpose of this section is to investigate the accuracy of the bounds obtained in the previous sections.
We seek answers for the following questions: are these upper bounds (at least up to the order of magnitude)
tight? Is there a much better way of selecting a classifier than minimizing the empirical error?

Let us formulate exactly what we are interested in. Let C be a class of decision functions g : Rd → {0, 1}.
The training sequence Dn = ((X1, Y1), . . ., (Xn, Yn)) is used to select the classifier gn(X) = gn(X,Dn) from C,
where the selection is based on the data Dn. We emphasize here that gn can be an arbitrary function of the
data, we do not restrict our attention to empirical error minimization.

To make the exposition simpler, we only consider classes of functions with finite vc dimension. As before,
we measure the performance of the selected classifier by the difference between the error probability L(gn) of
the selected classifier and that of the best in the class, LC = infg∈C L(g). In particular, we seek lower bounds
for

sup�L(gn) − LC ,
where the supremum is taken over all possible distributions of the pair (X,Y ). A lower bound for this quantity
means that no matter what our method of picking a rule from C is, we may face a distribution such that our
method performs worse than the bound.

Actually, we investigate a stronger problem, in that the supremum is taken over all distributions with LC
kept at a fixed value between zero and 1/2. We will see that the bounds depend on n, V the vc dimension of
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C, and LC jointly. As it turns out, the situations for LC > 0 and LC = 0 are quite different. Also, the fact that
the noise is controlled (with the Mammen-Tsybakov noise conditions) has an important influence.

Integrating the deviation inequalities such as Corollary 5.3, we have that for any class C of classifiers with
vc dimension V , a classifier gn minimizing the empirical risk satisfies

�L(gn) − LC ≤ O

(√
LCVC logn

n
+
VC logn

n

)
,

and also

�L(gn) − LC ≤ O

(√
VC
n

)
.

Let C be a class of classifiers with vc dimension V . Let P be the set of all distributions of the pair (X,Y ) for
which LC = 0. Then, for every classification rule gn based upon X1, Y1, . . . , Xn, Yn, and n ≥ V − 1,

sup
P∈P

�L(gn) ≥ V − 1
2en

(
1 − 1

n

)
. (26)

This can be generalized as follows. Let C be a class of classification functions with vc dimension V ≥ 2. Let P
be the set of all probability distributions of the pair (X,Y ) for which for fixed L ∈ (0, 1/2),

L = inf
g∈C

L(g).

Then, for every classification rule gn based upon X1, Y1, . . . , Xn, Yn,

sup
P∈P

�(L(gn) − L) ≥
√
L(V − 1)

32n
if n ≥ V − 1

8
max

(
2

(1 − 2L)2
,
1
L

)
. (27)

In the extreme case of the Mammen-Tsybakov noise condition, that is, when supx |2η(x) − 1| ≥ h for some
positive h, we have seen that the rate can be improved and that we essentially have, when gn is the empirical
error minimizer,

�(L(gn) − L∗) ≤ C

(√
V

n
∧ V logn

nh

)
,

no matter what L∗ is, provided L∗ = LC . There also exist lower bounds under these circumstances.
Let C be a class of classifiers with vc dimension V . Let P be the set of all probability distributions of the

pair (X,Y ) for which
inf
g∈C

L(g) = L∗,

and assume that |η(X) − 1/2| ≥ h almost surely where s > 0 is a constant. Then, for every classification rule
gn based upon X1, Y1, . . . , Xn, Yn,

sup
P∈P

�(L(gn) − L∗) ≥ C

(√
V

n
∧ V

nh

)
. (28)

Thus, there is a small gap between upper and lower bounds (essentially of a logarithmic factor). This gap can
be reduced when the class of functions is rich enough, where richness means that there exists some d such that
all dichotomies of size d can be realized by functions in the class. When C is such a class, under the above
conditions, one can improve (28) to get

sup
P
�(L(gn) − L∗) ≥ K(1 − s)

d

ns

(
1 + log

ns2

d

)
if s ≥

√
d/n.
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Bibliographical remarks. Inequality (12) is known as Hoeffding’s inequality [109], while (13) is referred
to as Bernstein’s inequality [34]. The constants shown here in Bernstein’s inequality actually follow from an
inequality due to Bennett [33]. Theorem 5.1 and their corollaries (16), and Corollary 5.3 are due to Vapnik
and Chervonenkis [230,231]. The proof sketched here is due to Anthony and Shawe-Taylor [11]. Regarding the
corollaries of this result, (14) is due to Pollard [181] and (15) is due to Haussler [105]. Breiman, Friedman,
Olshen, and Stone [53] also derive inequalities similar, in spirit, to (14).

The fact that the variance can be related to the expectation and that this can be used to get improved
rates has been known for a while the context of regression function estimation or other statistical problems
(see [110, 224, 225] and references therein). For example, asymptotic results based on this were obtained by
van de Geer [222]. For regression, Birgé and Massart [36] and Lee, Bartlett and Williamson [134] proved
exponential inequalities The fact that this phenomenon also occurs in the context of discriminant analysis and
classification, under conditions on the noise (sometimes called margin) has been pointed out by Mammen and
Tsybakov [151], (see also Polonik [182] and Tsybakov [218] for similar elaborations on related problems like
excess-mass maximization or density level-sets estimation). Massart [160] showed how to use optimal noise
conditions to improve model selection by penalization.

Talagrand’s inequality for empirical processes first appeared in [210]. For various improvements, see
Ledoux [132], Massart [159], Rio [184]. The version presented in Theorem 5.4 is an application of the refinement
given by Bousquet [47]. Variations on the theme and detailed proofs appeared in [48].

Several methods have been developed in order to obtain sharp rates for empirical error minimization (or
M -estimation). A classical trick is the so-called peeling technique where the idea is to cut the class of interest
into several pieces (according to the variance of the functions) and to apply deviation inequalities separately to
each sub-class. This technique, which goes back to Huber [110], is used, for example, by van de Geer [222–224].
Another approach consists in weighting the class and was used by Vapnik and Chervonenkis [230] in the special
case of binary valued functions and extended by Pollard [181], for example. Combining this approach with
concentration inequalities was proposed by Massart [160] and this is the approach we have taken here.

The fixed point of the modulus of continuity of the empirical process has been known to play a role in the
asymptotic behavior of M -estimators [225]. More recently non-asymptotic deviation inequalities involving this
quantity were obtained, essentially in the work of Massart [160] and Koltchinskii and Panchenko [126]. Both
approaches use a version of the peeling technique, but the one of Massart uses in addition a weighting approach.
More recently, Mendelson [171] obtained similar results using a weighting technique but a peeling into two
subclasses only. The main ingredient was the introduction of the star-hull of the class (as we do it here). This
approach was further extended in [25] where the peeling and star-hull approach are compared.

It is pointed out in recent results of Bartlett, Mendelson, and Philips [30] and Koltchinskii [125] that sharper
and simpler bounds may be obtained by taking Rademacher averages over level sets of the excess risk rather
than on L2(P ) balls.

Empirical estimates of the fixed point of type ε∗ were studied by Koltchinskii and Panchenko [126] in the
zero error case. In a related work, Lugosi and Wegkamp [147] obtain bounds in terms of empirically estimated
localized Rademacher complexities without noise conditions. In their approach, the complexity of a subclass
of C containing only classifiers with a small empirical risk is used to obtain sharper bounds. A general result,
applicable under general noise conditions, was proven by Bartlett, Bousquet and Mendelson [25].

Replacing the inequality by an equality in the definition of ψ (thus making the quantity smaller) can yield
better rates for certain classes as shown by Bartlett and Mendelson [30]. Applications of results like Theorem 5.5
to classification with vc classes of functions were investigated by Massart and Nédélec [162].

Properties of convex loss functions were investigated by Lin [139], Steinwart [204], and Zhang [242]. The
improvement of Zhang’s lemma under the Mammen-Tsybakov noise condition is due to Bartlett, Jordan and
McAuliffe [27] who establish more general results. For a further improvement we refer to Blanchard, Lugosi,
and Vayatis [40]. The cited improved rates of convergence for A(fn)−A∗ is also taken from [27] and [40] which
is based on bounds derived by Blanchard, Bousquet, and Massart [39]. The latter reference also investigates
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the special cost function (1 + x)+ under the extreme case α = 1 of the Mammen-Tsybakov noise condition, see
also Bartlett, Jordan and McAuliffe [27], Steinwart [193].

Massart [160] gives a version of Theorems 5.5 and 5.8 for the case w(r) = c
√
r and arbitrary bounded loss

functions which is extended for general w in Bartlett, Jordan and McAuliffe [27] and Massart and Nédélec [162].
Bartlett, Bousquet and Mendelson [25] give an empirical version of Theorem 5.5 in the case w(r) = c

√
r.

The lower bound (26) was proved by Vapnik and Chervonenkis [231], see also Haussler, Littlestone, and
Warmuth [107], Blumer, Ehrenfeucht, Haussler, and Warmuth [41]. Inequality (27) is due to Audibert [17] who
improves on a result of Devroye and Lugosi [73], see also Simon [198] for related results. The lower bounds under
conditions on the noise are due to Massart and Nédélec [162]. Related results under the Mammen-Tsybakov
noise condition for large classes of functions (i.e., with polynomial growth of entropy) are given in the work
of Mammen and Tsybakov [151] and Tsybakov [219]. Other minimax results based on growth rate of entropy
numbers of the class of function are obtained in the context of classification by Yang [237,238]. We notice that
the distribution which achieves the supremum in the lower bounds typically depends on the sample size. It is
thus reasonable to require the lower bounds to be derived in such a way that P does not depend on the sample
size. Such results are called strong minimax lower bounds and were investigated by Antos and Lugosi [14] and
Schuurmans [192].

6. PAC-bayesian bounds

We now describe the so-called pac-bayesian approach to derive error bounds. (pac is an acronym for
“probably approximately correct.”) The distinctive feature of this approach is that one assumes that the class
C is endowed with a fixed probability measure π (called the prior) and that the output of the classification
algorithm is not a single function but rather a probability distribution ρ over the class C (called the posterior).
Throughout this section we assume that the class C is at most countably infinite.

Given this probability distribution ρ, the error is measured under expectation with respect to ρ. In other
words, the quantities of interest are ρL(g) def=

∫
L(g)dρ(g) and ρLn(g) def=

∫
Ln(g)dρ(g). This models classifiers

whose output is randomized, which means that for x ∈ X , the prediction at x is a random variable taking values
in {0, 1} and equals to one with probability ρg(x) def=

∫
g(x)dρ(g). It is important to notice that ρ is allowed to

depend on the training data.
We first show how to get results relating ρL(g) and ρLn(g) using basic techniques and deviation inequalities.

A preliminary remark is that if ρ does not depend on the training sample, then ρLn(g) is simply a sum of
independent random variables whose expectation is ρL(g) so that Hoeffding’s inequality applies trivially.

So the difficulty comes when ρ depends on the data. By Hoeffding’s inequality, for the class F = {�g(x) �=y :
g ∈ C}, one easily gets that for each fixed f ∈ F ,

�

{
Pf − Pnf ≥

√
log(1/δ)

2n

}
≤ δ.

For any positive weights π(f) with
∑

f∈F π(f) = 1, one may write a weighted union bound as follows

�

{
∃f ∈ F : Pf − Pnf ≥

√
log(1/(π(f)δ))

2n

}
≤

∑
f∈F

�

{
Pf − Pnf ≥

√
log(1/(π(f)δ))

2n

}

≤
∑
f∈F

π(f)δ = δ,

so that we obtain that with probability at least 1 − δ,

∀f ∈ F , Pf − Pnf ≤
√

log(1/π(f)) + log(1/δ)
2n

· (29)
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It is interesting to notice that now the bound depends on the actual function f being considered and not just
on the set F . Now, observe that for any functional I, (∃f ∈ F , I(f) ≥ 0) ⇔ (∃ρ, ρI(f) ≥ 0) where ρ denotes
an arbitrary probability measure on F so that we can take the expectation of (29) with respect to ρ and use
Jensen’s inequality. This gives, with probability at least 1 − δ,

∀ρ, ρ(Pf − Pnf) ≤
√
K(ρ, π) +H(ρ) + log(1/δ)

2n

where K(ρ, π) denotes the Kullback-Leibler divergence between ρ and π and H(ρ) is the entropy of ρ. Rewriting
this in terms of the class C, we get that, with probability at least 1 − δ,

∀ρ, ρL(g) − ρLn(g) ≤
√
K(ρ, π) +H(ρ) + log(1/δ)

2n
· (30)

The left-hand side is the difference between true and empirical errors of a randomized classifier which uses ρ
as weights for choosing the decision function (independently of the data). On the right-hand side the entropy
H of the distribution ρ (which is small when ρ is concentrated on a few functions) and the Kullback-Leibler
divergence K between ρ and the prior distribution π appear.

It turns out that the entropy term is not necessary. The pac-Bayes bound is a refined version of the
above which is proved using convex duality of the relative entropy. The starting point is the following inequality
which follows from convexity properties of the Kullback-Leibler divergence (or relative entropy): for any random
variable Xf ,

ρXf ≤ inf
λ>0

1
λ

(
log πeλXf +K(ρ, π)

)
.

This inequality is applied to the random variable Xf = (Pf − Pnf)2+ and this means that we have to upper
bound πeλ(Pf−Pnf)2+ . We use Markov’s inequality and Fubini’s theorem to get

�
{
πeλXf ≥ ε

} ≤ ε−1π�eλXf .

Now for a given f ∈ F ,

�eλ(Pf−Pnf)2+ = 1 +
∫ ∞

1

�

{
eλ(Pf−Pnf)2+ ≥ t

}
dt

= 1 +
∫ ∞

0

�
{
λ(Pf − Pnf)2+ ≥ t

}
etdt

= 1 +
∫ ∞

0

�

{
Pf − Pnf ≥

√
t/λ
}

etdt

≤ 1 +
∫ ∞

0

e−2nt/λ+tdt = 2n

where we have chosen λ = 2n− 1 in the last step. With this choice of λ we obtain

�
{
πeλXf ≥ ε

} ≤ 2n
ε
·

Choosing ε = 2nδ−1, we finally obtain that with probability at least 1 − δ,

1
2n− 1

log πeλ(Pf−Pnf)2+ ≤ 1
2n− 1

log(2n/δ).

The resulting bound has the following form.
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Theorem 6.1. (pac-bayesian bound.) With probability at least 1 − δ,

∀ρ, ρL(g) − ρLn(g) ≤
√
K(ρ, π) + log(2n) + log(1/δ)

2n− 1
·

This should be compared to (30). The main difference is that the entropy of ρ has disappeared and we now
have a logarithmic factor instead (which is usually dominated by the other terms). To some extent, one can
consider that the pac-Bayes bound is a refined union bound where the gain happens when ρ is not concentrated
on a single function (or more precisely ρ has entropy larger than logn).

A natural question is whether one can take advantage of pac-bayesian bounds to obtain bounds for deter-
ministic classifiers (returning a single function and not a distribution) but this is not possible with Theorem 6.1
when the space F is uncountable. Indeed, the main drawback of pac-bayesian bounds is that the complexity
term blows up when ρ is concentrated on a single function, which corresponds to the deterministic case. Hence,
they cannot be used directly to recover bounds of the type discussed in previous sections. One way to avoid
this problem is to allow the prior to depend on the data. In that case, one can work conditionally on the data
(using a double sample trick) and in certain circumstances, the coordinate projection of the class of functions
is finite so that the complexity term remains bounded.

Another approach to bridge the gap between the deterministic and randomized cases is to consider successive
approximating sets (similar to ε-nets) of the class of functions and to apply pac-bayesian bounds to each of
them. This goes in the direction of chaining or generic chaining.

Bibliographical remarks. The pac-bayesian bound of Theorem 6.1 was derived by McAllester [163] and later
extended in [164, 165]. Langford and Seeger [130] and Seeger [194] gave an easier proof and some refinements.
The symmetrization and conditioning approach was first suggested by Catoni and studied in [57–59]. The
chaining idea appears in the work of Kolmogorov [122, 123] and was further developed by Dudley [81] and
Pollard [180]. It was generalized by Talagrand [213] and a detailed account of recent developments is given
in [217]. The chaining approach to pac-bayesian bounds appears in Audibert and Bousquet [16]. Audibert [17]
offers a thorough study of pac-bayesian results.

7. Stability

Given a classifier gn, one of the fundamental problems is to obtain estimates for the magnitude of the
difference L(gn)−Ln(gn) between the true risk of the classifier and its estimate Ln(gn), measured on the same
data on which the classifier was trained. Ln(gn) is often called the resubstitution estimate of L(gn).

It has been pointed out by various authors that the size of the difference L(gn)−Ln(gn) is closely related to
the “stability” of the classifier gn. Several notions of stability have been introduced, aiming at capturing this
idea. Roughly speaking, a classifier gn is “stable” if small perturbations in the data do not have a big effect on
the classifier. Under a proper notion of stability, concentration inequalities may be used to obtain estimates for
the quantity of interest.

A simple example of such an approach is the following. Consider the case of real-valued classifiers, when the
classifier gn is obtained by thresholding at zero a real-valued function fn : X → R. Given data
(X1, Y1), . . . , (Xn, Yn), denote by f i

n the function that is learned from the data after replacing (Xi, Yi) by
an arbitrary pair (x′i, y

′
i). Let φ be a cost function as defined in Section 4 and assume that, for any set of data,

any replacement pair, and any x, y,

|φ(−yfn(x)) − φ(−yf i
n(x))| ≤ β,

for some β > 0 and that φ(−yf(x)) is bounded by some constant M > 0. This is called the uniform stability
condition. Under this condition, it is easy to see that

� [A(fn) −An(fn)] ≤ β
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(where the functionals A and An are defined in Sect. 4). Moreover, by the bounded differences inequality, one
easily obtains that with probability at least 1 − δ,

A(fn) −An(fn) ≤ β + (2nβ +M)

√
log(1/δ)

2n
·

Of course, to be of interest, this bound has to be such that β is a non-increasing function of n such that
√
nβ → 0

as n→ ∞.
This turns out to be the case for regularization-based algorithms such as the support vector machine. Hence

one can obtain error bounds for such algorithms using the stability approach. We omit the details and refer the
interested reader to the bibliographical remarks for further reading.

Bibliographical remarks. The idea of using stability of a learning algorithm to obtain error bounds was
first exploited by Rogers and Wagner [186], Devroye and Wagner [74,75]. Kearns and Ron [116] investigated it
further and introduced formally several measures of stability. Bousquet and Elisseeff [49] obtained exponential
bounds under restrictive conditions on the algorithm, using the notion of uniform stability. These conditions
were relaxed by Kutin and Niyogi [129]. The link between stability and consistency of the empirical error
minimizer was studied by Poggio, Rifkin, Mukherjee and Niyogi [179].

8. Model selection

8.1. Oracle inequalities

When facing a concrete classification problem, choosing the right set C of possible classifiers is a key to
success. If C is so large that it can approximate arbitrarily well any measurable classifier, then C is susceptible
to overfitting and is not suitable for empirical risk minimization, or empirical φ-risk minimization. On the other
hand, if C is a small class, for example a class with finite vc dimension, C will be unable to approximate in any
reasonable sense a large set of measurable classification rules.

In order to achieve a good balance between estimation error and approximation error, a variety of techniques
have been considered. In the remainder of the paper, we will focus on the analysis of model selection methods
which could be regarded as heirs of the structural risk minimization principle of Vapnik and Chervonenkis.

Model selection aims at getting the best of different worlds simultaneously. Consider a possibly infinite
collection of classes of classifiers C1, C2, . . . , Ck, ... Each class is called a model. Our guess is that some of these
models contain reasonably good classifiers for the pattern recognition problem we are facing. Assume that for
each of these models, we have a learning algorithm that picks a classification rule g∗n,k from Ck when given
the sample Dn. The model selection problem may then be stated as follows: select among (g∗n,k)k a “good”
classifier.

Notice here that the word “selection” may be too restrictive. Rather that selecting some special g∗n,k, we
may consider combining them using a voting scheme and use a boosting algorithm where the base class would
just be the (data-dependent) collection (g∗n,k)k. For the sake of brevity, we will just focus on model selection in
the narrow sense.

In an ideal world, before we see the data Dn, a benevolent oracle with the full knowledge of the noise
conditions and of the Bayes classifier would tell us which model (say k̃) minimizes the expected excess risk
E[L(g∗n,k) − L∗], if such a model exists in our collection. Then we could use our learning rule for this most
promising model with the guarantee that

E

[
L(g∗

n,k̃
) − L∗

]
≤ inf

k
E
[
L(g∗n,k) − L∗] .

But as the most promising model k̃ depends on the learning problem and may even not exist, there is no hope
to perfectly mimic the behavior of the benevolent and powerful oracle. What statistical learning theory has
tried hard to do is to approximate the benevolent oracle in various ways.
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It is important to think about what could be reasonable upper bounds on the right-hand side of the preceding
oracle inequality. It seems reasonable to incorporate a factor C at least as large as 1 and additive terms of the
form C′γ(k, n)/n where γ(·) is a slowly growing function of its arguments and to ask for

E

[
L(g∗

n,k̂
) − L∗

]
≤ C inf

k

(
E
[
L(g∗n,k) − L∗]+ C′ γ(k, n)

n

)
, (31)

where k̂ is the index of the model selected according to empirical evidence.
Let L∗

k = infg∈Ck
L(g) for each model index k. In order to understand the role of γ(·), it is useful to split

E[L(g∗n,k) − L∗] in a bias term L∗
k − L∗ and a “variance” term E[L(g∗n,k) − L∗

k]. The last inequality translates
into

E

[
L(g∗

n,k̂
) − L∗

]
≤ C inf

k

(
L∗

k − L∗ + E
[
L(g∗n,k) − L∗

k

]
+ C′ γ(k, n)

n

)
.

The term C′ γ(k,n)
n should ideally be at most of the same order of magnitude as L(g∗n,k) − L∗

k.
To make the roadmap more detailed, we may invoke the robust analysis of the performance of empirical

risk minimization sketched in Section 5.3.5. Recall that w(·) was defined in such a way that
√

Var(�g �=g∗) ≤
w (L(g) − L∗) for all classifiers g ∈ ∪kCk and such that w(r)/

√
r is non-increasing. Explicit constructions of

w(·) were possible under the Mammen-Tsybakov noise conditions.
To take into account the plurality and the richness of models, for each model Ck, let ψk be defined as

ψk(r) = ERn

{
f ∈ F∗

k :
√

Var(f) ≤ r
}

where F∗
k is the star-hull of the loss class defined by Ck (see Sect. 5.3.5). For each k, let ε∗k be defined as the

positive solution of r = ψk(w(r)). Then, viewing Theorem 5.8, we can get sensible upper bounds on the excess
risk for each model and we may look for oracle inequalities of the form

E

[
L(g∗

n,k̂
) − L∗

]
≤ C inf

k

(
L∗

k − L∗ + C′
(
ε∗k +

w2(ε∗k)
n ε∗k

log k
n

))
. (32)

The right-hand side is then of the same order of magnitude as the infimum of the upper bounds on the excess
risk described in Section 5.3.

8.2. A glimpse at model selection methods

As we now have a clear picture of what we are after, we may look for methods suitable to achieve this goal.
The model selection problem looks like a multiple hypotheses testing problem: we have to test many pairs of
hypotheses where the null hypothesis is L(g∗n,k) ≤ L(g∗n,k′) against the alternative L(g∗n,k) > L(g∗n,k′). Depending
on the scenario, we may or may not have fresh data to test these pairs of hypotheses. Whatever the situation,
the tests are not independent. Furthermore there does not seem to be any obvious way to combine possibly
conflicting answers.

Most data-intensive model selection methods we are aware of can be described in the following way: for each
pair of models Ck and Ck′ , a threshold τ(k, k′, Dn) is built and model Ck is favored with respect to model C′

k if

Ln(g∗n,k) − Ln(g∗n,k′) ≤ τ(k, k′, Dn) .

The threshold τ(·, ·, ·) may or may not depend on the data. Then the results of the many pairwise tests are
combined in order to select a model.

Model selection by penalization may be regarded as a simple instance of this scheme. In the penalization
setting, the threshold τ(k, k′, Dn) is the difference between two terms that depend on the models:

τ(k, k′, Dn) = pen(n, k′) − pen(n, k) .
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The selected index k̂ minimizes the penalized empirical risk

Ln(g∗n,k) + pen(n, k) .

Such a scheme is attractive since the combination of the results of the pairwise tests is extremely simple. As a
matter of fact, it is not necessary to perform all pairwise tests, it is enough to find the index that minimizes
the penalized empirical risk. Nevertheless, performing model selection using penalization suffers from some
drawbacks: it will become apparent below that the ideal penalty that should be used in order to mimic the
benevolent oracle, should, with high probability, be of the order of

E
[
L(g∗n,k) − L∗] .

As seen in Section 5.3.5, the sharpest bounds we can get on the last quantity depend on noise conditions,
model complexity and on the model approximation capability L∗

k − L∗. Although noise conditions and model
complexity can be estimated from the data (notwithstanding computational problems), estimating the model
bias L∗

k−L∗ seems to be beyond the reach of our understanding. In fact, estimating L∗ is known to be a difficult
statistical problem, see Devroye, Györfi, and Lugosi [72], Antos, Devroye, and Györfi [12].

As far as classification is concerned, model selection by penalization may not put the burden where it should
be. If we allow the combination of the results of pairwise tests to be somewhat more complicated than a simple
search for the minimum in a list, we may avoid the penalty calibration bottleneck. In this respect, the so-called
pre-testing method has proved to be quite successful when models are nested. The cornerstone of the pre-testing
methods consists of the definition of the threshold τ(k, k′, Dn) for k ≤ k′ that takes into account the complexity
of Ck, as well as the noise conditions. Instead of attempting an unbiased estimation of the excess risk in each
model as the penalization approach, the pre-testing approach attempts to estimate differences between excess
risks.

But whatever promising the pre-testing method may look like, it will be hard to convince practitioners to
abandon cross-validation and other resampling methods. Indeed, a straightforward analysis of the hold-out
approach to model selection suggests that hold-out enjoys almost all the desirable features of any foreseeable
model selection method.

The rest of this section is organized as follows. In Section 8.3 we illustrate how the results collected in
Sections 3 and 4 can be used to design simple penalties and derive some easy oracle inequalities that capture
classical results concerning structural risk minimization. It will be obvious that these oracle inequalities are
far from being satisfactory. In Section 8.4, we point out the problems that have to be faced in order to
calibrate penalties using the refined and robust analysis of empirical risk minimization given in Section 5.3.5. In
Section 8.6, we rely on these developments to illustrate the possibilities of pre-testing methods and we conclude
in Section 8.7 by showing how hold-out can be analyzed and justified by resorting to a robust version of the
elementary argument given at the beginning of Section 5.2.

Bibliographical remarks. Early work on model selection in the context of regression or prediction with
squared loss can be found in Mallows [150], Akaike [6]. Mallows introduced the Cp criterion in [150].
Grenander [102] discusses the use of regularization in statistical inference. Vapnik and Chervonenkis [231] pro-
posed the structural risk minimization approach to model selection in classification, see also Vapnik [227–229],
Lugosi and Zeger [148].

The concept of oracle inequality was advocated by Donoho and Johnstone [76]. A thorough account of the
concept of oracle inequality can be found in Johnstone [113].

Barron [21], Barron and Cover [22,23] investigate model selection using complexity regularization which is a
kind of penalization in the framework of discrete models for density estimation and regression. A general and
influential approach to non-parametric inference through penalty-based model selection is described in Barron,
Birgé and Massart [20], see also Birgé and Massart [37,38]. These papers provide a profound account of the use
of sharp bounds on the excess risk for model selection via penalization. In particular, these papers pioneered the
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use of sharp concentration inequalities in solving model selection problems, see also Baraud [19], Castellan [56]
for illustrations in regression and density estimation.

A recent account of inference methods in non-parametric settings can be found in Tsybakov [220].
Kernel methods and nearest-neighbor rules have been used to design universal learning rules and in some

sense bypass the model selection problem. We refer to Devroye, Györfi and Lugosi [72] for exposition and
references.

Hall [103] and many other authors use resampling techniques to perform model selection.

8.3. Naive penalization

We start with describing a naive approach that uses ideas exposed at the first part of this survey. Penalty-
based model selection chooses the model k̂ that minimizes

Ln(g∗n,k) + pen(n, k),

among all models (Ck)k∈N. In other words, the selected classifier is g∗
n,k̂

. As in the preceding section, pen(n, k)
is a positive, possibly data-dependent, quantity. The intuition behind using penalties is that as large models
tend to overfit, and are thus prone to producing excessively small empirical risks, they should be penalized.

The naive penalties considered in this section are estimates of the expected amount of overfitting
E[supg∈Ck

L(g) − Ln(g)]. Taking the expectation as a penalty is unrealistic as it assumes the knowledge of
the true underlying distribution. Therefore, it should be replaced by either a distribution-free penalty or a
data-dependent quantity. Distribution-free penalties may lead to highly conservative bounds. The reason is
that since a distribution-free upper bound holds for all distributions, it is necessarily loose in special cases when
the distribution is such that the expected maximal deviation is small. This may occur, for example, if the
distribution of the data is concentrated on a small-dimensional manifold and in many other cases. In recent
years, several data-driven penalization procedures have been proposed. Such procedures are motivated accord-
ing to computational or to statistical considerations. Here we only focus on statistical arguments. Rademacher
averages, as presented in Section 3 are by now regarded as a standard basis for designing data-driven penalties.

Theorem 8.1. For each k, let Fk = {�g(x) �=y : g ∈ Ck} denote the loss class associated with Ck. Let pen(n, k)
be defined by

pen(n, k) = 3Rn(Fk) +

√
log k
n

+
18 log k
n

· (33)

Let k̂ be defined as argmin
(
Ln(g∗n,k) + pen(n, k)

)
.Then

�

[
L(g∗

n,k̂
) − L∗

]
≤ inf

k

(
L(g∗k) − L∗ + 3� [Rn(Fk)] +

√
log k
n

+
18 log k
n

)
+

√
2π
n

+
18
n
· (34)

Inequality (34) has the same form as the generic oracle inequality (31). The multiplicative constant in front of
the infimum is optimal since it is equal to 1. At first glance, the additive term might seem quite satisfactory: if
noise conditions are not favorable, � [Rn(Fk)] is of the order of the excess risk in the k-th model. On the other
hand, in view of the oracle inequality (32) we are looking for, this inequality is loose when noise conditions are
favorable, for example, when the Mammen-Tsybakov conditions are enforced with some exponent α > 0.

In the sequel, we will sometimes uses the following property. Rademacher averages are sharply concentrated:
they not only satisfy the bounded differences inequality, but also “Bernstein-like” inequalities, given in the next
lemma.
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Lemma 8.2. Let Fk denote a class of functions with values in [−1, 1], and Rn(Fk) the corresponding conditional
Rademacher averages. Then

Var (Rn(Fk)) ≤ 1
n
� [Rn(Fk)]

� {Rn(Fk) ≥ � [Rn(Fk)] + ε} ≤ exp
(
− nε2

2(�[Rn(Fk)] + ε/3)

)

� {Rn(Fk) ≤ � [Rn(Fk)] − ε} ≤ exp
(
− nε2

2�[Rn(Fk)]

)
.

Proof of theorem 8.1. By the definition of the selection criterion, we have for all k,

L(g∗
n,k̂

) − L∗ ≤ L(g∗n,k) − L∗ − (
L(g∗n,k) − Ln(g∗n,k) − pen(n, k)

)
+
(
L(g∗

n,k̂
) − Ln(g∗

n,k̂
) − pen(n, k̂)

)
.

Taking expectations, we get

�

[
L(g∗

n,k̂
) − L∗

]
≤ �

[
L(g∗n,k) − L∗]−� [(L(g∗n,k) − Ln(g∗n,k)

)− pen(n, k)
]

+�
[(
L(g∗

n,k̂
) − Ln(g∗

n,k̂
) − pen(n, k̂)

)]
≤ �

[
L(g∗n,k) − L∗ + pen(n, k)

]
+�

[
sup

k

(
L(g∗n,k) − Ln(g∗n,k) − pen(n, k)

)]

≤ �
[
L(g∗n,k) − L∗ + pen(n, k)

]
+�

[
sup

k

(
sup
g∈Ck

(L(g) − Ln(g)) − pen(n, k)
)]

≤ �
[
L(g∗n,k) − L∗ + pen(n, k)

]
+
∑

k

�

[(
sup
g∈Ck

(L(g) − Ln(g)) − pen(n, k)
)

+

]
.

The tail bounds for Rademacher averages given in Lemma 8.2 can then be exploited as follows:

�

{
sup
g∈Ck

(L(g) − Ln(g)) ≥ pen(n, k) + 2δ
}

≤ �

{
sup
g∈Ck

(L(g) − Ln(g)) ≥ �

[
sup
g∈Ck

(L(g) − Ln(g))
]

+

√
log k
n

+ δ

}

+�
{
Rn(Fk) ≤ 2

3
� [Rn(Fk)] − 18 log k

3n
− δ

3

}
(using the bounded differences inequality for the first term and Lem. 8.2 for the second term)

≤ 1
k2

exp(−2nδ2) +
1
k2

exp
(
−nδ

9

)
·

Integrating by parts and summing with respect to k leads to the oracle inequality of the theorem. �

Bibliographical remarks. Data-dependent penalties were suggested by Lugosi and Nobel [145], and in the
closely related “luckiness” framework introduced by Shawe-Taylor, Bartlett, Williamson, and Anthony [195],
see also Freund [92].

Penalization based on Rademacher averages was suggested by Bartlett, Boucheron, and Lugosi [24] and
Koltchinskii [124]. For refinements and further development, see Koltchinskii and Panchenko [126],
Lozano [29, 142], Bartlett, Bousquet and Mendelson [25], Bousquet, Koltchinskii and Panchenko [50]. Lugosi
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and Wegkamp [147], Herbrich and Williamson [108], Mendelson and Philips [172]. The proof that Rademacher
averages, empirical vc-entropy and empirical vc-dimension are sharply concentrated around their mean can be
found in Boucheron, Lugosi, and Massart [45, 46].

Fromont [96] points out that Rademacher averages are actually a special case of weighted bootstrap estimates
of the supremum of empirical processes, and shows how a large collection of variants of bootstrap estimates can
be used in model selection for classification. We refer to Giné [100] and Efron et al. [85–87] for general results
on the bootstrap.

Empirical investigations on the performance of model selection based on Rademacher penalties can be found in
Lozano [142] and Bartlett, Boucheron, and Lugosi [24]. Both papers build on a framework elaborated in Kearns,
Mansour, Ng, and Ron [115]. Indeed, [115] is an early attempt to compare model selection criteria originating
in structural risk minimization theory, mdl (Minimum Description Length principle), and the performance of
hold-out estimates of overfitting. This paper introduced the interval problem where empirical risk minimization
and model selection can be performed in a computationally efficient way.

Lugosi and Wegkamp [147] propose a refined penalization scheme based on localized Rademacher complexities
that reconciles bounds presented in this section and the results described by Koltchinskii and Panchenko [126]
when the optimal risk equals zero.

8.4. Ideal penalties

Naive penalties that tend to overestimate the excess risk in each model lead to conservative model selection
strategies. For moderate sample sizes, they tend to favor small models. Encouraging results reported in
simulation studies should not mislead the readers. Model selection based on naive Rademacher penalization
manages to mimic the oracle when sample size is large enough to make the naive upper bound on the estimation
bias small with respect to the approximation bias.

As model selection is ideally geared toward situations where sample size is not too large, one cannot feel
satisfied by naive Rademacher penalties. We can guess quite easily what good penalties should be like. If we
could build penalties in such a way that, with probability larger than 1 − 1

2n k2 ,

L(g∗n,k) − L∗ ≤ C′ ((Ln(g∗n,k) − Ln(g∗) + pen(n, k)
)

+ C′′ log(2n k2)
n

,

then by the definition of model selection by penalization, and a simple union bound, with probability larger
than 1 − 1/n, for any k, we would have

L(g∗
n,k̂

) − L∗ ≤ L(g∗
n,k̂

) − L∗ + C′(Ln(g∗n,k) + pen(n, k)) − C′(Ln(g∗
n,k̂

) + pen(n, k̂))

≤ C′ (Ln(g∗n,k) − Ln(g∗) + pen(n, k)
)

+ C′′ log (2n k̂2)
n

≤ C′ (Ln(g∗k) − Ln(g∗) + pen(n, k)) + C′′ log(2n k̂2)
n

·

Assuming we only consider polynomially many models (as a function of n), this would lead to

EL(g∗
n,k̂

) − L∗ ≤ inf
k

{
C′ [E[L∗

k − L∗ + pen(n, k)]] +
C′′ log(2en)

n

}
+

1
n
·

Is this sufficient to meet the objectives set in Section 8.1?
This is where the robust analysis of empirical risk minimization (Sect. 5.3.5) comes into play. If we assume

that, with high probability, the quantities ε∗k defined at the end of Section 8.1 can be tightly estimated by
data-dependent quantities and used as penalties, then we are almost done.
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The following statement, that we abusively call a theorem, summarizes what could be achieved using such
“ideal penalties”. For the sake of brevity, we provide a theorem with C′ = 2, but some more care allows one to
develop oracle inequalities with arbitrary C′ > 1.

Theorem 8.3. If for every k

pen(n, k) ≥ 32ε∗k +
(

4
(w(ε∗k))2

ε∗k
+

32
3

)
log(4nk2)

n
, (35)

then
E[L(g∗

n,k̂
) − L∗] ≤ C′ inf

k
(L∗

k − L∗ + pen(n, k)) +
1
n
·

Most of the proof consists in checking that if pen(n, k) is chosen according to (35) then we can invoke the
robust results on learning rates stated in Theorem 5.8 to conclude.

Proof. Following the second bound in Theorem 5.8 (with θ = 1), with probability at least 1−∑k
1

2n k2 ≥ 1− 1
n ,

we have, for every k,

L(g∗n,k) − L(g∗) ≤ 2
(
Ln(g∗n,k) − Ln(g∗)

)
+
(

32ε∗k +
(

4
(w(ε∗k))2

ε∗k
+

32
3

)
log(4nk2)

n

)
,

that is,
L(g∗n,k) − L(g∗) ≤ 2

(
Ln(g∗n,k) − Ln(g∗) + pen(n, k)

)
.

The theorem follows by observing that L(g∗
n,k̂

) − L∗ ≤ 1. �

If pen(n, k) is about the same as the right-hand side of (35), then the oracle inequality of Theorem 8.3 has
the same form as the ideal oracle inequality described at the end of Section 8.1. This should nevertheless not
be considered as a definitive result but rather as an incentive to look for better penalties. It could also possibly
point toward a dead end. Theorem 8.3 actually calls for building estimators of the sequence (ε∗k), that is, of the
sequence of fixed points of functions ψk ◦ w. Recall that

ψk(w(r)) ≈ E [Rn {f : f ∈ F∗
k , Pf ≤ r}] .

If the star-shaped loss class {f : f ∈ F∗
k , Pf ≤ r} were known, given the fact that for a fixed class of functions

F , Rn(F) is sharply concentrated around its expectation, estimating ψk ◦w would be statistically feasible. But
the loss class of interest depends not only on the k-th model Ck, but also on the unknown Bayes classifier g∗.
We will not pursue the search for ideal data-dependent penalties and look for roundabouts. In the next section,
we will see that when g∗ ∈ Ck, even though g∗ is unknown, sensible estimates of ε∗k can be constructed. In
Section 8.6, we will see how to use these estimates in model selection.

Bibliographical remarks. The results described in this section are inspired by Massart [160] where the
concept of ideal penalty in classification is clarified. The notion that ideal penalties should be rooted in sharp
risk estimates goes back to the pioneering works of Akaike [6] and Mallows [150]. As far as classification
is concerned, a detailed account of these ideas can be found in the eighth chapter of Massart [161]. Various
approaches to the excess risk estimation in classification can be found in Bartlett, Bousquet, and Mendelson [25]
and Koltchinskii [125], where a discussion of the limits of penalization can also be found.

8.5. Localized Rademacher complexities

The purpose of this section is to show how the distribution-dependent upper bounds on the excess risk of
empirical risk minimization derived in Section 5.3 can be estimated from above and from below when the Bayes
classifier belongs to the model. This is not enough to make penalization work but it will prove convenient when
investigating a pre-testing method in the next section.
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In this section, we are concerned with a single model C which contains the Bayes classifier g∗. The minimizer
of the empirical risk will is denoted by gn. The loss class is F = {�g(X) �=Y − �g∗(X) �=Y : g ∈ C}. The functions
ψ(·) and w(·) are defined as in Section 5.3. The quantity ε∗ is defined as the solution of the fixed-point equation
r = ψ(w(r)). As, thanks to Theorems 5.5 and 5.8, ε∗ contains relevant information on the excess risk, it may
be tempting to try to estimate ε∗ from the data. However this is not the easiest way to proceed. As we will
need bounds with prescribed accuracy and confidence for the excess risk, we will rather try to estimate from
above and below the bound r∗(δ) defined in the statement of Theorem 5.5. Recall that r∗(δ) is defined as the
solution of the equation

r = 4ψ(w(r)) + w(r)

√
2 log 1

δ

n
+

8 log 1
δ

3n
·

In order to estimate r∗(δ), we estimate ψ(·) and w(·) by some functions ψ̂ and ŵ and solve the corresponding
fixed-point equations. The rationale for this is contained in the following proposition.

Proposition 8.4. Assume that the functions ψ̂ and ŵ satisfy the following conditions:
(1) ψ̂ and ŵ are non-negative, non-decreasing on [0, 1].
(2) The function r �→ ŵ(r)/

√
r is non-increasing.

(3) The function r �→ ψ̂(r)/r is non-increasing.
(4) ψ̂ ◦ w(r∗(δ)) > ψ(w(r∗(δ))).
(5) There exist constants κ1, κ2 ≥ 1 such that ψ̂(w(r∗(δ))) ≤ κ1ψ(κ2w(r∗(δ))).
(6) ŵ(r∗δ ) ≥ w(r∗δ ).
(7) There exist constants κ3, κ4 ≥ 1 such that ŵ(r∗δ ) ≤ κ3w(κ4r

∗(δ)).
Then the following holds:

(1) There exists r̂∗(δ) > 0, that solves r = 4ψ̂(ŵ(r)) + ŵ(r)
√

2 log 2
δ

n + 8 log 2
δ

3n .

(2) If κ = κ1κ2κ3
√
κ4, then

r∗(δ) ≤ r̂∗(δ) ≤ κr∗(δ).

The proof of the proposition relies on elementary calculus and is left to the reader. A pleasant consequence of
this lemma is that we may focus on the behavior of ψ̂ and ŵ at w(r∗(δ)) and r∗(δ). In order to build estimates
for ŵ, we will assume that w is defined by w(r) ≥ v(r) = sup{√Pα|g − g∗| : α ∈ [0, 1], α(L(g) − L∗) ≤ r}.
This ensures that w(r)/

√
r is non-increasing.

Before describing data-dependent functions ψ̂ and ŵ that satisfy the conditions of the lemma, we check that,
within model C, above a critical threshold related to r∗(δ), the empirical excess risk Ln(g) − Ln(gn) faithfully
reflects the excess risk L(g)− L(g∗). The following lemma and corollary could have been stated right after the
proof of Theorem 5.5 in Section 5. It should be considered as a collection of ratio-type concentration inequalities.

Lemma 8.5. With probability larger than 1 − 2δ for all g in C:

Ln(g) − Ln(gn) ≤ L(g) − L(g∗) +
(
r∗(δ) ∨

√
(L(g) − L(g∗)) r∗(δ)

)
and

L(g) − L(g∗) −
(
r∗(δ) ∨

√
(L(g) − L(g∗)) r∗(δ)

)
≤ Ln(g) − Ln(gn) .

The proof consists in revisiting the proof of Theorem 5.5. An interesting consequence of this observation is
the following corollary:

Corollary 8.6. There exists K ≥ 1 such that, with probability larger than 1 − δ,

{g ∈ C : L(g) − L(g∗) ≤ Kr∗(δ)} ⊆
{
g ∈ C : Ln(g) − Ln(gn) ≤ K

(
2 +

1√
K

)
r∗(δ)

}
,
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and, with probability larger than 1 − δ,

{g ∈ C : L(g) − L(g∗) ≥ Kr∗(δ)} ⊆
{
g ∈ C : Ln(g) − Ln(gn) ≥ K

(
1 − 1√

K

)
r∗(δ)

}
.

In order to compute approximations for ψ(·) and w(·) it will also be useful to rely on the fact that the L2(Pn)
metric structure of the loss class F faithfully reflect the L2(P ) metric on F . Note that, for any classifier g ∈ C,
(g(x) − g∗(x))2 = |�g(x) �=y − �g∗(x) �=y|. As a matter of fact, this is even easier to establish than the preceding
lemma. Squares of empirical L2 distances to g∗ are sums of i.i.d. random variables. So we are again in a position
to invoke tools from empirical process theory. Moreover the connection between P |g − g∗| and the variance of
|g − g∗| is obvious:

√
Var[g − g∗] ≤√P |g − g∗|.

Lemma 8.7. Let s∗(δ) denote the solution of the fixed-point equation

s = 4ψ(
√
s) +

√
s

√
2 log 1

δ

n
+

8 log 1
δ

3n
·

Then, with probability larger than 1 − 2δ, for all g ∈ C,(
1 − θ

2

)
P |g − g∗| − 1

2θ
s∗(δ) ≤ Pn|g − g∗| ≤

(
1 +

θ

2

)
P |g − g∗| + 1

2θ
s∗(δ).

The proof repeats again the proof of Theorem 5.5. This lemma will be used thanks to the following corollary:

Corollary 8.8. For K ≥ 1, with probability larger than 1 − δ,

{g ∈ C : P |g − g∗| ≤ Ks∗(δ)} ⊆
{
g ∈ C : Pn|g − g ∗ | ≤ K

(
1 +

1√
K

)
s∗(δ)

}
,

and, with probability larger than 1 − δ,

{g ∈ C : P |g − g∗| ≥ Ks∗(δ)} ⊆
{
g ∈ C : Pn|g − g∗| ≥ K

(
1 − 1√

K

)
s∗(δ)

}
.

We are now equipped to build estimators of w(·) and ψ(·). When building an estimator of w(·), the guideline
consists of two simple observations:

1
2

sup {P |g − g′| : L(g) ∨ L(g′) ≤ L(g∗) + r}
≤ sup {P |g − g∗| : L(g) ≤ L(g∗) + r}
≤ sup {P |g − g′| : L(g) ∨ L(g′) ≤ L(g∗) + r} .

This prompts us to try to estimate sup {Pα|g − g∗| : α(L(g) − L(g∗)) ≤ r} . This will prove to be feasible
thanks to the results described above.

Lemma 8.9. Let K > 2 and let v̂ be defined as

ŵ2(r) =
√
K − 1√

K − 1 − 1
sup
{
Pnα|g − g′| : α ∈ [0, 1], g, g′ ∈ C, Ln(g) ∨ Ln(g′) ≤ Ln(gn) +

1
α
K

(
2 +

1√
K

)
r

}
.

Let κ3 =
√

2(1+1/
√

K)

1−1/
√

K−1
and κ4 = K 2

√
K+1√
K−1

. Then, with probability larger than 1 − 4δ,

w(r∗(δ)) ≤ ŵ(r∗(δ)) ≤ κ3w (κ4r
∗(δ)) .
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Proof. Let r be such that r ≥ r∗(δ). Thanks to Lemma 8.5, with probability larger than 1−δ, Ln(g∗)−Ln(gn) ≤
r∗(δ) ≤ r and L(g) − L(g∗) ≤ K

α r implies Ln(g) − Ln(gn) ≤ K
α

(
2 + 1√

K

)
r, so

ŵ2(r) ≥ 1
1 − 1/

√
K − 1

sup {Pnα|g − g∗| : α ∈ [0, 1], g ∈ C, α(L(g) − L(g∗)) ≤ Kr} .

Furthermore, by Lemma 8.7, with probability larger than 1 − 2δ,

ŵ2(r) ≥ 1
1 − 1/

√
K − 1

sup
{
α(1 − 1√

K − 1
)P |g − g∗| : α ∈ [0, 1], g ∈ C, K − 1

r
r ≤ L(g) − L(g∗) ≤ K

α
r

}

≥ 1
1 − 1/

√
K − 1

(
(1 − 1√

K − 1

)
w2(Kr)

≥ w2(r) .

On the other hand, applying the elementary observation above, Lemma 8.5, and then Lemma 8.7, with proba-
bility larger than 1 − 2δ,

ŵ2(r) ≤ 2
1 − 1/

√
K − 1

sup
{
Pnα|g − g∗| : α ∈ [0, 1], g ∈ C, Ln(g) ≤ Ln(gn) +

K

α

(
2 +

1√
K

)
r

}

≤ 2
1 − 1/

√
K − 1

sup

{
Pnα|g − g∗| : α ∈ [0, 1], g ∈ C, L(g) ≤ L(g∗) +

K

α

2
√
K + 1√
K − 1

r

}

≤ 2(1 + 1/
√
K)

1 − 1/
√
K − 1

sup

{
Pα|g − g∗| : α ∈ [0, 1], g ∈ C, L(g) ≤ L(g∗) +

K

α

2
√
K + 1√
K − 1

r

}

≤ 2(1 + 1/
√
K)

1 − 1/
√
K − 1

w2

(
K

2
√
K + 1√
K − 1

r

)
. �

Lemma 8.10. Assume that ψ(w(r∗(δ)) ≥ 8 log 1
δ

n . Let K ≥ 4. Let

ψ̂(r) = 2Rn

{
α(�g(X) �=Y − �g′(X) �=Y ) : α ∈ [0, 1], α2Pn|g − gn| ≤ r2 , α2Pn|g′ − gn| ≤ Kr2

}
.

Then, with probability larger than 1 − 6δ,

ψ(w(r∗(δ))) ≤ ψ̂(w(r∗(δ))) ≤ 8ψ(
√

2(K + 2)w(r∗(δ))) .

Proof. Note that ψ̂ is positive, non-decreasing, and because it is defined with respect to star-hulls, ψ̂(r)/r is
non-decreasing.

First recall that, by Theorem 5.5 and Lemma 8.7, taking θ = 1 there, with probability larger than 1 − 2δ,

P |g∗ − gn| ≤ w2(r∗(δ))

Pn|g∗ − gn| ≤ 3
2
w2(r∗(δ)) +

s∗(δ)
2

Pn|g − gn| ≤ 3
2
(
P |g − g∗| + w2(r∗(δ))

)
+ s∗(δ) .

Let us first establish that, with probability larger than 1 − 2δ, ψ̂(w(r∗(δ))) is larger than the empirical
Rademacher complexity of the star-hull of a fixed class of loss-functions.
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For K ≥ 4 we have Kw2(r∗(δ)) ≥ 6
2w

2(r∗(δ)) + s∗(δ). Invoking the observations above, with probability
larger than 1 − 2δ,

ψ̂(w(r∗(δ)))
≥ 2Rn

{
α(�g(X) �=Y − �g∗(X) �=Y ) : α ∈ [0, 1], α2Pn|g − gn| ≤ Kw2(r∗(δ))

}
≥ 2Rn

{
α(�g(X) �=Y − �g∗(X) �=Y ) : α ∈ [0, 1], α2 3

2
(
P |g − g∗| + w2(r∗(δ))

)
+ α2s∗(δ) ≤ Kw2(r∗(δ))

}
≥ 2Rn

{
α(�g(X) �=Y − �g∗(X) �=Y ) : α ∈ [0, 1], α2P |g − g∗| ≤ w2(r∗(δ))

}
By Lemma 8.2, with probability larger than 1 − δ, the empirical Rademacher complexity is larger than half of
its expected value.

Let us now check that ψ̂(w(r∗(δ)) can be upper bounded by a multiple of ψ(w(r∗(δ))). Invoking again the
observations above, with probability larger than 1 − 2δ,

ψ̂(w(r∗(δ)))
≤ 4Rn

{
α(�g(X) �=Y − �g∗(X) �=Y ) : α ∈ [0, 1], α2Pn|g − gn| ≤ Kw2(r∗(δ))

}
≤ 4Rn

{
α(�g(X) �=Y − �g∗(X) �=Y ) : α ∈ [0, 1], α2

(
1
2
P |g − g∗| − s∗(δ) − w2(r∗(δ))

)
≤ Kw2(r∗(δ))

}
≤ 4Rn

{
α(�g(X) �=Y − �g∗(X) �=Y ) : α ∈ [0, 1], α2P |g − g∗| ≤ 2

(
s∗(δ) + (K + 1)w2(r∗(δ))

) }
≤ 4Rn

{
α(�g(X) �=Y − �g∗(X) �=Y ) : α ∈ [0, 1], α2P |g − g∗| ≤ 2(K + 2)w2(r∗(δ))

}
.

Now the last quantity is again the conditional Rademacher average with respect to a fixed class of functions.
By Lemma 8.2, with probability larger than 1 − δ3 ≥ 1 − δ,

Rn

{
α(�g(X) �=Y − �g∗(X) �=Y ) : α ∈ [0, 1], α2P |g − g∗| ≤ 2(K + 2)w2(r∗(δ))

}
≤ 2�

[
Rn

{
α(�g(X) �=Y − �g∗(X) �=Y ) : α ∈ [0, 1], α2P |g − g∗| ≤ 2(K + 2)w2(r∗(δ))

}]
.

Hence, with probability larger than 1 − 3δ,

ψ̂(w(r∗(δ))) ≤ 8ψ(
√

2(K + 2)w(r∗(δ))) . �

We may now conclude this section by the following result. We combine Proposition 8.4, Lemmas 8.9 and 8.10
and choose K = 4 in both lemmas.

Proposition 8.11. . Let ψ and w be defined as ψ(r) = �
[
Rn

{
f : f ∈ F∗, Pf2 ≤ r2

}]
, and w = (r) =

sup
{√

P |f | : f ∈ F∗, Pf ≤ r
}
. Let ŵ be defined by

ŵ2(r) =
√

3√
3 − 1

sup
{
Pnα|g − g′| : α ∈ [0, 1], g, g′ ∈ C, Ln(g) ∨ Ln(g′) ≤ Ln(gn) +

1
α

4
(

2 +
1√
4

)
r

}
,

and ψ̂ be defined by

ψ̂(r) = 2Rn

{
α(�g(X) �=Y − �g′(X) �=Y ) : α ∈ [0, 1], α2Pn|g − gn| ≤ 4r2 , α2Pn|g′ − gn| ≤ 4r2

}
.

Let r̂∗(δ) be defined as the solution of equation r = 4ψ̂(ŵ(r)) + ŵ(r)
√

2 2 log 1
δ

n + 8 log 1
δ

3n · Then, with probability
at least 1 − 10δ,

r∗(δ) ≤ r̂∗(δ) ≤ 480r∗(δ) .
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Note although we give explicit constants, no attempt has been made to optimize the value of these constants.
It is believed that the last constant 480 can be dramatically improved, at least by being more careful.

Bibliographical remarks. Analogs of Theorem 8.5 can be found in Koltchinskii [125] and Bartlett, Mendelson,
and Philips [30]. The presentation given here is inspired by [125]. The idea of estimating the δ-reliable excess
risk bounds r∗(δ) is put forward in [125] where several variants are exposed.

8.6. Pre-testing

In classification, the difficulties encountered by model selection through penalization partly stem from the
fact that penalty calibration compels us to compare each L(g∗n,k) with the unaccessible golden standard L(g∗),
although we actually only need to compare L(g∗n,k) with L(g∗n,k′), and to calibrate a threshold τ(k, k′, Dn) so
that Ln(g∗n,k)−Ln(g∗n,k′) ≤ τ(k, k′, Dn) when L(g∗n,k) is not significantly larger than L(g∗n,k′). As estimating the
excess risk looks easier when the Bayes classifier belongs to the model, we will present in this section a setting
where the performance of the model selection method essentially relies on the ability to estimate the excess risk
when the Bayes classifier belongs to the model.

Throughout this section, we will rely on a few non-trivial assumptions.

Assumption 8.1.

(1) The sequence of models (Ck)k is nested: Ck ⊆ Ck+1.
(2) There exists some index k∗ such that for all k ≥ k∗, the Bayes classifier g∗ belongs to Ck. That is, we

assume that the approximation bias vanishes for sufficiently large models. Conforming to a somewhat
misguiding tradition, we call model Ck∗ the true model.

(3) There exists a constant Γ such that, for each k ≥ k∗, with probability larger than 1− δ
12k2 , for all j ≤ k

r∗k

(
δ

12k2

)
≤ τ(j, k,Dn) ≤ Γr∗k

(
δ

12k2

)

where r∗k(·) is a distribution-dependent upper bound on the excess risk in model Ck with tunable reliability,
defined as in Section 5.3.3.

For each pair of indices j ≤ k, let the threshold τ(j, k,Dn) be defined by

τ(j, k,Dn) = r̂∗k

(
12
k2

)
,

where r̂∗k(·) is defined as in Proposition 8.11 from Section 8.5. Hence we may take Γ = 480. Note that for k ≥ k∗,
the threshold looks like the ideal penalty described by (35).

The pre-testing method consists in first determining which models are admissible. Model Cj is said to be
admissible if for all k larger than j, there exists some g ∈ Cj ⊆ Ck, such that Ln(g) − Ln(g∗n,k) ≤ τ(j, k,Dn) .
The aggregation procedure then selects the smallest admissible index

k̂ = min
{
j : ∀k > j, ∃ g ∈ Cj, Ln(g) − Ln(g∗n,k) ≤ τ(j, k,Dn)

}
and outputs the minimizer g∗

n,k̂
of the empirical risk in Ck̂.

Note that the pre-testing procedure does not fit exactly in the framework of the comparison method men-
tioned in Section 8.2. There, model selection was supposed to be based on comparisons between empirical risk
minimizers. Here, model selection is based on the (estimated) ability to approximate g∗n,j by classifiers from Ck.

Theorem 8.12. Let δ > 0. Let (Ck)k denote a collection of nested models that satisfies Assumption 8.1. Let
the index k̂ and the classifier g∗

n,k̂
be chosen according to the pre-testing procedure. Then, with probability larger
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than 1 − δ,

L(g∗
n,k̂

) − L∗ ≤ (Γ + 1 +
√

1 + 4Γ) r∗k∗

(
δ

12(k∗)2

)
.

The theorem implies that, with probability larger than 1 − δ, the excess risk of the selected classifier is of
the same order of magnitude as the available upper bound on the excess risk of the “true” model. Note that
this statement does not exactly match the goal we assigned ourselves in Section 8.1. The excess risk of the
aggregated classifier is not compared with the excess risk of the oracle. Although the true model may coincide
with the oracle for large sample sizes, this may not be the case for small and moderate sample sizes.

The proof is organized into three lemmas.

Lemma 8.13. With probability larger than 1 − δ
3 , model Ck∗ is admissible.

Proof. From Theorem 5.5, for each k ≥ k∗, with probability larger than 1 − δ
12k2 :

Ln(g∗n,k∗) − Ln(g∗n,k) ≤ r∗k

(
δ

12k2

)
.

The proof of Lemma 8.13 is then completed by using the assumption that for each index k larger than k∗, with
probability larger than 1 − δ

12k2 , r
∗
k

(
δ

12k2

) ≤ τ(k∗, k,Dn) holds, and resorting to the union bound. �

The next lemma deals with models which suffer an excessive approximation bias. The proof of this lemma
will again rely on Theorem 5.5. But, this time, the model under investigation is Ck∗ .

Lemma 8.14. Under Assumption 8.1, let κ be such that κ−√
κ ≥ Γ, then with probability larger than 1 − δ

3 ,
no index k < k∗ such that

inf
g∈Ck

L(g) ≥ L∗ + κr∗k∗

(
δ

(k∗)2

)
is admissible.

Proof. As all models Ck satisfying the condition in the lemma are included in

{
g ∈ C∗

k : L(g) ≥ L∗ + κr∗k∗

(
δ

(k∗)2

)}
,

it is enough to focus on the empirical process indexed by Ck∗ , and to apply Lemma 8.5 to Ck∗ . Choosing
θ = 1/

√
κ, for all k of interest, with probability larger than 1 − δ

12(k∗)2 , we have

Ln(g∗n,k) − Ln(g∗n,k∗) ≥ Ln(g∗n,k) − Ln(g∗)

≥ (κ3 −√
κ3) r∗k∗

(
δ

(k∗)2

)

≥ Γ r∗k∗

(
δ

(k∗)2

)
.

Now, with probability larger than 1 − δ
12(k∗)2 , the right hand side is larger than τ(k, k∗, Dn). �

The third lemma is a direct consequence of Theorem 5.8. It ensures that, with high probability, the pre-
testing procedure provides a trade-off between estimation bias and approximation bias which is not much worse
than the one provided by model Ck∗ .
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Lemma 8.15. Let κ be such that κ−√
κ ≤ Γ. Under Assumption 8.1, for any k ≤ k∗ such that

inf
g∈Ck

L(g) ≤ L∗ + κ r∗k∗

(
δ2

12k2

)
,

with probability larger than 1 − δ
k2 ,

L(g∗n,k) − L(g∗) ≤ (κ+
√
κ)r∗k∗

(
δ2

12k2

)
.

Bibliographical remarks. Pre-testing procedures were proposed by Lepskii [135–137] for performing model
selection in a regression context. They are also discussed by Birgé [35]. Their use in model selection for classifica-
tion was pioneered by Tsybakov [219] which is the main source of inspiration for this section.
Koltchinskii [125] also revisits comparison-based methods using concentration inequalities and provides a unified
account of penalty-based and comparison-based model selection techniques in classification.

In this section we presented model selection from a hybrid perspective, mixing the efficiency viewpoint
advocated at the beginning of Section 8 (trying to minimize the classification risk without assuming anything
about the optimal classifier g∗) and the consistency viewpoint. In the latter perspective, it is assumed that there
exists a true model, that is, a minimal model without approximation bias and the goal is to first identify this
true model (see Csiszár and Shields [67], Csiszár [66] for examples of recent results in the consistency approach
for different problems), and then perform estimation in this hopefully true model.

The main tools in the construction of data-dependent thresholds for determining admissibility are ratio-type
uniform deviation inequalities. The introduction of Talagrand’s inequality for suprema of empirical processes
greatly simplified the derivation of such ratio-type inequalities. An early account of ratio-type inequalities,
predating [214], can be found in Chapter V of van de Geer [224]. Bartlett, Mendelson, and Philips [30] provide
a concise and comprehensive comparison between the random empirical structure and the original structure of
the loss class. This analysis is geared toward the analysis of empirical risk minimization.

The use and analysis local Rademacher complexities was promoted by Koltchinskii and Panchenko [126]
(in the special case where L(g∗) = 0) and reached a certain level of maturity in Bartlett, Bousquet, and
Mendelson [25], where Rademacher complexities of L2 balls around g∗ are considered. Koltchinskii [125] went
one step further and pointed out that there is no need to estimate separately complexity and noise conditions:
what matters is φ(w(·)). Koltchinskii [125] (as well as Bartlett, Mendelson, and Philips [30]) proposed to compute
localized Rademacher complexities on the level sets of the empirical risk. Lugosi and Wegkamp [147] propose
penalties based on empirical Rademacher complexities of the class of classifiers reduced to those with small
empirical risk and obtain oracle inequalities that do not need the assumption that the optimal classifier is in
one of the models.

Van de Geer and Tsybakov [221] recently pointed out that in some special cases, penalty-based model selection
can achieve adaptivity to the noise conditions.

8.7. Revisiting hold-out estimates

Designing and assessing model selection policies based on either penalization or pre-testing requires a good
command of empirical processes theory. This partly explains why re-sampling techniques like ten-fold cross-
validation tend to be favored by practitioners.

Moreover, there is no simple way to reduce the computation of risk estimates that are at the core of the
model selection techniques to empirical risk minimization, while re-sampling methods do not suffer from such
a drawback: according to the computational complexity perspective, carrying out ten-fold cross-validation is
not much harder than empirical risk minimization. Obtaining non-asymptotic oracle inequalities for such cross-
validation methods remains a challenge.
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The simplest cross validation method is hold-out. It consists in splitting the sample of size n+m in two parts:
a training set of length n and a test set of length m. Let us denote by L′

m(g) the average loss of g on the test set.
Note that once the training set has been used to derive a collection of candidate classifiers (g∗n,k)k, the model
selection problem turns out to look like the problem we considered at the beginning of Section 5.2: picking a
classifier from a finite collection. Here the collection is data-dependent but we may analyze the problem by
reasoning conditionally on the training set. A second difficulty is raised by the fact we may not assume anymore
that the Bayes classifier belongs to the collection of candidate classifiers. We need to robustify the argument of
Section 5.2. Henceforth, let g∗

n,k̃
denote the minimizer of the probability of error in the collection (g∗n,k)k.

The following theorem is a strong incentive to theoretically investigate and practically use resampling meth-
ods. Moreover its proof is surprisingly simple.

Theorem 8.16. Let (g∗n,k)k≤N denote a collection of classifiers obtained by processing a random training sample
of length n. Let k̃ denote the index k that minimizes

E
[
L(g∗n,k) − L(g∗)

]
.

Let k̂ denote the index k that minimizes L′
m(g∗n,k) where the empirical risk L′

m is evaluated on an independent
test sample of length m. Let w(·) be such that, for any classifier g,

√
Var[1g �=g∗ ] ≤ w (L(g) − L∗)

and such that w(x)/
√
x is non-increasing. Let τ∗ denote the smallest positive solution of w(ε) =

√
mε. If

θ ∈ (0, 1), then

E

[
L(g∗

n,k̂
) − L(g∗)

]
≤ (1 + θ) inf

k

[
E
[
L(g∗n,k) − L(g∗)

]
+
(

8
3m

+
τ∗

θ

)
logN

]
.

Remark 8.17. Assume the Mammen-Tsybakov noise conditions with exponent α hold, that is, we can choose
w(r) =

(
r
h

)α/2 for some positive h. Then, as τ∗ =
(

1
m hα

)−1/(2−α), the theorem translates into

E

[
L(g∗

n,k̂
) − L(g∗)

]
≤ (1 + θ) inf

k

[
E
[
L(g∗n,k) − L(g∗)

]
+

(
4

3m
+

1

θ (mhα)1/(2−α)

)
logN

]
.

Note that the hold-out based model selection method does not need to estimate the function w(·).
Using the notation of (31), the oracle inequality of Theorem 8.16 is almost optimal as far as the additive

terms are concerned. Note however that the multiplicative factor on the right-hand side depends on the ratio
between the minimal excess risk for samples of length n and samples of length n + m. This ratio depends on
the setting of the learning problem, that is, on the approximation capabilities of the model collection and the
noise conditions. As a matter of fact, the choice of a good trade-off between training and test sample sizes is
still a matter of debate.

Proof. By Bernstein’s inequality and a union bound over the elements of C, with probability at least 1− δ, for
all g∗n,k,

L(g∗n,k) − L(g∗) ≤ L′
m(g∗n,k) − L′

m(g∗) +

√
2 log N

δ

m
× w(L(g∗n,k) − L(g∗)) +

4 log N
δ

3m
,

and

L(g∗) − L(g∗
n,k̃

) ≤ L′
m(g∗) − L′

m(g∗
n,k̃

) +

√
2 log N

δ

m
× w(L(g∗

n,k̃
) − L(g∗)) +

4 log N
δ

3m
·



368 S. BOUCHERON, O. BOUSQUET AND G. LUGOSI

Summing the two inequalities, we obtain

L(g∗n,k) − L(g∗
n,k̃

) ≤ L′
m(g∗n,k) − L′

m(g∗
n,k̃

) + 2

√
2 log N

δ

m
× w(L(g∗n,k) − L(g∗)) +

8 log N
δ

3m
. (36)

As L′
m(g∗

n,k̂
) − L′

m(g∗
n,k̃

) ≤ 0, with probability larger than 1 − δ,

L(g∗
n,k̂

) − L(g∗
n,k̃

) ≤ 2

√
2 log N

δ

m
× w(L(g∗

n,k̂
) − L(g∗)) +

8 log N
δ

3m
· (37)

Let τ∗ be defined as in the statement of the theorem. If L(g∗
n,k̂

) − L(g∗) ≥ τ∗, then w(L(g∗
n,k̂

) − L(g∗))/
√
m ≤√

(L(g∗
n,k̂

) − L(g∗))τ∗, and we have

L(g∗
n,k̂

) − L(g∗
n,k̃

) ≤ 2

√
2 log

N

δ
×√

τ∗ ×
√
L(g∗

n,k̂
) − L(g∗) +

8 log N
δ

3m

≤ θ

2
(L(g∗

n,k̂
) − L(g∗)) +

8
2θ
τ∗log

N

δ
+

8 log N
δ

3m
·

Hence, with probability larger than 1 − δ (with respect to the test set),

L(g∗
n,k̂

) − L(g∗) ≤ 1
1 − θ/2

(L(g∗
n,k̃

) − L(g∗)) +
1

(1 − θ/2)
× 4 log

N

δ
×
(
τ∗

θ
+

2
3m

)
·

Finally, taking expectation with respect to the training set and the test set, we get the oracle inequality stated
in the theorem.

Bibliographical remarks. Hastie, Tibshirani and Friedman [104] provide an application-oriented discussion
of model selection strategies. They provide an argument in defense of the hold-out methodology. An early
account of using hold-out estimates in model selection can be found in Lugosi and Nobel [145] and in Bartlett,
Boucheron, and Lugosi [24]. A sharp use of hold-out estimates in an adaptive regression framework is described
by Wegkamp in [235]. This section essentially comes from the course notes by P. Massart [161] where better
constants and exponential inequalities for excess risk can be found.

Acknowledgements. We thank Anestis Antoniadis for encouraging us to write this survey. We are indebted to the associate
editor and the referees for the excellent suggestions that significantly improved the paper.
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Université Paris-Sud (December 2003).

[97] K. Fukunaga, Introduction to Statistical Pattern Recognition. Academic Press, New York (1972).
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