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Theory of Core-Level Photoemission Correlation State Spectra 

R. L. Martin and D. A. Shirley 

Department of Chemistry 
and . · 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

December 197 4 

Abstract 

A theoretical framework is given for calculating satellite spectra 

(sometimes called "shake-up" or "monopole" spectra) that accompany 

core -level photoemission peaks. Photoemis sion is regarded as a 

special case of optical excitation in an N-electron system. The sudden 

approximation (SA) is applied in a way that expresses the. photoelectric 

cross section as a product of a one -electron transition term and an over-

lap determinant, plus correction terms. The dipole approximation (DA) 

is applied similarly. Relationships between the SA and DA results are 

noted. Configuration interaction (CI) in the final state is discussed. 

It is emphasized that the main core -level peak and satellites do not 

really arise from one- and two-electron excitations, respectively, but 

from qualitatively identical transitions~ The importance of initial-state 

CI in determining satellite intensities in molecular x-ray photoelectron 

spectra is pointed out for the first time. 
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I. INTRODUCTION 

The growing application of x-ray photoemission spectroscopy, in 

which atomic core levels are photo-ionized with monochromatic x rays 

and the orbital binding energies measured through spectrometric 

analysis of the photoelectrons' kinetic energies, has led to renewed 

interest in calculations of photoemission spectra for atomic and molecular 

core levels. Most work has been focussed on the lowest- binding- energy 

· peak observed in the characteristic spectrum from each core level; 

i.e. , the 11 adiabatic" 1 or "primary" peak. The relaxation energy, 

Ej = - E . - E j , ( 1) 
R J B 

has received considerable attention recently; enough indeed to exaggerate 

the significance of the primary peak at the expense of the rest of the charac

teristic spectrum. Here E j is the orbital energy and E~ the binding 

energy of orbital j. 

In this paper we describe a theory of the satellite structure en-

countered in x-ray photoemission from core levels. Emphasis is 

laid on the fact that photoemissionis a many-body process, carrying 

anN-electron system from an initial to a final state (Section II). Sev-

eral levels of approximation are discussed. In Section III anN-electron 

sudden approximation is derived, which estimates relative 

cross- sections with fair accuracy. Section IV treats the dipole approxi..., 

mation, retaining and evaluating terms that are usually neglected. The 

two approximations are compared and shown to be equivalent when 

certain approximations have been made. 

Section V shows that configuration interaction (CI) in the final state· 

should be very important in determining the intensities of the "shake-up" 
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peaks, which are therefore not adequately described as arising from 

two-electron excitations. Ground-state CI is introduced in Section VI. 

It is shown to be nearly as important as final-state CI in determining 

the intensities of shake -up satellite peaks. 

1 

II. PHOTOEMISSION AS ANN-ELECTRON PROCESS 

Iri photoemission an N-electron system in an initial state lj!. (1, 2, ... N) 
l 

interacts with the radiation field. A photon is absorbed, takihg the 

system to a final state lj!f(l, 2, .... N), in which at least one dectron has 

been ejected into a continuum state. We shall restrict the discussion 

below to those events in which only one electron is ejected. This is done 

for brevity only, and no serious loss of generality is. entailed: extension 

of this treatment to multiple -free -electron final states is straight-

forward. 

Kinetic -energy 2.nalysis of the photoelectron spectrum reveals peaks 

at energies 

( 2) 

where Ei(N) is the initial-state energy and E~(N-1) is the total energy 

of the remnant N-1 electron system. The spectrum ·is usually dominated 

by states at the ''one -electron binding energies", 

Ek = Ei(N-1) - Ei(N), 

each of which corresponds apjnoximately to the orbital energy 

(3) 

E: • of a 
J 

one -electron atomic or molecular orbital - the simplest one -determinant 
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description of the initial state [ Eq. (2)). Closer inspection of the 

spectrum reveals a set of satellite states, at higher energies E~1 (N-1) , 

associated with each main peak. In the literature on the subject these 

satellites have been variously termed 11 shake -up", "monopole -excitation", 

and ''correlation" states. Unfortunately they have also been treated as 

if they were qualitatively different from, or were reached in a different 

way than, the primary N -1 electron state. The apparent differences are in 

fact an artificial consequence of using certain one -electron orbitals as 

a basis set to describe the initial and final systems, together with the 
single . 

assumption of~determinantal wave functions. While these heuristic descrip-

tions have certain pedagogic value, they must not be taken literally. The sat-

ellites do not arise through a two-step process, and they do not correspond 

to one electron being ejected as a photoelectron and a second electron being 

"excited" to a higher bound orbital. Such descriptions are intuitively 

appealing but fundamentally incorrect. They confuse the eigenstates of 

the (N-1)-electron Hamiltonian with a particular set of basis orbitals. 

A photoemission experiment is just a special case of optical ab-

sorption in which the N-electron system absorbs a photon of energy hw 

and is raised from its initial state to a final state with one unbound 

electron. The act of observing the kinetic energy of the photoelectron 

(the ~h electron), in anticipation of using Eq. (2) to study the N-1 

electron system, should also focus our attention on the fact that the 

final state is really that of anN-electron system. If dipole selection 

rules are operative, which is often the case, they apply to the total 

N-electron system. This means, for example, that a 1s-1P transition 

is allowed for the total system; any combination of (N"-1)-electron 
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final state plus photoelectron final 

2 2 
(e.g. , S + p, P + s, etc. ) would 

1 . 
state syn1metries that couple to P 

satisfy this criterion. Among the 

2s final states of the N-1 electron system none has preference a pr>ior>i. 

·The main lines and the satellites are fundamentally exactly equivalent. 

Each is reached directly via a one- step, 11 one-electron" dipole trans

ition. 
2 

The intensity differences arise, as shown below, because of 

quantitative differences in cross- sections. 

The above general comments are valid without reference to basis 

sets, configuration interaction, or even electron correlation. We 

emphasize their basis-set independence. While one-electron molecular 

orbitals provide a convenient basis set, which we shall use below, they 

are in no way necessary. 

III. THE N-ELECTRON SUDDEN APPROXIMATION 

The first application of the sudden approximation to hole- state ex-

. 3 
citation was made by Bloch.· Many authors have contributed to the 

literature on this subject. .Xberg has given a recent comprehensive dis-

cussion of the sudden approximation in connection with x-ray satellite 

spectra. 
4

- 6 Aberg's work is now the standard reference in the field of 

inner-shell ionization phenomena, especially in connection with x.,.ray 

spectra. For general use in photoelectron spectroscopy it is not di-

rectly applicable, however, because in inner-shell ionization, per se, 

attention is focused on the ionic N-1 electron system, and the photo-

electron is disposed of quickly by taking the high-energy limit k-+ oo. 

We are,however, interested primarily in the behavior of theN-electron 

system under the constraint of constant total energy; i.e., the photo-

electron has a finite energy determined by Eq. (2). We present below 
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an application of the sudden approximation to photoemission in which 

this high energy limit is not taken. 
7 

The essential new feature is that it 

can be used to estimate relative eros s sections for all states observed 

in photoelectron spectroscopy, not just the satellites of a given primary peak. 

ln the sudden approximation, we assert that the interaction between 

the radiation field and the electronic system can be described as a delta 

function in time. For times t< t
0

, we assume the system is in an 

eigenstate, I ~i (N) ), of a time-independent Hamiltonian, Hi. For times 

t > t
0

, it is assumed that the evolution of the wavefunction is governed 

by a different time-independent Hamiltonian H 2 . At t = t
0

, the 

Hamiltonian changes discontinuously from Hi to H 2 , 'but we require 

that the wavefunction be continuous across this interval. This treat-

ment then leads to the well-known result that the probability of ob

serving the system in some eigenstate, I ~f(N) ), of H 2 at times t> t0 

is simply given by 

( 4) 

ln applying this result to photoemission, we assume that Hi is just 

the N electron electrostatic Hamiltonian for the atom (or molecule) in 

its ground state, and that H
2 

is separable into an (N-i)-electron electro

static term plus a free-electron operator. The final state is thus 

described by the product function (5) 

(5) 

Where Xf(i) is the solution of the free-particle operator for electron 

i (a plane wave), and ljJf(N -i) is the wavefunction for the ionic state. 
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It is, of course, possible to attain any degree of accuracy desired 

for the ground- state and ionic- state wavefunctions through the techniques 

of configuration interaction, but for the present let us represent each 

state as a single Slater determinant; 

(6) 

= [ ( N- 1 ) ! ] - 1 I 2 I <1>2 ( 2) <1>'3 ( 3) • • • <i>N ( N) I . ( 7) 

_where { <1>;} is some appropriate basis of one electron orbitals, 
8 

and 

the orbitals q,! are primed to note that they are similar, but not identical, 
1 

to the initial- state basis functions. We have written the final state or-

bitals in this way to imply that it's -possible (qualitatively) to assign q,
1 

as the orbital involved in ionization. 

We are interested in the matrix element (ljJf(N) I ljJi (N)). If the 

passive orbitals remained frozen during photoemis sion (L e. , if 

<P:' = <j>. for all i), in the spirit of-Koopmans 1 theorem, it is easy to show 
1 1 

by expanding Eq. (6) in minors, e.g. , 

ljJ. (N) = (N!) -1/2 
1 ' 

(8) 

that 

The quantity ljJ.(N-1;<f>.,l) denotes the minor of <j>.(1) in ljJ.(N). Thus 
1 J - J 1 

_according to the usual sudden-approximation and golden- rule arguments, 

the cross section for photoemission would vary as 

cr1 = N-
1 I <xfl <~>1>l 2 

p(Ef), ( 10) 

where p (~f) is the density of plane wave continuum states at the photo

electron energy Ef' The relative cross sections for photoemission 
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1 
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(11) 

It is of course clear that this approach is extremely crude, but it will 

give a qualitative idea of the variation of cross section ratios with 

energies, provided that it is not applied near threshold, even using this 

plane-wave approximation for X. In comparing this result with Aberg's 

derivation we note that he obtained N- 1 as the probability of exciting a 

given orbital. The reason for the difference is that A berg was doing a 

different problem-- x-ray satellites --for which the emphasis was on the 

production of hole states with high- energy x- rays, whereas we are 

specifically interested in the photoelectron. 
I 

Relaxing the frozen-orbital restriction, we can write 

N 
(l!Jf(N) lljJ.(N)) = (N! )

1
/

2 
(x (1) Tr <j>k (k) jljJi(N)) 

1 f k=2 

.+1 N 
(-i)J (xf(1) rr <l>k (k) I <j>.(1)ljJ.(N-1;<j>., 1)) 

k=2 J 1 J 
= (N! )1/2 

N 

L 
j= 1 

( 12) 

Here we have used a ~elation given by Lowdin9 to write a symmetric 

product function (times(N !)
1

/
2

) in place of ljJf(N) in the matrix element. 

Without loss of generality we may consider only the case in which elec-

tron 11 111 goes into the continuum final state Xr The entire (antisym

metric) N-electron initial state ljJ. (N) must be used, and it is expanded 
1 

across the first row. 
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Many-electron effects are apparent even in the crude level of 

theory (SA; one-determinant function) employed thus far: the transition 

matrix element is not separable into an "active" times a "passive" 

electron part. Expansion of the RHS of Eq. ( 12) yields , 

('!Jf(N) llf!i(N)) = N-1/2 (xfl <1>1) 

(2'1 2} (2'1 ~) · · · (2'1 N) 
( 3' I 2} (31 1 .) , ( 3' t N) 

.. 

. . . 
(N'I2) (N'I 3) (N IN) 

(2'11) (2'12)• •. (2'lj-1)(;~rjj+1)• · ·(2'1 N) 

(3'1 1) (3'1 2) (3'1 j-1) (3'1 j+ 1) (3'1 N) 

(N'! 1) (NI2) ... <N1j-1) (Ni j+ 1) ... (r-tl N) 

( 13) 

Here the abbreviated notation (21 I 2) = ( <Pz 1 <1>2 ) has been used in the 

determinants. If u~relaxed orbitals were used to describe the passive 

electrons in the final state, we would have (i'l j )= oij' and Eq. (13) 

would red~ce to Eq. (9). Using real (relaxed) orbitals, the first term 

will usually be altered somewhat. The product of the diagonal elements 

(' j'f j} is typically of the· order of 5 to 10 percent less than unity, while 

the off-diagonal elements are very small (. 0 5-. 2}. Thus the first 

term might be "' . 9 (x f j <1>1} which, when squared, is only 10 - 20 o/o 

different from the frozen-orbital approximation. 

The second term in Eq. (13) is more problematical. To assess 

its importance, note that it is possible to interchange rows and columns 

of the determinant so that all of the largest elements (for which k' = k) 

are along the diagonal. We will still be left, however, with one term 
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along the diagonal of, the form ( j' I 1) , where j' is the final state 

orbital that most' closely resembles <j>., the orbital which has been ex
J 

panded out. This particular element will effectively dictate the magni-

tude of the diagonal product (since all others are nearly unity ,· and 

the diagonal products will yield the largest term by far in each deter-

minanf). We thus have additional terms which are roughly given by 

Dividing this by the first term, which is approximately (xf I 1) , gives 

Ratio = 
(xf I j) (j'j1) 

(xf 11) 

If is safe to a'ssume (j 111) << 1 for all j', 10 but the ratio 

(xf 1 j) / (xf 11) may be significantly larger than unity, thereby 

necessitating the retention of the sum in Eq. (13). For example, if 

we consider ionization of a neon 2s electron by soft x- rays 

(1'1w,..., 1.5 keV), the overlap of the is orbital in the hole state with the 2s 

orbital in the ground state is very small. However, ( xf jls) is much 

larger than (Xf 12s) at these photon energies. 

This sum can be regarded as arising from an "internal shakeup" 

mechanism: in fact it is rather similar in structure to "conjugate 

shakeup". 
11 

An electron appears to be ejected from the jth orbital 

into the continuum and replaced by an electron from orbital q,
1

. 

This mechan~sm requires both exchange in the initial state (to make the 

product (j' l1 ) (x I j)) and relaxation in the final state (to make 

(j' 11) -:f. 0). Further discussion of this interesting term, lies outside 

the scope of this paper, but we note that it was not apparent in Aberg's 
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treatment because ·the photoelectron was not explicitly included in the 

final state. 

The cross-section for photoemission from core level ¢1 can now be 

written as 

N 

(xf 11) stt + L (-1)1+j (xf I j) s1j 

j= 2 

= { N-
1 

(x£ lt)
2 

(S
11J2 + ZN-

1 (\I 1)s
11 

r N l 

+N-Il L (-!)Hi (xfli)s!il 

j= 2 . .J 

N r (- l) 1+ j ( Xf I j) s 1 j 

j=2 

(14a ) 

( 14b ) 

where s 11 denotes the first (N-1) X(N-1) determinant in Eq. (13) and 

S 
1

j is the determinant under the sum; i.e., the determinant with the 

first row and }h column stricken. In the frozen-orbital approximation 

the second and third terms would vanish, s 11 would have a value of 

unity, and Eq. (14) would reduce to Eq. (10). If the second and third 

terms can be neglected by virtue of the product (xf I j) S 1j being suffi- . 

ciently small for all j, but if relaxation is not neglected, then (S 11 )2 

will typically be in the range - .7 to.95 and (]SA will be reduced by this 

factor relative to the estimate in Eq. (10). Equation (11) will still be 

approximately valid because the (S 11 )2 type terms should ha~e similar 

values for different photoemission transitions, and the various eros s-

sections will show similar reductions. 

An important advantage of the present N-electron formulation of 

the SA is that the factor ( xf I q,
1

) contains an explicit dependence of the 

photoemission cross-section on the orbital symmetry of ¢1 and the 
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photon energy. 
12 

By using these plane waves (of the right wavelength) 

for X£ and Slater orbitals for ¢
1

, most of the crudest physical features 

of photoemis sian cross- section ratios could be derived using this 

approach. Thus, for example, we can easily deduce the well- known 

result that a (2s)/a(2p) for second-row elements is small for very soft 

('"" 100 eV) photons but larger for harder ('"" 1000 eV) photons, which is 

readily understandable in terms of the deBroglie wavelength. of the 

final state Xr 13 

The above discussion has argued that the SA can give qualitatively 

reasonable results for photoemission cross- sections when applied 

properly. We do not, of course, advocate using the SA when other 

methods are available, as described below. 

IV. THEN-ELECTRON DIPOLE APPROXIMATION 

The dipole approximation is derived by taking account of the photon 

field explicitly by adding a term 

-+ 
to l;he momentum operator of each electron. Here A is the vector po-

tential of the photon field. After making the dipole approximation and 

carrying out several standard manipulations, it can be shown that the 

introduction of H"' inserts an operator ~ pk into the transition 
'!' k=1 

-t.. -1 matrix element and adds a multiplicative factor of (11w) • The cross-

section thus becomes 

N 2 

aDA ex: (1iw)-
1 \i · (4;£(N) I ~ Pk I \jli(N)) ( 15) 

k=1 
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where ~is the polarization vector of the radiation. At this point we 

shall suppress the vector notation and concentrate on the momentum 

matrix element. Angular distribution effects lie outside the scope of our 

discussions. Expansion of the matrix element in Eq. (15} yields terms 

that differ from those in the sudden approximation only in including a rna-

tri:' element of the momentum opera~or p1. 

terms arising from the rest of the momenta, 

There are also additional 
N 

~2pk. This result can be 

arraneedinthe form 

. N N 

(t!Jf(N) I L pk jt~Ji(N)) = (t!Jf(N)j P1jt~Ji(N))+ (t!Jf(N)! l}kltPi(N)) 
k=l k=2 

N 

= (xf I P 11) s11 + L (-1)1+j (xfl PI j)s1j 

j = 2 

N 

+L 
j=l 

The first two terms of ( 1 7) arise 
N 

I ljJ. (N- 1 , <j>. , 1)) • 
1 J 

from the p
1 

operator, and the rest 

( 16) 

( 1 7) 

from the ~Jk sum. We have written (17) in this form to point out 

that the transition moment has two major terms. In the first an elec-

tron makes a dipole transition from orbital 1 (or j) to the co.ntinuum 

function. In the second, an electron-in orbital 1 (or j) makes a monopole 

transition to Xf' while the passive electrons make a dipole transition 

to the final ionic state. Thus this last term, which is present to some. 

extent in all photoemission processes, represents a component of a 

11 conjugate•• transition. It is very important to point out that we do not 

have to make the drastic assumptions about Xf that were made in the 

sudden approximation. The continuum function may be of any accuracy 
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desired, and, specifically, is not required to be a plane wave. 

It is interesting to note the connection between this form of the 

eros s- section and the N- electron sudden approximation. One finds that 

the cross section implied by Eq. (17) approaches the RHS of Eq. (14) 

if only the first two terms of (17) are retained and pis replaced by unity. 

Another coinpa:rison with the SA is obtained by approximating X£ with a 

plane wave. In this case we may replace (xf j p j j) by 1ikf( X£ j j} 

and Eq. (17) becomes 

( 18) 

Since by energy conservation 

1i2k 2 
hw = EB + f 2m 

N 

~Z (c1)1+j (Xf I j)Sij l 

( 19) 

HereL[p] denotes the sum over momentum terms in square brackets 

in Eq. (18). As k- 00 the coefficient in Eq. (19) approaches unity, 
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the last term goes to zero, andEq. (19) approaches Eq.(l4a); i.e. , 

the energy dependence of the dipole cross section approaches the SA 

result. Again, however, the formgiven here contains an explicit ex-

pression for the momentum matrix elements of the active electrons. 

The results given in Eqs. (11), (14a), and (16-19) are straight-

forward, but to our knowledge they have not been given explicitly before, 

and most molecular core-level photoemission spectra are interpreted 

using even more approximate expressions. The deficiences of the SA, 

the DA, and the plane-wave (or OPW) approximations are too well-

known to require discussion. Nevertheless, for the purposes at hand 

the calculation of core-level correlation-peak relative intensities -- any of these 

approaches is usually adequate provided that configuration interaction 

is treated properly. We turn to this subject in the next section. 

V. FINAL-STATE CONFIGURATION INTERACTION 

Correlation ("shake-up") lines arise through transitions to higher

energy states of the same symmetry as the "primary" hole state. The 

energies of the satellite lines can conveniently be obtained from a con• 

figuration-interacti~n calculation on the final state. Let us consider 

the excited determinants (n) (N) f 1 1 · 1)r f o a mo ecu ar-wn primary determin-

ant 1)r (~) (N) that are described by single excitations. After the configura-

tion-interaction calculation has been carried ou. t, the · ( e1genstates hn• N) 

are given by 

(n) 
~fn' (N) = ~ Cn' n \jrf (N) (20) 

where Cn' n are coefficients that describe the extent of configuration 

mixing. In each of the (single-) determinantal basis states \jrf (n)(N) 
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a, photoelectron continuum function X (n) is included as one of the N 

one- electron functions. In principle X (n) should therefore be included 

in the configuration-interaction calculation, which would be carried out 

on the full N- electron system. ln practice, this will often not be feasible, 

and the CI calculation will be done only on the N..:.l electron molecular ion core. 

Aside from the continuum function x, the other N-1 orbitals in lflf(O) (N) 

are generated by deleting the appropriate core orbital <1>1 from the 

molecular ground- state function, and allowing all the orbitals to relax, 

as in the previous sections. Thus lfi~O) (N), the reference configuration, 

is just the determinant formed from the functions ){_£, <1>2, <1>3, • • • <I>N , 

as before. If the virtual orbitals are numbered <1>rH 1 , <PN-+ 2 ' etc., 

then typical low-lying configurations would be the determinants formed 

from { Xr <1>2' <I>J' · • • <I>'N-1' <l>~m} ' {xf' <l>i· <1>3• · · · <l>\-.r-1 '<PN+Z}' etc. 

ln forming the N-electron basis states the usual angular momentum 

coupling and symmetry rules must, of course, be obeyed. 15 

The matrix element for a transition to the final eigenstate ~fn1 (N) 

has the form 

N N 

( ~fn' (N) I L 
k=l. 

p ,.lfi.(N)) = ~ 
k 1 

c:,n (~fn'(N)I L 
k=l 

( 21) 
n 

Combining Eq. (21) with Eq. (17) we obtain 

N 

<Pfn' (N) I L 
k=l 

pI lfi.(N)) 
k 1 

= + .... (22) 

The terms indicated by dots are those additional terms on the RHS of 

Eq. (17). If we neglect them (on the basis that they are often very small 
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for core-level ionization), the leading term given above yields a simple 

expression for transition cross-sections to the correlation states. The 

momentum matrix element factors, giving 

N 

( ~ fn' (N) J L Pk I ~i (N) >~ (xn' \ P 1 1 ) 
k=l 

(23) 

The intensity ratio of the n' correlation peak to the main peak is thus 

I (x n' ! P 1
1 >1

2 

l<xoiP1 1 >\ 2 

p (E I) 
_ ___..n..___ • ( 2 4a) 
p (Eo) 

[ k!,p(En,>l< Xn• lt>l ZJ ~~en, n8~1 ~ 
2 

( I(n') J '!!! 

I(O) 1 PWA 2 I .. I 2 ,~ 11 2 • 
ko p (Eo) {X 0 1 1 >I - n COn 5 n I 

(24b) 

( I(n')) I~ c 5
11 lz 

~ 
n 1 n n (24c) 

. I(O) j OA !~ c s11 12 I tn On n 

Equation (24a) is general: the only approximations that it entails are 

a single-determinant initial state, neglect of some terms in Eq. ( 17) 

as described above, and of course the DA. Equation (24b) is based on 

a plane-wave continuum state -- cf Eq. ( 18). In Eq. (24c) we have 

assumed a constant matrix element (X I p j1) (and dertsity of final states) 

between transitions to state n' and the main line. This does not require 

the plane wave approximation, but requires only that { Xo IPI1) and p(E) 

change little with energy over the range tiE spanning the main line and its sat-

ellites. Since tiE is usually - 10-30 eV, and small compared to the total kinetic 
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energy accompanying x-ray photoemission ( -1 keV); this ''overlap 

approximation" is usually quite a good approximation to the more exact 

Eq. (24a). 

Application of Eqs. (24) to a real molecule would be expected to 

show correlation- state peaks at energies corresponding to the experi

mental spectrum. The intensities would be the right order of magnitude 

on the whole, b~t would probably not agree in detail with experiment. 

An important factor has been left out until now -- configuratio~ inter

action in the initial state. This will be treated below. 

VI. INITIAL-STATE CONFIGURATION INTERACTION 

Up to this point we have treated the initial and final states of the N

electron system in an unsymmetrical way, using a single-determinant 

wave function for the initial state, but including configuration-admixed 

final eigenstates. This approach is appropriate for relative correlation

peak energies, because only the lowest electronic level is thermally pop

ulated in the ground state. In treating intensities, however, initial-

state configuration interaction must be considered explicitly. It turns 

out to be of equal importance to CI in the final state, for reasons given 

below. 

In the CI expansion [ Eq. (20)] the coefficient c
00 

will usually be 

rather large; i.e., 0. 9 to 1. 0. This is expected because the lowest core-hole 

state of the molecular ion is substantially separated in energy from the 

correlation states. The latter may be substantially mixed by CI, since 

the configurations from which they are derived may be nearly degenerate 

in energy. Thus in the typical transformation matrix in Eq. (20), 



-19-

a) c
00 

is large (- 0.9 to 1.0). 

b) Cn1 0 and c0n are small(~ 0.1 or less); 

c) The Cn1 n are less predictable. However for any given corre

lation state r{ a small number (- 1 to 3) of elements C 1 will 
. . n n 

usually be rather large ( >0 .5). 

If configuration-interaction in the initial state is considered, an 

equation similar to Eq. (20) can be written, 

' 
iii . I (N) = ~ 
- lm. 

D 4J(.m) (N) 
m'm 1 ' 

(25) 
m 

and the statements (a)-(c) will also hold for the coefficients D 1 • 
mm 

The correlation-peak intensities·in Eq. (24) may be understood 

qualitatively if we recognize that the overlap determinants s! 1 
are not 

all of si_milar size. In fact, S ~1 
is much larger than all the rest, be

cause it gives the overlap of the passive orbitals in the main configura-

tion of the initial and primary final state; i.e. , the orbitals (<1> 2_ ... <j>N) and 

(<P2 • • • <P'N) are the same except for adiabatic relaxation. In every 

11 
other S at least one orbital "''· is changed and the overlap is greatly n ~J 

reduced. Thus an important term in I(n1 ) comes from the admixture 

of the ground- state like configuration into each correlation state n' . In this 

approximation CI distributes the initial- state configuration of the passive 

orbitals among the various final states of the molecular ion, with most 

of it going to the lowest (n' = 0) state. The photoelectric transition thus 

"picks out" the initial-state configuration in each final state, with rela

tive strength ._ j Cn' 
0 
I 2 , from Eq. (24c). The second major contrib

utor to I(n') is the overlap between the ground state determinant and 

th d · t 't d t t f' t' "'f(n), 1'n the sta-te ·n'. e om1nan exc1 e - s a e con 1gura 1on, ~ _ - In this 
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11 contribution the coefficient C 1 is large, but the overlap S is small. · nn n 

This term actually provides the major part of I(n1 ), but the first factor 

is not necessarily negligible. In summary, the main peak is intense 

because both coo and s~1 
are large, while the low intensities of the 

correlation peaks are due to the small. coefficient C n 1 0 
(which is multiplied 

by a large overlap) and the small overlap S ~i (which is multiplied by a 

large coefficient C 1 ) • 
nn 

When initial-state CI is introduced, Eq. (23) must be modified by 

substituting lfJ. 1 (N) for ljl. (N). Using Eqs. (20) and (25) 
- lm 1 

N 

(~fn1 (N)! 2_: pj I ~im1 (N)) ~ (Xrllpll) 

j= 1 

where S 11 denotes the overlap determinant of the nth final state con
nrn 

(26) 

figuration and the mth initial state configuration, with the first row and 

column omitted. Referring to statements (a)-(c), and noting that only 

the m 1 = 0 case is of practical interest for photoemission, we find that 

three kinds of terms are expected to be dominant in Eq. (26): 

>:< 11 
i) c

00 
n

00 
s

00 
• This accounts for most of the intensity in the 

main peak. This is analogous to ~:~o n 00 S~~, in which the 

main configuration of the initial ground state ( ln00 I ""'0 .9 to 1.0) 

"picks out" its counterpart in the final correlation states 

<jcn1 ol ""'0.1). This could be termed "CI in the final state". 

ii) c* D s 11 also a II final state err effect These first two 
n 1n 00 nO' 

contributions were discussed in the previous section. 

iii) c*1 n
0 

S 11 , in which the configurations that are admixed 
n n m ·nrn 

into the initial state to a small extent (I DOm I ""'0.1) pick out 
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their counterparts which form the major portions of the final 

correlation states ( C 1 - 0.5 - 1.0 for some n). This 
nn 

could be termed 11 CI in the initial state". 
. 11 

Like s00 , s!:n is 

of the order of unity. 

The symmetry between (ii) and (iii) is obvious. Clearly CI in the ground 

state is potentially as important for intensity calculations as is final-

·state CI. Since both contribute to the same transitions, they add in 

phase before the matrix element is squared, and omission of (iii) can 

therefore yield transition intensity estimates that are either too high 

or too low. We did indeed find this to be the case in the calculations on 

HF described in the next paper. Without initial- state CI the intensities 

were about right in the aggregate but very wrong in detail; with it the 

agreement with experiment was essentially perfect. 

We now give a set of equations for relating core-level correlation-

peak intensities to the intensity of the main line. The equations are 

similar to Eqs. (24) but include initial- state CI. 

c* n s1 1.,2 
n 1n Om nm 

(27a) 

I 'V c* n s 1 1 2 
~ n'n Om nm 
n,m 

'

"' * f112 ) · C D S 
LJ On Om nm n,m 

(27b) 

(
I(n' >) 

""'f{O'f" OA 
(27c) 
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Equations (27) should serve as an adequate theoretical basis for 

the calculation of correlation- peak (or 11 shake-up11 ) spectra accompanying 

core-level peaks in a~oms and molecules. The first application to a 

molecule is reported in the next paper. 
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FOOTNOTES AND- REFERENCES 

~~ 
This work was done under the auspices of the U S. Atomic Energy 

Commission. 

1. We mean adiabatic here in a statistical mechanical sense; i.e., the 

one electron quantum numbers specifying the state do not change. It 

is not meant to imply anything about the time scale of the ionization 

process. 

2. Semantic confusion is possible here. By a one -electron transition we 

mean a transition caused in first order by a one -electron operator or a 

linear combination of one-electron operators. Thus Lp. would qualify, 
1. 

+ + 
but not s .. s .. 

1 J 

· 3. F. Bloch, Phys. Rev. 48, 187 ·(1935). 

4. T. Aberg Phys. Rev. 156, 35 (1967). 

5. T. Aberg Am. Acad. Sci. Fenn. AVI 308, 

6. T. Aberg Phys. Rev. A2, 1726 (1970). 

1 (1969); 

7. This result was also obtained by Aberg, 5 as an intermediate 

step in his derivation of the high energy limit. Its implications were not 

discussed. To avoid confusion, we felt a new derivation w.as required. 

8. The orbitals can be imagined to be spin-orbitals - a spatial function 

+ 
times a spin function. E. g. <1>

1 
(f) = <P

15
(r 1 ) a(1). 

9~ Per-Olov Lowdin, Phys. Rev., 97, 1474 (1955) . 

10. These can be estimated from results reported by P. S. Bagus, Phys. 

Rev. , 139, A619 (196 5). 

1.1. J. Berkowitz, J. L. Dehmer, Y. K. Kim, and J. P. Desclaux, J. 

Chern. Phys. i!:_, 2556 (1974). 
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12. The selection rules operative here are monopole. I£ <1>
1 

has s 

symmetry, then the overlap integral will"pick out" that component of 

the plane wave function which has s symmetry. This result is obtained 

because we have not included the photon field in. our treatment. In more 

rigorous approaches the photon field is included explicitly. In that case 

one finds that ahsorption of the photon transfers one unit of angular 

momentum to the final state, and the dipole section rules discussed in 

Section II apply. 

13. W. C. Price, A. W. Potts, and D. G. Streets, Electron Spec

troscopy, edited by D. A. Shirley,· North-Holland Publishing Co., 

1972. 

14. In this step, we have assumed that the dot product of~ with the 

transition moment introduces a multiplicative constant into the cross 

section. Thi·s factor will depend on the specific nature of a given ex

periment, but for the purpose of showing the connection with the SA 

need not be examined in detail. 

15. For the sake of simplicity we have employed single determinantal 

basis states. In actual practice, it is usually more convenient to define the 

configurations as linear combinations of Slater determinants which are 

eigenfunctions of ~orne appropriate operator for the state. 
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