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I. Introduction 

This is the third in a series of four papers on lepton-hadron interactions’ 

and focuses on the study of the annihilation of electron-positron pairs into a nucleon 

plus “anything else” in the deep inelastic region. 

In such processes one measures the matrix elements of the hadronic 

electromagnetic current operator in kinematic regions entirely different from 

those available in the scattering experiments. The two processes, annihilation 

and scattering, are nevertheless related by the crossing properties of field 

theory or equivalently of Feynman graphs. It is therefore of great interest 

to study precisely what we can infer from deep inelastic electron-nucleon 

scattering about deep inelastic electron-positron annihilation to a nucleon 

plus “anything else. I7 

In particular we are interested in finding out if there 

in this case to the Bjorken limit and to the scaling behavior for 

functions as found in the deep inelastic scattering process. 
2 

If 

is an analogue 

the structure 

so, cross sections 

of the following type 

e- + e 
+ 

--p + “anything” 

where, for example, p is a proton may be very large compared to those for two- 

body final states just as they are for the deep inelastic scattering in comparison 

with elastic electron-proton scattering. This will mean sizable counting rates and 

many optimistic prospects for electron-positron colliding rings at high energies 

now under construction or in planning. 3 

In the first paper’ of the present series of papers the general program 

of our work based on canonical field theory for studying inelastic lepton processes 

was described with primary emphasis placed on ideas, assumptions and implications. 

Detailed calculations were omitted in order to present a clear and unified picture 

for various lepton-hadron scattering and lepton pair annihilation processes in the 

- 2- 
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very deep inelastic region. In the second paper we described the detailed derivation 

and formulation of the “parton model” for the deep inelastic electron-nucleon 

scattering. In this third paper of the series we concentrate our effort on the 

corresponding ‘parton model” derivation and formulation for deep inelastic 

electron-positron annihilation into a nucleon plus anything else and its precise 

relation to deep inelastic electron-nucleon scattering. We derive the parton model 

and differentiate general predictions of scaling properties from specific numerical 

results in Section III. Other implications for electron-positron colliding beam 

experiments, including a suggestion of an ideal and simple method of testing the 

unitary symmetry scheme of strong interactions, are also presented and discussed 

in Section IV of this paper. In appendix A we discuss the reasons that prevented us 

from formulating the annihilation problem in terms of commutators as did Bjorken 

for the scattering and why therefore we were driven to develop a canonical field 

theory model in order to accomplish the crossing. 

II. Electron-Positron Annihilation and General Crossing 

The physical process to be studied in this paper is the annihilation of 

electron-positron pairs to a nucleon with fixed momentum (but any polarization) 

plus “anything” - - i. e. the process 

e- + e 
+ 

-p + ” anything” 

The detected nucleon, for definiteness, will be referred to as a proton. The 

notation “anything” indicates all possible hadrons including other protons. We 

shall work to lowest order in the fine structure constant. The hadron structure 

probed in this process is summarized in two structure functions defined by 

w w 
= 47r2,$ 5 < 01 JF(0)l Pn> <nPl Jv (0)l O> (27~)~o~(q - P - pn, . 

(1) 

(2) 
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where IPn> is a state of one proton plus other hadrons with quantum numbers 

summarized by n. In (2) a spin average over the detected proton is understood; 

Pp and qp are the four momenta of the detected proton and the virtual photon 

respectively; q2> 0 is the square of the photon’s mass and Mv = P . q is the 

total energy transfer to hadrons in the rest system of the detected proton; and 

Jp(x) is the total hadronic electromagnetic current. Unless we want to entertain 

the possibility of C, or T, violation in the hadronic electromagnetic interactions 

we can equally well talk about an emerging proton, or antiproton, in the final 

state4 of (1). 

The structure functions El9 ,(q2, v ) are analogous to the structure 

functions Wl, 2 (q2, v) defined for electron-proton scattering 

W 
PV 

=4*2 M n 5 c <PIJ~(0)In><nlJv(O)IP>(27r)464(q + P- Pn) 

(3) 

where IP> is a one-nucleon state with four momentum P , q is the four momentum 
I-t I-t 

of the virtual photon; q2 = - Q2< 0 is the square of the virtual photon’s mass and 

Mv =P* q is the energy transfer to the proton in the laboratory system. An 

average over the nucleon spin is also understood in the definition W 
P’ 

The kinematical region for (1) in the q2, Mv plane is bounded as follows. 

For a fixed collision energy q2 >4M2; the value of v is bounded below by v min = J q2, 

corresponding to the detected proton at rest in the center of mass of the colliding 

ring system; and is bounded above by 2Mvmax = q2, corresponding to the “elastic” 

process e- + e+ -+p + p. Thus O< 2Mv /q2< 1 for process (1). We recall that for 

inelastic electron-proton scattering 1< 2Mv/Q2< 00. For convenience the same 



- 5- 

symbol w is used to denote 2Mv/q2 for annihilation and BMv/Q 
2 

for scattering. 

The limit w = 1 corresponds to the elastic processes e + p --, e’ + p’ in scattering 

and e- + e 
+ 

-p + p in annihilation. Since we are interested in the deep inelastic 

continuum and not the resonance excitations we require 2Mv - Q2> >M2 for 

scattering and q2 - 2Mv > >M2 for annihilation, i. e. we shall always assume 

ls2W - l)l> .M2. The point w = 1 will only be approached from both sides. 

The regions of the (q2, 2Mv) plane corresponding to physical scattering and 

annihilation processes are shown in Fig. 1. In the colliding ring or center of 

mass frame the differential cross section for (1) is given by 

2 
da 

dEdcos 8 sin2 8 1 
where E is the energy of the detected proton and 8 is the angle of the proton 

momentumg with respect to the axis defined by the incident colliding e- and 

e+ beams. 

On general grounds Bjorken2 has argued that in the deep inelastic 

region of large Q2 and Mv , the structure functions WI and v W2 for electron 

scattering should become universal functions of one single variable w. The 

parton model derived in Paper I and II for deep inelastic electron scattering 

gives a natural explanation to such a universal behavior on the basis of 

canonical field theory, A basic ingredient in the derivation of the parton 

model was the assumption that there exists an asymptotic region in which Q2 

can be made greater than the transverse momenta of all the particles involved, 

i. e. of the pions and nucleons that are the (virtual) constituents or “partons” 

of the proton. 

(4) 
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One of the primary goals of the present paper is the study of the 

relation between E and W 
132 9. 

1 2. We shall show in the following that under the 

same assumptions required in the study of inelastic scattering the structure 

functions El and ~5, also have a Bjorken limit, i. e. they too become universal 

functions of the ratio 2Mv/q2 for large q2 and Mv in the annihilation region of 

Fig. 1. In this limit we can derive a parton model for the w from canonical field 

theory. Furthermore, we shall also show that the structure functions IV1 and 

v W2 for inelastic scattering as measured or calculated near w N 1 gives predictions 

to the annihilation process (1) near 2Mv/q2 -1. Since the data on electron-proton 

scattering from SLAC and DESY5 seem to support at least qualitatively Bjorken”s 

original suggestion, we reach the important conclusion that the structure functions 

wl and v%, should also be expected to exhibit similar universal behavior at high 

energies with the structure functions for annihilation closely related to those for 

scattering. The precise conuection will be given later. 

By straightforward application of the reduction formalism to the proton P 

in the states in (2) and (3) it is readily shown that W 
P 

and F 
PV 

are related by the 

substitution law 

3pv (91, P) = - wpv (9, - w 

ys2, v) = - w$12, -v 19 vF2tc12, v) = (- v)w,(s2, - v). 

Let us write for space-like q2 

MWp12, v) = FIW, s), vW2(q2, v) = F2W, s) 

where w = 
2Mv 
T>l and s = (q + P)2 = 2Mv -Q2+M2,M2. In the Bjorken limit 
-q 

(Lim. bj ) we have 

Lim. bj MWl(q2, V) = Fl(w) = Lim Fl (w, s), 

S--c- 
W’ 1) 

Lim. bj vW,(q 
2 

, v) = F2(w) = Lim F2(w, s). 

(5) 

(6) 

(7) 
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The substitution law (5) gives for time-like q2 

Mvlts2, v) = - F;(w, s), vg2tq2, E’) = F2(w, s) 

where O<w = y<lands= (q-Pj2=q2- 2Mv + M2>M2. If we can show that the 

cy 
Bjorken limit exists for time-like q2, we expect to find in general 

Lim. bj(-)Mvl(q2, v) = F1(w) = Lim Fl(w, s) = Fl(w), 

S-00 

- 2 
Lim. bjv W,(q , v) =F2(w) = Lim F2(w, s) = F2(w), 

namely, E’*(w) and F2(w) are the continuations of the corresponding functions 

Fl(w) and F2(w) from w>l to w<l. Relations (9) will be true, for example, if 

the Bjorken limits are approached algebraically so the sign change in w - 1 between 

w>l for scattering and O<w< 1 for pair annihilation will not have any pathological 

effect. We shall now demonstrate, using as an example the model developed in 

Ref. 1 of charge symmetric theory of pseudoscalar pions and nucleons 

with y5 coupling and with a transverse momentum cutoff, that firstly , the Bjorken 

limits of El and VW, exist, and secondly, the relations (9) are indeed satisfied. 

The failure of more general attempts to accomplish this crossing is described 

in Appendix A. The demonstration of Bjorken limiting behavior will closely parallel 

the derivation given in Paper II for deep inelastic scattering. Explicit verification 

of (9) as the continuation of the scale fun&ions from w>l to WC 1 will be displayed 

in Appendix B through fourth order in the strong interactions, For the particular 

set of ladder graphs it will be shown to all orders. 

III. Derivation of Parton Model for Deep Inelastic Electron-Positron Annihilation 

To make apparent the connection between the deep inelastic electron- 

positron annihilation process (1) and the deep inelastic electron-proton scattering, 

(9) 
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we will study the annihilation process (1) in an infinite momentum frame of the detected 

proton, just as the electron scattering was in an infinite momentum frame of the initial 

proton. A convenient infinite momentum frame for this analysis is one in which the 

current introduces a large momentum of the order of magnitude of J q2 transverse 

to the direction of the momentum q+m of the detected proton. This is analogous 

to the situation exploited in our study of the deep inelastic scattering which also was 

analyzed in a coordinate frame in which the current introduced a large transverse 

momentum, Q2, J relative to the infinite momentum of the initial proton, For the 

scattering as viewed in a reference frame with this property there emerged two 

distinct groups of final hadronic particles: one group with a limited transverse 

momentum relative tog because of our cutoff km,,<< I q I , and a second group with 

its components of momenta transverse to E clustered about the asymptotically large 

value = I q I (see Fig. 8 of Paper II). A similar grouping of final hadrons will occur 

in the annihilation process. 

We shall take the infinite momentum limit in the same manner as in 

Paper II for the scattering analysis by first letting P--m and 

q2, Mvdm, so that q2/P, Mv/P-0. The defining relations 

taking the limit 

q qh=q2>0 
P > q*P=Mv 

are then satisfied up to corrections of order - i (f) if we specify the momentum 

components to be 

P =(P+$f P 
, 0, 0, P) 

2Mv - q2 2Mv + q 
4P 

pf+l 
9 21’ y-- 4P 

2 
% 

= 'fq2 

(10) 

(11) 
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where fk 0 measures transverse momentum (squared) introduced by the current. 

Any value of f>O will satisfy our above criterion for producing two distinct groups 

of final hadrons. For simplicity we shall specify f = 1. Any other choice will do. 

In fact it must do if the calculations and the cutoff procedure as formulated in 

Paper II are to be acceptable, 
6 

That this is indeed the case we have verified by 

explicit construction. Indeed the results of this paper as originally reported in 

Paper I were first derived in the coordinate frame obtained from (11) by setting7 

f=O. 

In analogy to our discussion of electron scattering we undress the 

electromagnetic current operator Jp(x) by the familiar U-transformation 

JpW = U-‘(W$WJ(t) 

with 

U(t) = ewi -co J 
+ 

In our model the interaction Hamiltonian HI and the electromagnetic current Jp are 

respectively 

As in the study of inelastic electron scattering the definition of the interaction 

Hamiltonian (14) involves implicitly the fundamental assumption that there exists 

a transverse momentum cutoff at each strong vertex. 

Before proceeding further, we recall from Paper II certain basic 

properties simplifying the application of old-fashioned perturbation theory in an 

infinite momentum frame, and in particular, with the interaction (14). In the 

old-fashioned perturbation theory a physical process is described by a sum of 

infinite series of terms (“diagrams”) with a time-ordered sequence of events 

represented by the vertices. Every intermediate state between two consecutive 

(12) 

(13) 

(14) 

(15) 
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vertices is associated with an energy denominator. In the perturbation series 

expansion all disconnected diagrams may be consistently omitted as explained 

in Paper II. Moreover, an energy denominator it? an infinite momentum frame 

1 
is of order - p if all the particles in the particular intermediate state move 

forward in the direction of the initial infinite momentum; the energy denominator 

becomes of order P if any of the intermediate particles have a negative 

longitudinal momentum. Thus, if all the vertices were finite in an infinite 

momentum frame, this property of energy denominators would prevent any 

intermediate particle (real or virtual) from having negative longitudinal 

momentum. However, the interaction Hamiltonian (14) leads to vertices of 

order P when the two nucleons at a strong vertex have infinite longitudinal 

momenta opposite in sign (see Eq. ( 9) of Paper II). As a result, a large 

energy denominator of order P corresponding to an intermediate state with 

particle(s) moving backward can be compensated by two large strong vertices. 

On the other hand, for the “good components” of j - - i. e. the 
P 

time and third component along the reference infinite momentum four vector, 

no extra power of P will be introduced into the numerator if the two particles 

at an electromagnetic vertex have longitudinal momenta opposite in sign. 

Consequently, in the following analysis only good components of $ will be 

considered. This is sufficient for us to obtain the two structure functions 

Gl 2 by computing woo and w33. The whole tensor w may then be 
, PV 

reconstructed by relativistic covariance. We new substitute (12) into (2) 

and obtain 

< 01 U-‘j~(O)Ul Pn> <nPI U-lb (0)Ul O> (27Q4 S4(q-P - Pn) 
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where we define U = U(0). For the good components of jl*& = 0 or 3) along g the 

effect of U on the vacuum state may be ignored. If U(0) operates on the vacuum state 

it must produce a baryon pair plus meson with zero total momentum so that at least 

one particle will move toward the left and another toward the right along 2 or 2 

in (16). Thus the energy denominators will be of order -P instead of -1/P. However, 

when working with the good components of the current - - i. e. j 
0 

or j, along2 no 

compensating factors of P are introduced into the numerator by the vertices and 

so such terms can be neglected in the infinite momentum limit. To illustrate this 

result we consider the example drawn in the diagram of Fig. 2(a) where a nucleon- 

antinucleon pair plus one meson are created from the vacuum and the nucleon 

current is operating. At least one large energy denominator of order P is 

introduced by this intermediate state. It then requires at least two compensating 

powers of P in the numerator to overcome. One factor of P can be supplied by 

the strong vertex from which these particles are created if the nucleon and the anti- 

nucleon have longitudinal momenta opposite in sign. Nevertheless, it is impossible 

to obtain another compensating factor of P when only the good components of j 
P 

are employed (16). The only possibility left is to produce another large strong 

vertex by changing the sign of the longitudinal momentum of one of the nucleon 

pair before the current operates (if after the current operates then two large 

energy denominators instead of one are introduced). This is impossible either 

because spatial momentum is conserved at each vertex (Fig. 2(b)), or it will 

introduce additional large energy denominators (Fig. 2(c)). The same conclusion 

holds for pion current contributions. As discussed in Paper II more interaction 

vertices to higher order in the strong interactions can not compensate for the lost 

powers of P. We conclude therefore in the infinite momentum frame (11) Eq. (16) 

becomes, for good currents, 

( 01 j,CO)Ul Pn> < nPl dljV (0)l O> (27r)4a4(q -P - Pn) 
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Other simplifications which follow from working in an infinite momentum 

frame are similar to those discussed in Paper II. For example, if a particle is 

created at a strong vertex moving opposite to the initial infinite longitudinal 

momentum it must change its direction of motion or be annihilated at the next 

vertex; such a particle can never traverse beyond a strong vertex without 

being disturbed. As the equations for the electromagnetic vertices show 

(see Eq. (10) of Paper II) to leading order the good components of the current 

will create a pair with both particles moving with positive longitudinal momentum 

components along the direction of q3 and P. Moreover all final particles produced 

in state I Pn> in (17) from.the current must have positive longitudinal momenta 

along ,P as a result of energy-momentum conservation enforced by the delta 

function in (17). In addition, the longitudinal momenta of the intermediate 

particles are generally restricted to certain finite ranges or fractions of the 

incident momenta. For the detailed discussion the reader is referred to 

Paper II. 

The derivation of a parton model for (1) can be carried out in very close 

parallel to the one given in Paper II for inelastic electron scattering. There are 

only minor differences between the two cases, arising from the fact that the virtual 

photon is space-like in the scattering and time-like in the annihilation process. 

To maximize the similarity with the scattering development in Paper II 

we choose f = 1 in (11) so that 

q~ = 
t 
2p + ~~~ - q 

2 
2P 2Mv + q 

W 4P ‘%&‘Y--- 4P 
c-2 0 

and take the analogous Bjorken limit 

cl22 MU-W o<= SE 3 w<l . 
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Again the final particles of the annihilation process (1) in the infinite momentum 

frame (18) are divided into two well-separated groups of particles. One group of 

particles contains the detected proton and moves closely along the direction of its 

momentum g; the other group of particles also moves close to each other but along 

a direction differing from the direction of P by a large transverse momentum of 

order J- 
2 

q . In the Bjorken limit as in the scattering case there is no interaction or 

interference between these two groups of particles. Consequently, only two general 

classes of diagrams as shown in Fig. 3 remain in (17). 

To gain an understanding of how the expression (17) and the kinematics 

simplify in the Bjorken limit, we calculate explicitly a few terms im (17) represented 

by diagrams of Fig. 4 in which all the pions are assumed to be neutral. Diagrams 

Fig. 4 (a) - Fig. 4 (d) are associated with a common final state and have identical 

topological structure but have different time ordering among the strong vertices. 

The contributions to % 
PV 

are, respectively, 

Ep-i? - u1 -wl) 
1 

(2El)2(2z1)2(2z) 

T/JV 1 1 1 (19) 

-2x 
(E +z+, +; -E -E) 

-- 
P 1 1 1 1 i (E 

P 
+LQ-E~)~ ; wp+ “1 - El)@ +zl -8,) ;(E +wl-q2 

where 

T =T = (-)Tr I 
PV VP \ 

(M+YP)Y~(M+YPl~y~(M-~~~)~g(~-~~)~~tM-Y~l)Yv(~+Y~l)Y~ 
I 

(20) 

(21) 
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Observe the identity 

1 2 + 1 

‘Ep +y- qj2 +(Ep+w1-4)(~p+q‘~) (E t’l;, -q2 

(E -t-j? +w~+;~-E~-~~)~ 

= (Ep+wl- E$2(E+;l-%!$2 

Evaluating the trace and using (22) we obtain 

I d3kl d3i;l 

-q-q- 
6(q”-Ep-i++$) X 

(-2)2(M2-F.Fl)(M2- p91,2~9~~ (M2+P&)+(Pl Flu +PlvFl )I 

(2Ei)2(2!$)2(2E)(Ep +u~-E~)‘(~ +;, - zl)2 

We adopt the following parametrization 

This parametrization is designed to make the analogy to the inelastic scattering 

as close as possible by following along the nucleon line with the detected proton 

as the starting point and scaling the adjacent nucleon’s momentum with respect 

to that of the preceding one. (Compare (23) and (24) with Eqs. (58) and (52) of 

Paper II). Notice that the differences (EP + w1 - El) and (E + z1 - zl) can be 

(23) 

(24) 

ignored in the energy conserving delta function of (23), since 
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Ep + 9 

21710?1 - w 

E+yq= 
k; + M2(l - q)2 + ,u2~ 

2170 - ?7P cl 

are small as compared with the term 2Mv - qA 
4P appearing in q”. Thus energy 

is conserved to leading order across the electromagnetic vertex: 

6 (q” - Ep - 3 - w1 - Gl) = 6 (q” - El - xl) 

= (2El)6[2Mv rll - q2J 

= (2Z1)6[2pjq - s21 

where the following approximation valid in the Bjorken limit has been used 

xl= 

q; = 
43 -‘71P+ 2(q3- 771P). 

In (27) q3 - nlP> 0 since the pair must move along x as discussed below (17). 

Combining (23), (24) and (26), and ignoring terms proportional to q 
P 

or 4,, we obtain for the numerator factor in (23) 

W2+ plFl, + ~~~~~~~ -I- ~~~-ii~~) 
I 

= - gpv q2 -4n2PP 
1 PV 

= - gpvq2- 4($)2PpPv 

and from this we find 

4 1) / 

2 2 12 

v?? t2) = 
2 (1- z 2(n~)) 

- 
(-& 

- 
E6n $ 

d$ 
kll +M (1-g 1 

(25) 

(26) 

(27) 

(28) 

(29) 

T (2) = -FM (vw,t2)) 
1 
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where 

0 =l- Zqn ) 

1 

dvtl-77) 

k2L+ M2(1 - n)2 

[k2L+M2(l-~)2+~2~] 2 

is the wave function renormalization constant for a proton due to a one-proton plus 

one neutral pion intermediate state. (See Eq. (18) of Paper II). Eq. (29) can be 

rewritten as 

w t2) + z - 0) = ‘jJ (1) 
PV 2(n”)W~v PV 

where % (1) 
PV 

is the contribution of a diagram obtained from Fig. 4 by replacing 

the group of particles deflected fromg by q&with a single proton, This simple example 

provided by Fig. 4 actually contains all the essential characteristics of the Bjorken 

limit in the annihilation process. They are (i) the pair produced by the current j 
P 

and all the particles in final states I Pn> must have positive longitudinal momenta 

along the direction of q or g11; 
,w 

(ii) in the Bjorken limit the overall energy conserving 

delta function in (17) can be replaced by conservation across the electromagnetic vertex 

as in (25); (iii) the two groups of particles (A) and (B) in Fig. 3 that are produced 

are well-separated and well-identified by a transverse momentum difference ccq; 

and (iv) the relative time ordering between events which occur in one group and 

events in the other may be ignored. The U matrix acts independently and separately 

on the two groups of particles. Summing over all possible combinations of particles 

in the group (B), one obtains unity for the total probability for anything to happen. 

Eq. (31) is an example of this kind. It states that the net effect of the U matrix on 

the group (B) is unity after summation over all possibilities in this group. In this 

case, summation of the four different time-orderings as shown in Fig. 4 with two- 

particle states in (B) precisely cancels the wave function renormalization effect, 

Z2, of the single antiproton state in (B), 

The four properties described above have their analogues in the 

inelastic scattering case and were discussed in more detail in Paper II. According 

(39) 

(31) 
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to (ii) the state U I Pn> may be treated as an eigenstate of the total Hamiltonian with 

eigenvalue Ep + En and (17) becomes, with the aid of the translation operators, 

Lim .W = 
bJ W’ 

iqx C < 01 j,(O)e 
-i (P + Pn .)x 

n UIPn> <nPIU-lj, (0)l O> 

(32) / 

C <Ol jcL(x)UIP 
n 

n> < nPI U-4 v (0) I O.> 

According to (iv), the final result of (32) is equivalent to retaining only those terms in 

which the group with deflected momenta contains only one charged particle 

(n*, p or p in our model) which we shall denote by ,A. Therefore 

~~Olj~(x)lh,U(Pn)~~(nP)dL,hljv(0)102 (33) 

This is the parton result for the annihilation process (1). The similarity 

of (33) with the corresponding expression for inelastic scattering in the Bjorken .imit 

is clear by a comparison of graphs in Fig. 5; (a) with (c) and (b) with (d). 

Every term in (33) is represented by a diagram of the form shown by 

Fig. 5(a) and Fig. 5(b) for a nucleon current and pion current contribution, 

respectively. The evaluation of (33) then obviously involves the matrix elements 

j;ddeiqx FxF < 01 jp(x)lFnE; Pns> < SIP,; S Fn I j, (0)l O> 

n’ 

-12M 2 =-- 
4n2 2En6 lq - 2Piq)up @‘)Y, W - ytq- P,Jl yp “P (~1 

n n 

for a nucleon current contribution; and 

/ 
iv C tdx) e 

ka 
<Olj~(x)Ikn,~n>c~n, knl j,(O)1 O> 

1 1 =-- 4n2 2wn 6 (q2 - 2k;q) (2k w- qJ@k,,, - qJ 

for a pion current contribution. In these two equations, Pn, Fn and kn, En are the 

momenta of the proton-antiproton pair and pion pair, respectively; s, g are the spins 

of the proton and antiproton, respectively. Eq. (34) may be simplified to obtain : 

(34) 

(35) ’ 
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jbu)e iqx& <Oljp(x)lFn S ;Pns><slPn;S~nljV(0)IO> 

n’ 

1 1 cm- 

47r2 2En 
6 tq2- 2P;q) [t - 2Pnqkpv - 4Pn~PnJ * ss’ 

Ignoring terms proportional to qp or qV , substituting P 
w 

= 77 P in (36) and k 
t-v nh = ‘npp 

in (35), we obtain 

jdx) e+iqxFg ‘-- <Oljp(x)lTnS ;Pns><s’Pn;s Pnl j,(O)I> 

n’ 

1 1 =-- 

4n2 2En 
6 tq2 - 2Mv rln) 192d-~y)y 4-j ‘clpl~ ss, 

jdx) e+ iqx& ~01 jp(x)I$, kn><kn, EnI jv(0)l O> 

n 

1 1 2 
=z zn w -2~v’1,)4 -J- PP 

w2 P v 

In (37) and (38) vn represents the “fraction” of the longitudinal momentum with 

respect to P of the charged particle created by the virtual photon which will 

(36) 

(37) 

(38) 

eventually produce the detected proton. 

The complete dependence of E 
w 

on q2 and Mv has now been explicitly 

exhibited in (37) and (38). These two equations show that both E 
1 

and vE2 are 

universal functions of one single variable w in the Bjorken limit: 

- 2 
“mbj MW,(q , U) = - q(w) 

(3 9,) 
2 - 

Li”bj “w2( q , v) = F2(w). 
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According to (37) and (38) the nucleon current (or more generally any spin 

icurrent) contributions to yl 
9 

,(w) have a fixed ratio 

qw) w 1 - =- 
T,(w) ’ 2 

(spin- 2 current) / 

and the pion current (or more generally any spin 0 current) does not contribute 

i 

w 

to F1(w) 

I,(w) = 0 (spin 0 current) (41) 

Both relations (40) and (41) are independent of dynamical details. The relative 

importance of the nucleon and pion current contributions, and hence of Fl(w) 

and F2(w), is determined by the dynamics, however. 

Although it is not apparent that i;‘,(w) and F2(w) computed from (33) are 

the same as F1(w) and F2(w) computed from (57) of Paper II and continued to 

0~ WC 1, it is actually so by explicit calculation. Verification is straightforward 

for second order pion current contributions as well as for the similar nucleon 

current contributions which are displayed’in (29) for comparison with F2 Wa) in the 

Appendix of Paper II. 

We have also verified this explicitly to fourth order in g for diagrams 

with both pion and nucleon current. contributions, and to any order for ladder 

diagrams with nucleon current operating (Fig. 15 of Paper II) and its corresponding 

diagram (Fig, 8(u) in Appendix B) for annihilation process (I). In this verification we 

only have to identify the transverse momentum cutoffs in both cases. The details of 

this verification and the cutoff prescription are presented in Appendix B. 

We summarize the main conclusions of this section. Firstly, to arrive 

at (33) we have exploited the nice properties of the good components of the electromagnetic 

current to make the discussion simple. But with the covariant tensor structures 
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explicitly displayed as given in (37) and (38), the results are clearly applicable to 

all components. Eqs. (37) and (38) also show explicitly the scaling behavior of w, 

and vq, in the Bjorken limit. Secondly although the analysis given here uses a 

specific field theoretic model, (14) and (15), it is clear from the discussion of this 

section that the derivation of the parton model result (33), the scaling behavior (39), 

and the characteristic feature of any spin 4 and spin 0 currents, (40) and (41), can be 

carried out for more general field theoretic models as long as there exists a trans- 

verse momentum cutoff at every strong vertex. This transverse momentum cutoff 

is crucial in allowing us simply to do power counting in 4 in order to identify 

leading terms, but the origin and form of this cutoff is iRelevant to these general results. 

Thirdly, we believe that the crossing relations (9) also have a more general 

validity although we are unable to construct a general proof, We say this because 

the substitution law (5) is a general property of any field theory, and since the 

Bjorken limits of both W 
P 

and v 
W 

exist by our analysis it is hard to imagine 

that they do not approach the same limiting functions. Our explicit verification 

to higher orders for a particular model in Appendix B lends support to this belief, 

but is of course no substitute for a proof. 

IV. Predictions 

We are now in a position to study the experimental implications of the 

results obtained in the last section. They may be summarized as follows: 

1.) In the Bjorken limit, the differential cross section for the annihilation 

process (1) in the center of mass frame of the electron-positron pair becomes, 

using E = Mv/q’ = Mvkq’ and the definition w = 2Mv/ q2, r 
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‘(42) 

is the total cross section of electron-positron annihilation into muon pairs, in the 

relativistic limit. Generally, knowledge about Fl 
, 

,(w) for w>l as determined by 

inelastic e - p scattering measurements does not provide any useful information 

for O<w<l unless one knows the analytic forms of, F1 
9 

2(w) exactly. However, w = 1 

is a common boundary for both scattering and annihilation. Therefore, with a mild 

assumption of smoothness, the ep deep inelastic scattering data near w 2 1 predict 

completely the “deep” inelastic annihilation process near W 5 1. This connection 

is a far reaching consequence of the Bjorken limit. The two processes occur in 

different and disjoint kinematical regions and are not related in general. Recall 

that w = 1 corresponds to the two body elastic channel and by w near 1 we mean 

I q2(w-1)l >>M2, 

2.) In the infinite momentum frame (18) the secondary particles in the 

annihilation process (1) are divided into two well-defined groups, one with 

momenta along the direction of the detected nucleon and the other with a large 

transverse component of order q. The distribution of secondaries in the 

colliding ring frame will look like two jets along and opposite to the direction of 

the momentum of the detected nucleon with typical transverse momenta ks<< J-- 
q2 

on the individual particles. 
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3*) Combining Eqs, (40) and (41) for 0~ w< 1 and the analogous equations 

for w>l (Eqs. (114) and (115) of Paper II) with the relations (9), we conclude for 

any value of w (0~ w< “) that if the current interacts with a nucleon (or more 

generally any spin i particles), then 

F1(W = f F2(W (nucleon current), 

and if the current interacts with a pion (or more generally any spin 0 particles), 

then 

Fl(w) = 0 (pion current). 

Now, in (42) we may choose sin20 = 0; thus it is necessary that 

F(w) zs 0, O<w<l. 
1 

On the other hand, F1 
, 

2(w) are non negative for w>l. We conclude that both F1(w) 

and F2(w) change sign at w = 1 if the nucleon current dominates, while F2(w) does 

not change sign at w = 1 if the pion current dominates. We therefore predict 

near w-l that r 

F2(w) = CN(w - l)2n + ‘, n=O,l;” 

3C2W = C*(W - 1)2n, n=O,l,*** 

(Nucleon current) 

(Pion current) 

This threshold “theorem” is a consequence of the positivity of a physical cross section 

combined with the crossing properties (9) in field theory. As discussed and 

conjectured in Papers I and II based on our specific model of (14) and (15) we 

believe that the pion current should dominate near w-l. If the conjecture is 

correct, F2(w) is an even function of (w - 1) near the threshold. Our crossing 

relation (9) then implies that this behavior can be continued to we 1 and used to 

predict the annihilation process (1) in the proximity of w = 1. 

(43) 

(44) 

(45) 

(46) 

(47) 
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We want to emphasize that independent of this specific conjecture based 

on our model it follows from the existence of a Biorken limit that the deep annihilation 

cross section varies with total enerpv of the collidinp electron-positron sgstem as 

l/q2 just the same as the cross section for a point hadran. Furthermore, even 

without calculating the specific values of Fl 2 (w) from a theory one can predict 
, 

from (42) plus the observed structure functions for inelastic scattering that there 

will be a sizable cross section and many interesting channels to study in the deep 

inelastic region of colliding e- e+ beams. 

The relative roles of the nucleon and pion currents can be studied experimentally 

by separating F1(w) from F2(w), or ql from vE, by the angular distribution in (42). 

If as we suggest the pion current dominates near w = 1 then the deep inelastic annihilation 

cross section leading to a detected proton will equal that for a detected neutron, This 

equality also holds for deep inelastic scattering near w = 1 from a proton or a neutron 

target. 

4.) A parton model can also be formulated for deep inelastic electron- 

meson scattering and electron-positron annihilation into a meson of fixed momentum 

plus anything. The crossing properties of the two processes can also be established. 

For.example, simple considerations show that for spin 0 mesons we have the 

substitution laws 

qc12, v) = w1ts2, -VI (43) 

tii2ts2, v) = w,(s2, --y ) 
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where Pp denotes the four momentum of the meson in question; W 
WJ’ w1, 2 and 

w W12 
w’ , 

are defined analogously to those for nucleons. The sign difference 

between (48) and ( 5 ) comes about because pions are bosons and nucleons are 

fermions. In the Bjorken limit (48) gives 

zl(w) = + Fl(w) 

p2(w) = - F2(w) 

where F 1 
, 

,(w) and Fl ,(w) are defined by equations similar to (7), (8) and (9). The 
, 

threshold theorem for spin 0 mesons is 

F2(w) = CN(w - 1)2n, n = 0, 1, 2, l l l (nucleon current) 

F2(w) = C’,(w - 1)2n + 1, n = 0, 1, 2, l l l (pion current). 

5.) By detecting different baryons in the final states, one has a simple test 

of the unitary symmetry scheme of strong interactions. For instance, according 

to SU3 and the hypothesis that the electromagnetic current is a U-spin singlet, 

the differential cross sections labelled by the detected baryon and observed at 

identical values of q2 and q l P should satisfy the relations 

%O = cr n 
=f (3Q - uzo,. 

Similar relations can be written for the mesons with an added constraint due to the 

fact that r- and n+ are each others antiparticles; thus 

*7T- = a k - = Tr+ = cJ + k 

UkO = “iT 0 = 4 (30n - “,p,. 

This should be an ideal place to test the accuracy of SU3 predictions since the mass 

differences among members of a multiplet should have a negligible effect on the 

dynamics as well as the kinematics in these regions of asymptotically large momentum 

and energy transfers. 

(49) 

(50) 

(51) 

(52) 
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6.) If charge conjugation is a good symmetry of the electromagnetic inter- 

actions, the differential cross sections for detecting a particle or its antiparticle 

are identical. According to (42), the differential cross section for (1) as a 

function of q2 is comparable in magnitude to that for lepton pair creation and 

very much larger than the observed l’elasticl’ annihilaticn process to a p 5 pair, 

Consequently, it should be feasible by detecting and comparing charge-conjugate 

states, such as A and ‘ii: for example, to test charge conjugation conservation in 

electromagnetic interactions of hadrons. 
8 

7.) One expects a large cross section for deep inelastic electron-deuteron 

scattering, since the deuteron is a loosely bound system of a proton and a neutron 

5 
and SLAC data show a huge cross section for deep inelastic electron-proton 

scattering. However, in the crossed channel of electron-positron annihilation 

to form a deuteron (or generally any other loosely bound “composite system” in 

place of the proton) plus anything else, the cross section should be very small. 

To see how this can be explained in the context of our results for scaling consider 

explicitly deuteron production and note that the kinematically allowed regions are 

the same as illustrated in Fig. 1 but with the mass M now interpreted as the 

deuteron mass Ml, = 2M. For inelastic scattering from the deuteron the overwhelmingly 

large proportion of the cross section c.omes from the kinematic region corresponding 

to one of the nucleons in the deuteron serving as a spectator and the other as the 

target - - i. e. for wD 
2%v = - > 2. 

Q2 
When we probe into the region l<wl.,< 2 

which is also kinematically allowed we are simultaneously probing into very 

large momentum components of the deuteron wave function. To see this most 

directly we compute the invariant mass of the intermediate proton formed from 

the bound deuteron and moving in the infinite momentum center of mass frame for 

the deuteron plus incident electron. The result by a straightforward calculation 

with the kinematics shown in Fig. 6 is 
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where 0~ n ‘< 1 is the fraction of longitudinal momentum of the intermediate proton 

retained on the final proton and (1 - n ‘) ‘is the fraction acquired by all the other 

hadrons produced from the proton. This shows that only for wD = 2/q’ 1 2 are 

the low momentum components of the deuteron contributing so that the deuteron 

wave function does not severely damp the amplitudes v W2 and W . In order to 
1 

continue to the colliding beam region as we did for proton targets it would be 

necessary to continue across the boundary from wD>l to ~~‘1, However, 

once w decreases below w 
D D = 2 we have seen that the inelastic scattering 

is severely dampened and hence as we continue cross the line WD = 1 into 

the annihilation region for e- eS -cD + “anything” we can expect the same very 

small cross section to be observed. 

In contrast to this behavior the deep inelastic scattering cross section 

from a proton quickly grows to sizable values near w = 1 and this in turn crosses 

to a large annihilation cross section. This difference reflects the qualitative 

difference between two systems - a loosely bound one such as the deuteron with 

mass approximately equal to the sum of its constituents, and a tightly bound one 

such as the proton with mass substantially less than the sum of constituent masses, 

whatever they be. Historically the difference was often used to characterize 

“composite” vs. “elementary” particles. We refrain here from such identification 

1 
or labelling of systems, particularly since we have, as discussed earlier, taken 

Z2 = 0 so that the single “bare” proton state has zero probability of existing in the 

“physical” proton. Nevertheless there remains a remnant of this view in our 

approach to the parton model. If we turn off the weak interactions our final 

hadron multi-particle states in the Bjorken limit are composed of pions and 

nucleons appearing in (14) and (15), or the basic boson and fermion octets when 
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we build in the SU3 group. However the higher resonances (vector mesons, the 

decuplet, etc. ) are then composites built from these basic (or aristocratic) 

octet constituents and whereas their ratios of cross sections for production in 

electron-positron annihilation may satisfy SU3 predictions akin to (51) and (52), 

their magnitudes may be considerably smaller, similar to the deuteron’s, since 

they are weakly bound or unstable. We have no basis for a firm prediction on 

these within our theoretical framework. 

V. Summary and Conclusion 

Under the same assumptions required in the study of deep inelastic 

electron-nucleon scattering we have accomplished the crossing to the annihilation 

channel and established the parton model for deep inelastic electron-positron 

annihilation process (I), We found as an important consequence of this derivation 

that the deep inelastic annihilation processes have very large cross sections and 

have the same energy dependence, at fixed w = 2Mv/q2, as do the point’lepton 

cross sections. Moreover, these cross sections are orders of magnitude larger 

than the two body process e- + e+ -p + 6. If verified this result has important 

experimental implications since it suggests that there is a lot of interesting and 

observable physics to be done with colliding rings. Note that (42) integrates to 

in the interval Aw near w = 1. Since F = 0 for w<l according to (45) we take 
I 
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; F2 ; Fl > ; F2G (vW2) N 1o-2 for 1. l<w< 1.3 as estimated from the scattering 

measurements.According to our specific model of (14) and (15) the pion current 

should play the dominant role near w-1 so that F1 - - 0. 
F2 

Generally however we can 

write near w = 1, in terms of the separate contributions from the spin 0 bosons and 

spin i fermions, F2B and F2 
F 

respectively, 

i F2 - Fl = + F2B + 21 F2Fl C: (vW2) and >f PW2)’ 

We thus arrive at a numerical prediction of 

,-J - (10’ 2Aw) $ NN I()- 35cm2 

cl 

for a colliding beam total energy of q = 6 GeV and Aw M 0.2. In contrast for the two 

body channel the p;- ee annihilation measurements’put an upper limit of 

CT: 5x 10 
-34 2 

cm at a collision energy of q = 2.6 GeV. The elastic cross section 

at high energy becomes 

CT = 47ra2 
el 

q2 
I G,(q2) I 2 + ; $ 1 GEts2) 1 2 

q I 

I2 - lO+I as and may be as small as M 2 x 10 -3gcm2 at q = 6 GeV if I Gh1(36 GeV2) 

would follow from a simple dipole extrapolation of the elastic form fat tors. lo 

Finally we note that here we do not have a sum rule for the structure 

functions analogous to that given in Eq. (82) of Paper II for inelastic scattering. 

In principle therefore the Bjorken limit for El and vE, can be trivial since the 

structure functions might vanish in this limit. Bowever our dynamical relations 

between the structure functions y and v W2 for scattering and their continuations 

from the region w> 1 to the annihilation region with WC 1 as discussed in (43) - (47) 

indicate this is not the case. 
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APPENDIX A 

In this appendix we discuss the reasons preventing us from deriving 

the scaling laws for the structure functions of the annihilation problem in terms 

of current commutators as did Bjorken for the structure functions of the inelastic : 

electron scattering. We want to show why we were driven to develop a canonical 

field theory model and a cumbersome time-ordered graphical analysis in order 

to accomplish the crossing to the annihilation channel. 

For the inelastic electron scattering the structure functions, Wl(q2, v) 

and W2(q2, v), are the absorptive parts of the spiniaveraged forward Compton 

scattering amplitude for a space-like virtual photon from a proton. Therefore 

they are given by the one proton expectation value of the Fourier transform of 

the current commutator. Analyticity properties and asymptotic bounds of the 

2 
scattering amplitude were utilized by Bjorken in his derivation of the scaling 

laws for the structure functions in the inelastic electron scattering. 

On the contrary, for the annihilation process (1) the structure functions 

El(q2, v) and E2(q2, v) are not the absorptive parts of any scattering amplitude 

and as a result F 
PV 

cannot be expressed as the matrix elements of a current 

commutator. To make this clear, consider the function C TV (q, P) defined by 

CPU (q, P) = 4n2 2 
I 

(dx)eiqx<P I [ Jp(x), Jv (0)] I P> 

where a spin average over the,proton state is implied. Ccl; (q, P) as defined is the 

absorptive part of the forward compton scattering of a photon with mass q2 from a 

proton. For space-like q2< 0 and q”> 0, only one ordering in the commutator 

contributes because of energy-momentum conservation and the stability of the 

(A. 1) 
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of the proton. Thus we obtain, for space-like q2 and qOrO, 

CPU (q, P) = 47r2 2 
/ 

(dx)eiqx4 JcL(x)Jv (?)lP> = Wpv (q, P), 

which shows that W 
PV 

(q, P) is given by the matrix elements of the current 

commutator. For time-like q2> 0 and q”> 0, however, Cii (q, P) contains 

contributions from several classes of diagrams with distinct connectedness 

properties. Let us write 

cp (9, P) = c /Au (a+qspJ + CPU @)tq, P) + CPU yq, P) + cpv td)(q, p) 

where the separate contributions C 
PV 

(a) . , . c td) 
W 

are represented graphically 

in Fig. 7 . Fig. 7(a) represents the totally disconnected diagrams; Fig. 7(b) the 

correction to Fig. 7(a) demanded by the Pauli exclusion principle when the final 

states denoted by the blob in Fig. 7(a) contain protons; Fig. 7(c) represents the 

connected part; and Fig. 7(d) represents the semidisconnected diagrams arising 

from the interference between the two classes of diagrams in Fig,7(a) and Fig.‘l(c). 

Of special interest is the contribution from the class of diagrams in Fig.‘l(b). 

It can be verified easily that 

c&J (b)ts, w = - zpv (9, P) 

where the minus sign is due to the Pauli exclusion principle, or Fermi statistics. 

In the physical region of the annihilation process (1) all the classes of diagrams in 

Fig. 7 are in principle nonvanishing. From (A. 3) and (A. 4) it is seen that zpv (q, P) 

is only a part of the total absorptive part of the forward Compton scattering of a 

time-like virtual photon from a proton. Study of current commutator, such as 

(A. 1) for time-like q2, therefore can only give insights to the sum of the pieces 

c (a) 
pv 

c @I 
)..” /.4v , not the object of interest w pv te 3 alone. Unless information 

(A. 2) 

(A. 3) 
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about the pieces in (A. 3) other than w 
IJV 

(q, P) is known by other means, it can be 

concluded that study of the current commutator is not a useful approach to the 

understanding of the annihilation process (1). 
11 

On the other hand, there is a one to one correspondence between individual 

Feynman amplitudes contributing to the inelastic ‘electron-proton scattering and to the 

annihilation process (1). The crossing properties of field theory, or equivalently 

of individual Feynman amplitudes, relate the two by the substitution law ( 5 ). 

Thus, canonical field theory provides a natural framework for going from the 

inelastic electron scattering to the electron-positron annihilation process (1). 

It is for this reason that we adopt the canonical field theory as a unified theoretical 

basis for describing both inelastic electron scattering and the electron-positron 

annihilation process (1). 

As the development in this series of papers shows, a physical picture 

for both scattering and annihilation - the parton model - emerges from the field 

theoretic study based on old-fashioned perturbation theory in the infinite momentum 

frame. In our opinion, this picture sheds some light on the physical nature of the 

Bjorken limit and perhaps it may also lead to clues to a better understanding of 

purely hadronic processes at very high .energies. We hold the point of view that 

despite its perennial disease of divergences encountered in a perturbation treatment, 

canonical field theory as the only self-contained formalism which embeds all the 

physical requirements of unitarity, crossing, relativity, etc., can be useful, when 

supplemented by necessary physical assumptions such as the transverse momentum 

cutoff introduced in our analysis, as a guide to the general understanding of strong 

interactions. 
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APPENDIX B 

In this appendix we explicitly verify the substitution law (9) in our 

field theoretic model to fourth order in g for diagrams with nucleon current contri- 

butions, and to any order for ladder diagrams with the nucleon current operating 

(Fig. 15 of Paper II and its corresponding diagram for annihilation process (l)). 

We also present a few examples of pion current contributions to fourth order for 

purpose of illustration. In the following the detected nucleon is assumed to be a 

proton and all the pions are assumed to be neutral except the pion pair created by 

the current. Furthermore, only the results of F2(w) will be given since yl(w) is 

zero for a pion current contribution and is related to P2(w) by (40) for a nucleon 

current contribution. In each diagram the momentum parametrization used in the 

calculation is given; T2(w) @) denotes the contribution of Fig. 8(i) to F2 (w). 

First we list the contributions in an obvious notation with a subscript 

relating them to the corresponding graphs in Figs. 8 and 9. 
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From these results and the similar ones in the Appendix of Paper II 

we can now state how the substitution law ( 9 ) is satisfied among diagrams in the 

two channels, scattering and annihilation. For nucleon current contributions, 

we have 

F2 
(No!) = F 

2 
o1 = a, b, c, d, e, f, h, i, k, 1, o, p, 

2F2tvq) + 2F 
2 

t17rj + F tl%) = - @g) + F 
2 F2 

-2t%l) 

F2 
tW = p,Pj,) 

F2 
W-Q + F f17@ = F2tsm) +F2t8@ 

2 

F2 
(179) = F (9 + ‘ij; (Ki 1 

2 2 3 

F2 
(17’2) + F 

2 
W2) = F2(8S) 

F 
2 

t17%) = F2t8jl) 

F2 [ nno] = i72(8u) [nnoj 

where F o 
2Znr 1 

is given by (90) of Paper II. For pion current contributions we give 

a few examples: 

F2 
(B(Y) =F Pa) 

2 O!= a, c, e. 

F2 
(18 W + 2F2t18g) + 2F2(18h).= F28b) + F2’%). 

To these results we add a few remarks: (i) the particular parametrizations accompanying 

each diagram make transparent the crossing properties once the transverse momentum 

cutoffs in scattering and annihilation are identified. For this purpose, negative 7’s are 

sometimes used as in Fgs.8 (a), (j) and Figs. 9(a), (b), (c), (e); in accordance with 

the sign change in (w - 1); (ii) p,(srl), F,(sr, ), T2(8t2 ), and T2(‘j2) separately 

diverge logarithmically at the end point n 11 = 0. However, the sums ??2(8r2) + F2(8t2 ) 

I 
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and F2(’ ) rl + g2(8j3) are well-defined; (iii) for reasons already explained in Paper II, 

in Fig. 8(m) only the bubble in which both the proton and the pion have positive 

longitudinal momenta is included, and in Fig. 8 (n) only EiM (l) 
a 

is retained; 

(iv) in old-fashioned perturbation theory because of,,, among other things, the 

time ordering in the vertices there is no one to one correspondence between 

diagrams in one channel and diagrams in the crossed channel; as a result 

crossing works generally between one group of diagrams in one channel and 

another group of diagrams in the crossed channel, instead of on a one to one 

basis; (v) all the diagrams calculated here do not have any singularity as w+l, 

therefore, these results support our smoothness assumption about the structure 

functions near w-l. 
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FIGURE CAPTIONS 

Fig. 1 Physical regions in the (-q2, ~MZJ ) plane corresponding to inelastic 

scattering from a proton and to e- e+ annihilation to a proton. 

Fig. 2 Examples of diagrams which cannot contribute to w 
WJ 

when only good 

currents are used. (+) and (- ) indicate the sense of longitudinal momentum. 

Fig. 3 The two general classes of diagrams which contribute to E 
WJ 

in the 

Bjorken limit. 

Fig. 4 Typical examples of diagrams which contribute to F 
PV’ 

Fig. 5 Comparison between the general classes contributing to the scattering 

and those to the annihilation. 

Fig. 6 Diagram for inelastic scattering from the deuteron. We suppress the 

transverse momenta in writing the labels for the kinematics as 

illustrated. 

Fig. 7 General classes of diagrams contributing to the one proton expectation 

value of the current commutator in the region of time-like q2. 

Fig. 8 Nucleon current contributions to w 
PV 

up to g4 and the ladder diagram 

to any order. 

Fig. 9 Typical examples of pion current contributions up to g4, 
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