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ABSTRACT 

This is the last in a. series sf four papers .devoted to a theoretical study 

based on canonical field theory of the deep inelastic lepton processes. In the 

present p.aper we present the detailed calculations leading to the limiting behavior- - 

or the “parton model”- - for deep inelastic neutrino scattering, i. e. 

1, + p -+ e- + “anything” 

r+p-e 
+ 

+ I’ anything” 

where “anything” refers to all possible hadrons. In particular we show that the 
/I 

structure functions depend only on the ratio of energy to momentum transfer 2Mv/q2 

as conjectured by Bjorken on general grounds. Experimental implications including 

sum rules and the relation of v and Across sections to each other as well as to deep 

inelastic electron scattering cross sections are derived and discussed. 

(Submitted to Physical Review) 
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I. Introduction 

In this fourth and final article of a series of papers’on lepton-hadron 

interactions we study neutrino and antineutrino scatterings in the deep inelastic 

region. 

The smallness of the fine structure constant for lepton electromagnetic 

interactions and of the Fermi coupling constant for their weak interactions permits 

the lowest order perturbation expansion in these parameters. We assume the weak 

currents of the leptons to be well-described by the universal V-A theory. The 

conserved vector current hypothesis of Feynman and Gell-Mann2and the Cabibbo 

theory of the weak currents for the hadrons3are also generally accepted as 

working assumptions. 

Apart from the question of whether the weak interaction is-really of 

current-current type or is mediated by intermediate vector bosons, neutrinos as well 

as antineutrinos, like electrons and muons in electromagnetic interactions, also 

probe the structure of hadrons via scatterings from hadron targets. The parton 

model derived in previous papers of this series 1 for deep inelastic electron 

scattering can be generalized to a form appropriate for neutrino and antineutrino 

scattering. Accomplishing this generalization is the task of the present paper.4 

An important and characteristic aspect of the parton model lies in the fact that in 

an infinite momentum frame of the hadron target the currents (electromagnetic 

and weak) have point-like, incoherent interactions with long-lived and almost 

free constituents (partons) of the hadrons in the deep inelastic region. The point 

vertices of the electromagnetic or weak currents can easily be isolated and , 

identified. The structure functions revealed by these probes thus become directly 

related to the structure of the hadrons - - more precisely, they record the 

longitudinal momentum distributions of the hadron’s constituents which interact 

with these currents. Electron scattering and neutrino as well as antineutrino 
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scattering are therefore intimately related through the dynamical connection between 

electromagnetic and weak currents. Such quantitative connections and their general 

experimental implications are derived and discussed in the following along with the 

extension of the parton model to parity violating weak currents. 

A brief description of this work and summary of our main results were 

presented in the first paper of this series. ’ 

II. Deep Inelastic Neutrino and Antineutrino Scattering and Derivation of the 

Parton Model 

The kinematics for inelastic neutrino or antineutrino scattering from 

a nucleon target 

(i) up + P-4 + “anything”; B = e or h, 

(ii) y, + P--T + “anything” 

are identical with the inelastic electron-nucleon scattering when the lepton rest 

masses are neglected, an approximation we shall make in this paper. The differential 

cross section for neutrino scattering in the rest system of the nucleon target is given 

by5 

(1) 

d2crV 
dcos8de’ 

(q2 Y )cos2 f +2W’ (cj2 v ) sin2 ’ 
2 ’ 1 ’ 3- 

‘E + E’ 
+ w’3(42,y) -@- sin2 ’ B 1 

where E is the incident neutrino energy and E’, 6 are the energy and angle of the 

outgoing lepton, G is the Fermi coupling constant (G = lo- 5/M2). The invariants 

q2 and v are respectively the invariant momentum transfer and energy transfer in 

the laboratory frame to the nucleon. The structure functions Wjl, W12 and Wf3 

are defined as 
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E 
W’ = 4n2$ n c 

w 
<PIJpC(0)in><niJ, c t(o)lP> (2n)464 (q + P - Pn) 

= -gpvW) (q2, u) + -L P P WT2(q2,v)+ 
ie uvhKphqK 

M2 p ’ 2M2 
W’Q(q2,v)+ l ’ * 

(2) 

where PcL and qp are respectively the four momentum vectors of the nucleon and of 

the momentum transfer; an average over the nucleon spin is understood. The 

dots in (2) denote additional terms proportional to qp or q, which therefore do 

not contribute to the inelastic scattering cross section because the lepton current 

is conserved in the zero lepton mass approximation. The third structure function 

W3 appears as a result of parity nonconservation in weak interactions; Jfic(x) is 

the Cabib.bo current describing the hadronic weak interactions. 

For antineutrino scattering the expressions corresponding to (1) and 

(2) are 

d20V 
dcos 8 d E’ 

tq2 
2 ’ v)cos 2 f + 2W1i(q2, V) sin 28 2 - WVf3(q2,v)* sin’ $ 

I 

(3) 

and 
E 

W” = 4n2$ n c 
PV 

<PIJ PC? (0) 1 n><nl J,‘(O)IP> (2n)464 (q + P - Pn’ - 

= -gpvw’itq2, v, + 
I, hKPhq K 

2M2 
w”3 (q2, V) + ’ ’ l 

with an obvious interpretation for the notation. The isotopic property of the Cabbibo 

current leads to simple relations between neutrino and antineutrino scattering 

on protons and neutrons : 

W;lV (vp) = W’bV (Jn) 

WhV (Vn) = W’;LV (Jp). 

(4) 
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In the following we shall concentrate our attention on neutrino scattering. The results 

obtained can be translated immediately into those for antineutrino scattering. 

As in the study of inelastic electron scattering we work in the infinite 

momentum center of mass frame of the initial neutrino (antineutrino) and nucleon 

where %S 

q” = ““2; Q2, q = -2Mv - Q2 
3 4P ’ 

Is,1 = 

$- 0 

Q2 + 0 1, 
P2 (6) 

Q2 = lq21 

with the nucleon momentum P along the 3 axis. We undress the Cabibbo current 

operator J 
C 

P 
in terms of the corresponding bare or free current operator j pc by 

the U transformation 

Jpc(x) = U-l (t) jpc(x)U (t) (7) 

with t 

(J > -i 
U (t) = e 

dt HI(t) 
- m 

+’ 

In our field theoretic model HI and Jpc are respectively 

(8) 

and 

J ‘=- 

I-L 

4.yp(1 - ir,)lc, -&i 17~ Tp 7r+. 

The pion contribution to J ’ 
P 

is the consequence of the conserved vector current 

hypothesis of Feynman and Gell-Mann. 
2 

Here we neglect strange particles as well 

as strangeness changing weak currents and set the Cabibbo angle 6 M Q. Refinements 
C 

to include such effects can be made but the corrections are expected to be negligible 

in the present context since 8 M 0 empirically, 
C 
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As can be readily verified with the explicit representation of the Dirac 

matrices given in Paper II, the time and third component along Pti of the Cabbibo 

weak current (10) are “good components” in the same sense as are the corresponding 

components of the electromagnetic current discussed in II. By restricting j ’ to 
P 

the good components (,u = 0 or 3) the formal derivation of the parton model given 

in Paper II for inelastic electron scattering can be immediately adapted to the 

present case to obtain, in the Bjorken limit (Lim .) of large Q2 and MZJ with the 
bJ 

ratio w = 2Mv/Q2 fixed: 

Lim .W’ 2 fJi’ 
bJ PV 

=4n M 
I 

(dx) e iqx <UPlj,C(x)j,Ct(0)lUP~ (11) 

forp, v =Oor3, 

There is a minor complication, however. Eq. (11) for ~1, v = 0 or 3 

sheds no light on the structure function W’3, since the antisymmetric pseudotensor 

‘/,tIJ h K 
PhqK = 0 for /J, v = 0 or 3 as a result of the fact that Pp has no transverse 

components (Pl = P2 = 0). Thus, to obtain information about W’3 we must extend 

the parton model to transverse components of jpc (cl = 1, 2). Nevertheless, a 

minimum and sufficient extension for our purpose is to consider only the case 

in which one of the two currents in (2) is a transverse component and the other 

a good component. Then E 0132P3q2 + 0, for instance, and W’3 can be identified. 

Notice that these non-diagonal combinations of currents do not contribute to Wi 

or W12, since both g 
PV 

and P P 
PV 

vanish identically for these tensor indices. 

To extend the parton model to transverse components of weak currents 

in the limited manner described above let us recall first the main conclusion reached 

in the derivation of (11) for good components of the weak current. The physical 

picture of a scattering process as described by (11) in the infinite momentum 

frame (6) may be summarized as follows (see Fig. 1). Each term in the infinite 
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series of the old-fashioned time-ordered perturbation expansion of I UP> represents 

a multi-particle state with all constituents moving forward along the infinite initial 

nucleon momentum p. The weak current scatters one of the constituents and 

imparts to it a very large transverse momentum q, in the Bjorken limit. This 

scattered constituent emits and reabsorbs pions and nucleon-antinucleon pairs; 

they form a group of particles moving close to each other which we call (B) in 

Fig. 1. The unscattered constituents of IUP> also emit and reabsorb pions and 

nucleon-antinucleon pairs. They form a second group of particles moving close 

to each other along the direction of P which we call (A) in Fig. 1. In the Bjorken 

limit of large 42 and MU, there is no interaction nor interference between the 

two groups of particles ; and in addition, the energy differences between I UP> 

and lP> as well as between I Un> and In> can be neglected. Eq. (11) then follows 

from these simplifications in the Bjorken limit and from the unitarity of the U matrix. 

The whole discussion can be applied with one modification to the case 

where only one transverse component of J kc appears in (2). For definiteness we 

will assume thatJ ‘(x) 
P 

is a transverse, or bad, component (/L = 1 or 2) and J,‘(O) a good 

component (V = 0 or 3) of the weak current. In the infinite momentum frame (6) the 

vertex of a weak transverse current can to leading order in P create or absorb a 

nucleon-antinucleon pair with one member of the pair necessarily having a negative 

longitudinal momentum, In contrast to a good current this leads to a vertex of 

order P. Also we need consider only the nucleon current in the present discussion, 

since the transverse component of the pion current will be proportional not to P which 

is purely longitudinal, but to a bounded, finite transverse momentum vector other q, 

which does not contribute due to lepton current conservation. The particle with negative e 

longitudinal momentum must be annihilated or change the direction of its longitudinal 
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momentum at the next strong vertex if it is created by the weak vertex. If it is 

absorbed by the weak vertex, it must come from the strong vertex immediately 

preceding the weak vertex as was discussed in detail in Paper II on the basis of 

the familiar energy denominator arguments. These two kinds of weak vertices 

that create or absorb a nucleon pair and which involve a particle with negative 

longitudinal momentum will be simply called Z type weak vertices. A typical 

, example is given in Pig. 2. In the Bjorken limit there can be no interaction nor 

interference between the two groups of particles (A) and (B) as discussed in Paper II 

because the transverse momentum cutoff at every strong vertex prevents any 

overlap between them as a--m. Moreover, to form the tensor W’ the two 
IJV 

amplitudes <PI Jpcln> and <nl J, CT I P> can combine to give a nonvanishing 

contribution in the Bjorken limit only if the two amplitudes produce two identical 

groups of particles (A) and (B). The presence of a particle with negative 

longitudinal momentum at a weak vertex does not alter these conclusions. Several 

examples with a Z type weak vertex contributing to W’ 
PV 

are illustrated in Fig. 3. 

It is clear from momentum conservation at each vertex and the examples in Fig. 3 

that if a Z type weak vertex creates a particle with negative longitudinal momentum, 
\ 

this particle must have a momentum zn = -En where $& is the momentum of the 

particle in the other half of the diagram which is to interact with a good component 

of the weak current. If the Z type weak vertex absorbs a particle with negative 

longitudinal momentum, this particle must have a momentum Pfn = -P’ 
n’ 

where 

Pin is the final momentum of the particle immediately after being scattered from 

a good current in the other half of the diagram. $ince the overall energy conserving 

delta function which appears in (2) depends only on the energies of the final real 
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particles which have the identical momenta regardless of the presence or absence of a 

Z type weak vertex, we can, by the same arguments given in Paper II, replace it by 

the energy conserving delta function across the weak vertex of the good current. As 

an example, consider diagram (cl’) of Fig. 3. In terms of the momentum labels given 

there and the parametrization . 

(12) 

we obtain, in the Bjorken limit, 

c 

and therefore 

=qo+?)lP- P’ 1 +r p 0 0) 

= q” + E l-E;++ 0 (1) 

= & (2Mv 71 - Q2) + $ 0 (1) 
1 

‘(q” + E 
P 

- E2 - Al- Al,) = 6(q” + El - Ei) 

which verifies our statement. 

(13) 

We will now show that diagrams with a Z type weak vertex do not 

contribute to the structure functions W’ 1, W2 and W\ in the Bjorken limit. 

Our argument makes use of relativistic covariance and the fact that 

the final result will be in the form of the covariant tensor (2). There is no need 

to consider the Z type weak vertices for the good components of the current as 
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was analyzed in Paper II. As discussed earlier we need consider-only the case in 

which one of the two currents in (2) is a transverse component - - i. e. W 01 for 

example which contributes only to W’3. To leading order in P--w we are looking 

for potential contributions.proportional to E Olyv 
PhqV N Pq 

i 
The question 

therefore is : can there be any contributions proportional to a transverse 

component of the momentum transfer, qL, and simultaneously proportional 

to P arising from a Z graph? The graphs without a Z occurring at the weak 

vertex will in general give rise to a contribution of this form with the P coming 

from the good component and the q from the bad or transverse current of the weak 

current. However, if a Z is introduced at the vertex of the bad component of the 

weak current this vertex must provide both a q and a P factor. The P factor is 

needed to overcome the additional factor of -!- from the energy denominator 
P2 

connecting two adjacent Z vertices which multiples the’ extra factor of P appearing 

at a Z vertex involving the strong interaction ~5. However, the following table of 

vertices shows that the transverse component of a weak Z vertex will give either 

a factor of q or P but not both; - --- 

w PnY3 up,+q 
= & ul* (2Pn + q3 + D3” ’ 

q1) 3 

- 
“p,y”“pn+q 

= & ul* (2Pn + q” + 030 * %- i&u2 

“p,‘” ‘y5UPn+ q 
= &. wl* (2Pn[r3 f q3a3 + u * 

91) u2 

-$ r” y5uPn+q 
= &J1* (2PncT3 f q”o3 + 0 * 41’ a3 2p J&J, 

n n 
1 2 

-!PnQ-tPn+q = & u1* wp l 41- q$ + cy- 9o-33-l 3 
n 

up yl y5% +q 
= & ul* [03(crp . 91’ q$ GJ, + 034L.+ 9 2p 

n n n 
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Furthermore, in addition to the two weak vertices, qp appears only in the invariant 

structures q2 and MV in the energy conserving delta function in the Bjorken limit, 

as illustrated by the simple example (13). As a result, there is no way to introduce 

vectorial dependence on q 
IJ 

other than from the two weak vertices. Consequently, 

these diagrams do not contribute at all to the structure function Wh since there is 

no novanishing contribution from these diagrams in the Bjorken limit which is of the form 

P$, and the tensor E 
/wWhK 

PXK q aPqLfor /J = 1, v = 0, contributes only to terms of order g (PqL). 

We will now show by explicit calculation how the relativistic construction 

of W’ 
PV 

can be carried out without ambiguity when (11) is extended to include trans- 

verse components of the weak current. Since Z type weak vertices are omitted 

the evaluation of (11) involves the calculation of the diagonal matrix elements 

iqx< k,l jpc(x)j yc ’ (0)l k,> = -!- -2 (2kw + qp)(2knv + qv N (q2 + 2kn q) 
4n2 2Un 

(15) 

for a pion current contribution, and 

i 
&We iqx<Pnsl j,“(x) jv c’f (Wns’> 

(16) 

1 2M - 
=- * 2En 

4T2 
- u~~PQ~’ - Y~)[M+ rcPn + 41 Y, (1 - y5) up ts’) 6 (q2 + 2Pl; ci) 

n 

for a nucleon contribution. In (15) and (16), kn and P, are the momenta, respectively, 

born by the pion and the nucleon constituent to be scattered by the current, and 

s, s’ are the spins of the nucleon constituent. 
: 
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To simplyfy (16) we notice that 

cp (NY&~ - y5)tM + YCP, + @I rv (1 - y5) up (0 
n n 

= 2up WYpY <pn + 9) Y, (1 - Y5Np (s’) 
n 

t 

n ‘< 

= 2Fp (s) * 
n 

+ gpv - 2pnt~~pn )- y Cpn + q) iopV ( y5) 

- “PwYv tr 5) + I$, ytPn+4)ty5)+~tPn+q)i~ 

I 

up @‘) 
lJv n 

where use has been made of the Dirac equation, and of the identity 

YpYv = + gpv - QJ 

. 
with (5 

/J-I” 
= i [ ycL, y, 1; terms proportional to qh or q v are neglected. The last 

three terms in (17) cannot contribute to the final answer, as we now show, Aside 
I 

from the weak vertices qfi enters the matrix element only in the scalar forms q2 

andq* P=MV. For example the delta functions in (15) and (16) depend only on 

Q2 - 2Mu n, where 7 is the fraction of longitudinal momentum born by the 

constituent on which the bare current lands. Thus, the PnccyV ( y5) term in (17) 

must eventually appear in the final answer as a pseudotensor constructed entirely 

from Pp alone; this is obviously impossible. Similarly, y(P, + q) ( y5) in (17) must 

appear as a pseudoscalar constructed from Ph and qK ; this too cannot occur. 

Finally, YP, + 9) ucGv must appear as a second rank antisymmetrical tensor in P 
P 

and s, that is as P q - P q . This form, however, is absent from our final 
PV VI-L 

answer by lepton current conservation. In any event its coefficient must vanish 

in the final answer, as time reversal invariance and parity conservation in strong 

interactions forbidthe appearance of such a tensor (P q 
I-iv 

- Pv q,J in W’ 
P’ 

To proceed further, we simplify the third term in (17) with the aid of 

the identity 

(17) 
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. 
“pv y5 = -; ‘/-@A K@ 

AK = 1 h K 

2 ‘PVh KY ’ 

where E is the totally antisymmetrical tensor with the normalization E 0123 
/dVhK 

= 1 
. 

Thus, when sandwiched between two Dirac spinors of same momentum, we have 

Y Pn + 4) iupv r5 - & WJPn + 9) + Y tPn + qW - P,,I $ cpv hK~h~K. 

The first term cannot contribute to the final answer since 2Pti(Pn + q) = 2M2 + Q2 

by the delta function in (16), and E 
jW)CK 

y’ yK must appear as a pseudotensor constructed 

from 5 alone which is impossible. Commuting M - yPn through yh yK to operate on 

the Dirac spinor, we obtain 

The second step follows from the use of identity (18). Again, the last term cannot 

contribute to the final answer, as there is no way to construct from Pp alone a 

second and third rank tensor antisymmetrical in /SJ corresponding to 

P hP 
‘/NhK n nT 

oTK 
and ‘pVhK n 

P VK 
’ 

respectively. Collecting, we get the final 

answer, 

/ 
(dx)e+iqx~PnsljlJC(x)jVCt(0)l Pnsf> = ass, 6 (q2 + 2Pnq) X 

1 1 
- - l 

4n2 2En 
2[4P P nl.l nv - Q2gpv + 2ic~V~K pnh 43 

If the current lands on an antinucleon instead of a nucleon, the 

corresponding result is 

(19) 

(20) 

(21) 

(22) 
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/ 
(dx) e+ iqx <Fnsl j,“(x) jv c~(o)lFns~> = 6ss,d (q2 + 2Fnq) x 

1 1 -- 

4n2 2zn 
2[4p i? no nv - Q2gpv + 2 i ‘pVAKFnh $1 

The sign difference between the last terms of -(22) and (23) is due to the fact that a (V-A) 

coupling for particles corresponds to a (V + A) coupling .for antiparticles, and vice 

versa. 

In the infinite momentum frame (6) and in the Bjorken limit an 

approximation consistent with relativistic covariance is to make the substitution 

in (15), (22) and (23) with q the fraction of the longitudinal momentum born by the 

constituent on which the current lands. Following a procedure employed in Paper II 

we expand IUP> in a complete set of multiparticle states 

IUP> = CanIn>, 
n 

xlan12 = 1 
n 

Eqs. (11), (15), (22), (23), (24) and (25) combine to give 

Ian1 2<nl pfi 
M2 

W 
c -gpv 2M i , 

i -d) 

E 

+i 
/UhK 

PXqK 
1 

2M2 
VW c 

i 
n, i -4 ) In> 

(23) 

(24) 

(25) 

(26) 

where 17 
n, i 01: v 

n, j 
have the same meaning as q in (24); AnFi (h n jB) is the “weak 

charge” of the i th .th 
(j ) Fermion (Boson) constituent in the ,&ate in> of (25). In the 

last term of (26) the upper (lower) sign applies to a nucleon (antinucleon). For 

neutrino scatterin g we have 



- 15 - 

v scattering: AnFi = 1 for neutron, antiproton, 
, 

= 0 for proton, antineutron: 

hB . = 1 for 7r”, 7r- 
ny J 

= 0 for r+. 

(27) 

(28) 

Eq. (26) is expressed explicitly in terms of the invariants Q2 and Mv with 

the possible tensors properly extracted. It thus satisfies manifest relativistic 

covariance, and the results for Wi and WI2 are precisely those expected from 

employing only good currents. Obviously (26) can now apply to all components 

of the weak current. We conclude therefore that the procedure leading to (26) 

is self consistent and justifies our omission of diagrams with any Z type weak 

vertex. 

III. Results and Predictions 

We now turn to some important theoretical and experimental 

implications of the results we have just obtained. Many but not all of these 

results were presented in Paper I. 

It follows from (26) that Wi, u W’2 and v Wf3 are universal functions 

of w in the Bjorken limit of large Q2 and Mv. We define 

Limbj MWi(q 
2 

, v) = Fi(W), 

Limbj v w;(s2, v) = F’2(w), 

Limbj 
vW’,(q2, v) = F’3(w). 

These structure functions can be immediately identified from (26): 

N 
F’Jw) = F’,(w)~ + F’Jw) + F’~(w)~, 01 = 1, 2, 3 

(2% 

(36) . 

FiW =$ c 
n 

lan12<ni c A& S(TJ 
i n, i - $)ln> (31) 
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In (31) the summation over i extends over all Fermion and Boson constituents in 
I 

state In>. The superscripts N, E and r on FVQ(w) denote the contributions from 

nucleon, antinucleon and pion lines on which the current lands, respectively. The 

other structure functions are also determined: 

Fi(W)r = 0, F’~(w)~ = 0 

F’,(w)~ = w Ff2 W) 
N 

E 
F\(W) 

5. = -wF12 (w) 

Completely analogous results hold for antineutrino scattering structure functions. 

One may define F;’ 2 3 
, 3 

(w), for example, by replacing Wi 2 3 in (29) by the 
, t 

corresponding W’i 2 3. 
, , 

If one introduces the corresponding F’;(w) for F’o(w) 

in (30, (31) and (32), one obtains the analogous results for deep inelastic anti- 

neutrino scattering. The “weak charges” for antineutrino scattering are 

V scattering: hnFi = 1 for proton, antineutron 
, 

= 0 for antiproton, neutron 

AB 
n, j 

= 1 for 7r”, 7r+ 

= 0 for 7r- . 

(32) 

(33) 

(34) 

Eq. (26) or (31) leads to a sum rule for neutrino-proton scattering. 

F’2(w)(‘p) = 2 c lan 
n 

In our model this becomes 

(35) 

C ( 
% 

+np+nn+nTo)Ian12 (36) 
n 
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where n 
n’ np, nT- and nro denote respectively the number of neutrons, anti- 

protons, 7r- ‘S and no’s in the state In> that appears in the expansion of IUp>. 

A similar sum rule holds for antineutrino-proton scattering 

co 

/ 
dw I?~(w)(~) = 2 

.lW 
c (np + nr+ + ng + nlTo) lanl 2. 
n I’ 

Therefore 

co 

i 

-iJ 
$![F’~(w)’ ‘) - F’2(~)‘VP)]= 2 c (np + nr+ + nK - n - nF - n,,) IanI2 

n 

Electric charge conservation imposes the condition 

(np + nT+ 1 - (np + nT- ) = 1 

and the baryon number conservation requires 

(np f nn) - (n 
P 

+nR)=l 

These two conditions together fix 

“ITin =n n R- - nr+ 

and (38) becomes 

co 

I 

%[F’b(w)’ 
v 

‘) - F’2(~)(vp)] = 2 c (np - 
n 

ng) IanI 

This is our analog of Adler’s sum rule6 for neutrino-praton and 

antineutrino-proton scattering. Adler’s sum rule is valid for any fixed values of 

Q2 and in particular yields 

4 

00 

v 
G [F”2(w)( ‘) - F’z(~)(up)] = 2 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) - 
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in the Bjorken limit. The reason that (42) does not satisfy the Adler relation is 

because the weak current (10) in our model does not have an axial vector partner 

for the vector pion current and hence violates the Gell-Mann commutator relations 

for the axial and vector charges that are used to derive (42). Eq. (43) would be 

satisfied if there were only ~0’s and protons in our model, since in (42) we would then have 

“P - % 
= 1 by electric charge and baryon conservation, there being no neutron. 

The normalization condition for the an’s then yields (43). 

As another more realistic model of a theory of strong interactions which 

obeys chiral symmetry and the Gell-Mann algebra of charges we consider the (T model’ 

which contains an even parity spinless isoscalar meson (T in addition to the odd 

parity spinless isovector pion. The chiral invariant interaction Hamiltonian is 

given by 

and the weak current has the chiral structure 

Jtic = TnyF(l - y5)ep -&i (a-o<*+ - 
- 

u a ~ n-‘-) 

This is a particular example satisfying the SU2 X SU2 symmetry group and can also 

be generalized to SU3 x SU3. A parton model can be derived and discussed for the 

interaction (44) and the weak current (45). In this chiral model the weak charges 

for nucleons and antinucleons remain the same as in the earlier pion model without 

the CT, but the weak charges for mesons are different. We have for neutrino 

scattering 

(45) 

B 2 v scattering: (A,, j) = 1 for o, no 

=2 forn- (48) 

= 0 for x+ 
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and for antineutrino scattering 

V scattering: (h nBj )2 = 1 for (T, 7ro 
, 

=2 fern+ 
(47) * 

=0 fern’. 

The sum rules similar to (36) and (37) become 

/ 

03 

$F~(w)(“) = 2 C (n 

1 n B 
+nn+n ro +nU + 2nl,-)lan12 (48) 

= 2 c (np + nA. + n 
n 7P + no + 2n?,+)lan12 (4% 

and therefore 

[F”,(w)h) 
- Fi(W)(vp)] = 2 z (n 

‘n P 
+ 2n,+ + n - n -2n 

ii j5 7r- - nn) lan12. (50) 

The two conditions (39) and (40), and hence (41), are also true in.this model. 

Consequently 

‘) - F’2@7)(vp)] = 2 c (np + nr+ - np - n,-) IanI 

n 

= 2 C IanI 

n 
(51) 

= 2 

by charge conservation, The Adler sum rules (43) are therefore satisfied in this 

model. Similarly we can derive from (26) or (31) and (32) the following results for 

F\ (w) and F’$ (w): 
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(w)(“) = 2x (n 
n 

n 
- nB)I anl2 

J (w)( P) = 2 C (np - nn)la 
n n 

I 
2 

which hold for both the original pion triplet model and the pion triplet plus the 

o singlet model since only the nucleon weak current contributes to F13 and F’13. 

Adding (52a) and (52b) we get 

co 

I !%f!! [F’~(w)(~~) + F’b(w) 
W2 

(vp)] = 2x (np f nn - np - n,)l anl2 
n 

I 
= 2 

by the baryon conservation. Sum rules for F’~(w) and F’b(w) similar to (53) are 

discussed for different models by Gross and Llewellyn Smith.8 

In the Bjorken limit the differential cross sections (1) and (3) can be 

expressed in terms of the structure functions F’ 1, 2, ,(w) for neutrino scattering 

and F’i, 2, ,(w) for antineutrino scattering: 

d2ciV G2 
cos2 e 

2E - v 2 e 

de’dcos8 = 7 z+(w+- 
V 

w); sin 5 
I 

28 + F’2(w)a cos -z 

(52a) 

WW 

(53) 

Wa) 

+ Ff2W 
G 

I cos2 f + (w - “--“w)$ sin2 f) 
V 



and 

d2r? G2 = 
de’dcos 6’ y 

28 2E-v 28 

cos 5 
+ 

(w 
- 

7 w)$ sin 2 I 

+ F”2(w)* cos2 ; 

E 
+ F”2(w) I cos2 f 

2E - v 
+(w+- 

V w$ 

Inserting the variables Q2 = 4e2(1 - y) sin 2;, y=; and de1 dcos B = lWy * dyd(-$, we 

find 

d2av 

d($dy 
= $ (ME )[F’,(w)~ + F’,(w)~ (1- y) + F’2(w)’ (1- y)4 

w Y< 1) 

d2,” G2 n 

dl+- W 
= 7 (Me)[F”2(w) + F”,(w)’ (1- y) +.F”~(w)~ (1- Y)~] 

If the integration over the inelasticity y is performed, we get 

do’ 
= $ (ME) [F’,(w)~ + iF’2(w)* i- $ 

5 

dk$ 
Ff2(w) ] 

and 

d,V 

d+ 
= $ (ME) [I?” ( 

2w 
)’ + $ F” 

2 
(w)” + $ F” 

2 
(w)~] 

The difference in the neutrino and antineutrino cross sections (56a) and 

(56b) arises from the interchange of roles played by particles and antiparticles in 

the two processes. Eq. (56) predicts that the total cross sections grow linearly with 

the incident energy of the neutrino or antineutrino in the high energy region. This 

VW 

(5W 

Wb) 

@W 

Wb) 
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linear rise of total neutrino and antineutrino cross sections with energies is a 
4 

striking prediction of this limiting behavior as discussed by Bjorken and is 

independent of any dynamical details.. It is consistent with the recently 
9 

reported CERN data in which emax = 1OGeV. The linear rise with energy of 

the total cross sections would presumably be cut off at approximately the mass 

of the intermediate vector bosons if weak interactions were indeed mediated by 

such particles. 

To help understand the difference of the neutrino and antineutrino 

scattering cross sections we will separate the individual contributions of 

left-handed, right-handed and longitudinally polarized currents. They are 

identified by projecting the currents onto the three polarization. vectors denoted 

by e+I*, E-’ and elll* corresponding to a right- handed, left-handed and longitudinally 

polarized vector current, respectively (or in a model of weak interactions mediated 

by a W vector meson, of a boson of the same polarization). These vectors are given 

E ’ = 1 (0, 1, i, 0), emcl 
+ & 

= !z (0, 1,-i, 0 ), E np=:l 
42 

J- Q2 

(4y 0, 0, qO) 

in the laboratory system where 

As neutrino and antineutrino scattering are very similar, for definiteness we shall 

consider neutrino scattering only and define 

E 
iF;= 47i2 2 c I-1” c <PIE+ 

n 
Jk (0)ln><nle+VJyc’(O)IP>(2a)464(q + P - pi, 

(57) 

(58 

(59) 

and analogously F’_ and F’,,. These quantities, F’+, F’- , and F’,,, measure the 
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relative importance of the three polarization states of the current. Using (2) and 

(57), we obtain from (59) 

F’,, = 
Y2 

-MWi+(l+z)MWh. 
Q 

In the Bjorken limit these relations reduce to 

F’+(w) = F;(W) - i F’3 (w) 

F'-(W)= Fi(W) + 4 F’cJw) 

(60) 

(61) 

Ff,, W - 2 -w F’ (w) - Fi(w). 2 

We conclude from (61) and (32) that 

F;(w)~ = 0, 
3 

F’-(w) = 0 

F;(w)* = F’_(w)~ = 0 

(62) 

Eq. (62) shows that in the Bjorken limit independent of strong interaction dynamics 

a right- handed (left- handed) current or W boson cannot interact with a nucleon (an 

antinucleon); a right- handed or left- handed polarized current, or W boson, cannot 

interact with a skinless pion current. A simple explanation why Fi (w) N 
= 0 has been 

given in Paper I. It is a consequence of the basic assumption of our formalism that 

all the internal momenta of the nucleon’ s structure are small in the rest system 

of the nucleon in comparison with the asymptotically large Q2 and I ql = 
A---- 

v2+Q2c v 

delivered by the current from the lepton line. Therefore in the Bjorken limit the current 

as viewed from the laboratory frame enters au assemblage of ‘I slow” constituents of the 

nucleon and the one on which it lands recoils ultrarelativistically with q leaving the others 
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behind, If the constituent on which the bare current lands is a nucleon, by (10) 

that nucleon emerges with left-handed helicity - - a state which could not be created 

by a right-handed polarized W Boson. Thus right-handed W Bosons are absent from 

our model when the interaction is on the nucleon line. Similar consideration explains 

why F’ (w,m= 0. 

We recall that the behavior of the structure functions for deep inelastic 

electron scattering near the threshold w N 1 may be obtained from crossing properties 

of field theory and positivity of the physical cross section in the crossed channel of 

annihilation. Analogous considerations show that near w 2 1 

F’2(w) = (w - 1)2n + ‘, 

if the nucleon current dominates ; and 

n = 0, 1, 2, l l l 

F’2(~) = (w - l)2n , n = 0, 1, 2, l l * 

if the pion current dominates. One may also study the process of neutrino-positron 

(or antineutrino-electron) annihilation into an antinucleon with fixed momentum, 

plus anything; in complete analogy to the electron-positron annihilation process 

studied in Paper III. However, the feasibility, of such experiments is so remote 

that we shall not consider them here. 

Aside from the general implications of the parton model discussed above, 

other quantitative predictions can be made on the basis of specific models. 

In the field theory model of Ref. 1 the nucleon current was found to be 

dominant in the very inelastic region with w> >l - - i. e. to leading order in Qnw>l, 

order by order of the interaction, the current landed on the nucleon line. We find 

in this region therefore that the neutrino cross section is given by 

d2,’ G2 

dt; )dy 
= -;r (ME) Fan, w>>l 

(63) 

(64) 

(65) 
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and the antineutrino cross section is given by 

d2” G2 
= $ME):F’~(w)~(I - Y)~, 

d(+dy 
w>>l 

In this kinematic region the dominant family of graphs according to 

our model is as illustrated in Fig. 4 and we can use simple charge symmetry to 

identify the neutrino reactions (via a W+) on protons with antineutrinos (via a W’) 

on neutrons and vice versa as given by (5). In particular 
10 

dt-r daVP = 3 
Tn 

dt$ d$-) 

VP cE3da 

d(-$ dl$, 

and 

VP do iJn 

dt$ 

+da 

dt$) 

w>>l 

- ! 
I 

, w>>l. 

Another consequence of the ladder graphs is that the cross sections on neutrons and 

protons are equal as shown for inelastic electron scattering in Paper II. In fact, a 

similar calculation gives 

- 

F’2(w)*’ = Fade = F”,(w)*’ = Yn F”Z(w) = ~F,(w)~’ = c[w 5-l , 
w>>l 

F’,(w)*’ - F;~(w)*” = TP iJn - - [F’~tW - F’~(w) ] = + 5 ctw (+E +u 
, 

(66) 

(67) 

633) 

(6% 

where 
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and c is an unknown scale factor. All the same parameters .$ and c appear also in 

the structure functions of deep inelastic electron-proton scattering in the large 

w> > 1 region. A factor of 2 in relations (69) between the neutrino and electron 

structure functions arises from the fact that (1 - r5)2 = 2(1 - y5). According to 

(69) we can rewrite (68) as 

duvp _ davn ---= 
d(-$ d(+) 

w>>l 

Eq. (68) or (70) tells us that the ratio of the limiting cross sections for large w is 

3 to 1 for neutrinos relative to antineutrinos. 

This ratio of 3 to 1 in the large w very inelastic region is the most 

striking prediction from our field theoretic basis for deriving the Bjorken limit. 

It presents a clear experimental challenge. For inelastic electron scattering 

11 
Harari has discussed the interpretation of the inelastic structure functions in 

terms of the contribution of the pomeron to the forward virtual compton cross 

section. The mechanism in our model does not correspond to this physical 

picture as discussed in Paper II. 
12 

This model can also be used to compute the ratio of neutrino to 

electron scattering as a check against recent data reported at the 1969 CERN 

Weak Interaction conference.’ In the large w> >I region we predict from (65), 

(66), and (69) that 

d2cvp 

df$ My 

= d2cvn G2 
= --q (2Me) F,(w)~‘, w>>l 

d2,yP d2g7 n 
G,” (2Me) F ( )ep(l Y)~ -=- zz- 

4$--b d+dy 
p - 2 w>>l 

(70) 

(71) 

(72) 
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Since the observed behavior of F2(w) in the electron scattering experiments 
13 

weights the large w region relatively heavily and falls off for we 3 we can make 

an approximate prediction for the neutrino cross section in (71) by applying our 

result that the nucleon current dominates throughout the entire w interval in (71). 

Then as observed by Bjorken and Paschos14experimentally 

I d($) F,(w)~‘= 0.18 

0 

and by (71) and (73) 

u 
up vn 

=u NN $ @ME) (0 16) = 4 x 10e3’ cm2 x (e/GeV) . 

The CERN data in the energy ranges up to emaX w 10 GeV are represented 

approximately by 

V 
o- = 6 x 1O-3g cm2 x (e/GeV) 

which agrees with, (75) within a factor of 2. 

In kinematic regions where the pion current contribution is dominant, as 

we have conjectured in Paper II to be the case near w = 1, W’ 
.3 

’ = 0 since there is no 

bare axial pion current in (10). Also W,l’ = 0 as in the electromagnetic process 

because the convection current of spinless pions is along Pcl in the infinite momentum 

frame and therefore only WI2 in (2) is non-vanishing. By a simple isotopic 

consideration 

(73) 

(74) 

(75) 

W,Zn ( up) + Wf2’ (v n) = 4W2= (ep) (76) 

and by (2) and (6) 
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compared at the identical values of Q2 and Mu. If the pion current instead of the 

nucleon current dominates throughout the entire w interval, then by (76) the same 

result as (74) would be obtained for the average nucleon cross section - 1 *p+u*n 
2tQ- ) 

but in this case the v and 7 cross sections would be equal instead of in the ratio 

of 3 : 1 for large w. 

We may remark finally about the chiral model introduced by (44) and 

(45). In the large w> ~1 region this model also predicts that the nucleon current 

dominates and the dominant diagrams are also of the form as in Fig. 4 with the 

dotted lines representing a c or 7r . . The proton and neutron cross sections are 

equal and given by an expression similar to (69) ; also (74) is valid. 

IV. Summary and Conclusion 

In this final article of a series of papers on lepton-hadron interactions 

we have extended our parton model to deep inelastic neutrino (antineutritao) scatter- 

ing under the same fundamental assumption that there exists an asymptotic region 

in which the momentum and energy transfers to the hadrons can be made greater 

than the transverse momenta of their virtual constituents or “partons” as viewed 

in an infinite momentum frame. The specific new theoretical problem faced in this 

application is that of deriving the “parton” model in the presence of the additional 

parity violating term in the weak (V - A) current interaction. This leads to a third 

structure function and forces us to consider a transverse (or “bad”) current com- 

ponent in addition to the “good” currents which were treated. 

Beyond the derivation of the scaling behavior first demonstrated by 

Bjorken we have constructed the Adler sum rule for a field theory satisfying chiral 

symmetry and the Gell- Mann algebra of charges. We have also constructed sum 

rules of the Gross- Llewellyn- Smith type. Finally in the kinematic region of very 

large energy loss characterized by w > > 1 we have computed ratios of neutrino and 

antineutrino cross sections to inelastic scattering and to each other for comparison 

with the experiment. 
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From a theoretical point of view inelastic neutrino and antineutrino 

scatterings contain richer information than available from inelastic electron scat- 

tering. This is because the Cabibbo currents have definite internal symmetry 

transformation property. Unlike the deep inelastic electron scattering which can 

reveal only the distribution of the charged constituents, ,deep inelastic neutrino 

and antineutrino scattering together probe the distribution of all constituents inside 

the protons which could also be useful for a better description of purely hadronic 

processes. Moreover, because of parity non- conservation in the weak interaction 

neutrino and antineutrino scattering also yeild information about vector current - 

axial current interference. 
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Fig. 1 

Fig. 2 

Fig. 3 

Fig. 4 

FIGURE CAPTIONS 

Physical picture for deep inelastic neutrino scattering in the Bjorken 

limit viewed in an infinite momentum frame. The weak vertex marked 

If X” here corresponds to a good current. 

Normal and Z-type weak vertices correspond to a transverse or “bad” 

current. 

Example of contributions to W$ with a Z-type weak vertex. 

Dominant class of diagrams contributing to W ’ in large w region. 
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