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A theoretical study of the dielectrophoretic~DEP! spectrum of a pair of touching colloidal particles
or biological cells in a host fluid under the application of a nonuniform alternating current~ac!
electric field is presented. The main objective of this work is to investigate the correlation effects
due to the presence of mutual polarization on the DEP spectrum. In particular, we employ the
multiple image method to account for the effect of multiple images, and obtain an analytic
expression for the DEP force. It is found that, at low frequencies, the DEP force can be enhanced
~reduced! significantly for the longitudinal~transverse! field case due to the presence of multiple
images. The numerical results can be well understood in the spectral representation theory. To first
order in the dipole interaction, our results reduce to the established formula derived by an alternative
method. Our approach demonstrates the importance of the correlation effects in ac electrokinetic
phenomena of colloidal suspensions. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1737050#

I. INTRODUCTION

Dielectrophoresis describes the translational motion of
colloidal particles or biological cells caused by the interac-
tion between the induced dipole moment and the external
nonuniform electric field.1 The force acting on the particle is
known as the dielectrophoretic~DEP! force (FDEP), and is
dependent on the frequency of the external ac electric field,1

as well as on the magnitude of the complex dielectric con-
stant~permittivity and conductivity! of the particles relative
to that of the medium. The frequency at which the DEP force
vanishes is the crossover frequency (f CF). The analysis of
f CF against the medium conductivity can be used to investi-
gate the dielectric properties of colloidal particles.2–4 While
dielectrophoresis is typically used for manipulation and sepa-
ration of micrometersize~;mm! particles such as biological
cells, it has recently been successfully applied to submicron-
size particles as well. Specific applications include diverse
problems in medicine, colloidal science, and nano-
technology.2,3,5–9

In the dilute limit, one can focus on the DEP spectrum of
an individual particle, by ignoring the mutual interactions
between the particles. However, if the suspension is not di-
lute, the situation is complicated by the mutual interactions
between the particles. In addition, the particles may aggre-
gate due to the presence of an external field, even when the
suspension is initially in the dilute limit. In this case, the
mutual interactions are expected to play a role.

In this work, we investigate further the DEP spectrum of
two approaching spherical colloidal particles under a nonuni-
form ac electric field. It is known that the Maxwell-Wagner

interfacial polarization can be influenced by the mutual in-
teraction between approaching particles.10 We will use the
multiple image method11 to account for the effect of multiple
images.

Recently, in Ref. 12, the multiple image method has
been demonstrated to be in agreement with a multipole ex-
pansion method.13 Based on the multipole expansion
method, the potentials are expanded inside and outside the
particles in terms of solid spherical harmonics, and the mul-
tipole moments are then obtained by solving a set of linear
equations determined by the appropriate boundary condi-
tions. As stated in Ref. 12, this multipole expansion theory
and our multiple image method are based on different pic-
tures and there exists no direct and exact equivalent relation-
ship between them. The calculation of the interparticle en-
ergy using the multiple image method and the multipole
expansion method shows that the multiple image method re-
flects, although not exactly, some characteristics of the third
order multipole expansion method, i.e., an octupole effect.

In this work, by employing the spectral representation
theory,14 we will derive an analytic expression for the DEP
force and hence determine the DEP spectrum as well as
crossover frequency.

In Ref. 4, we investigated in detail the DEP crossover
frequency of charged colloidal suspensions, with a focus on
the charging effect. In this paper we aim to investigate the
DEP spectra of uncharged colloidal suspensions. We would
investigate two cases:~1! longitudinal field case where the
applied field is parallel to the line joining the centers of the
two particles, and~2! transverse field case where the applied
field is perpendicular to the line joining the centers of the
two particles.

This paper is organized as follows. In Sec. II, we present
the formalism based on the multiple image method, which is
followed by the derivations of the analytic expression for the
DEP force in the spectral representation theory. In Sec. III,
we numerically investigate the DEP spectrum under various
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conditions. The discussion and conclusion is given in
Sec. IV.

II. FORMALISM

A. Multiple image method for a pair of colloidal
particles

Consider an isolated spherical colloidal particle or bio-
logical cell with diameterD, of complex dielectric constant
ẽ15e11s1 /( i2p f ) dispersed in a host medium ofẽ25e2

1s2 /( i2p f ), wheree ands denote the real dielectric con-
stant and conductivity, respectively,f stands for the fre-
quency of the external electric field, andi[A21. In the
presence of a nonuniform electric fieldE, the particle expe-
riences a DEP force.15

FDEP5
1
4pe2D3 Re@ b̃#“uEu2, ~1!

whereb̃5( ẽ12 ẽ2)/( ẽ112ẽ2) is the dipole factor of the iso-
lated particle, and Re@¯# means the real part of@¯#. In
particular, the frequency at whichFDEP50 is just the cross-
over frequency (f CF). The relation between the dipole factor
b̃ and the dipole momentp̃ of an isolated particle has the
form

p̃5 1
8pe2D3b̃E. ~2!

Note that the real parte2 should be used to compute the
complex dipole moment.

When the particles approach and get close to each other,
the effect of multiple images becomes significant in the DEP
force, and thus should be taken into account.16 Let us con-
sider a pair of touching spherical particles with center-to-
center separationR suspended in a medium. In this case, the
dipole moment of a pair is given by11

p̃* 5 p̃(
n50

`

~Yb̃!nS sinha

sinh~n11!a D 3

, ~3!

where a satisfies cosha5R/D, and the polarization index
Y52 ~or 21! for the longitudinal~or transverse! field case.
In view of the relation between the dipole moment and the
dipole factor, we can obtain the dipole factor of a pair:

b̃* 5b̃(
n50

`

~Yb̃!nS sinha

sinh~n11!a D 3

. ~4!

We should remark that this equation includes the effect of
multiple images. When the summation is taken up to 1, this
equation represents the first-order dipole-induced-dipole in-
teraction, i.e., the interaction between the dipole induced by
the other dipole~namely, the maximum number of images
under consideration is one. Accordingly, this dipole factor is
given by

b̃* ~1!5b̃(
n50

1

~Yb̃!nS sinha

sinh~n11!a D 3

5b̃F11~Yb̃!S D

2RD 3G , ~5!

namely,

b̃L* ~1!5b̃F11~2b̃!S D

2RD 3G5b̃
12~ b̃2/16!~D/R!6

12~ b̃/4!~D/R!3
, ~6!

b̃T* ~1!5b̃F12b̃S D

2RD 3G5b̃
12~ b̃2/64!~D/R!6

11~b/8!~D/R!3
, ~7!

respectively, for the longitudinal field~L! and transverse field
~T! cases. Whenub̃u,1 andD/R'1 ~for two touching par-
ticles herein!, we can rewriteb̃L* (1) andb̃T* (1) as

b̃L* 5
b̃

12b̃/4
, ~8!

b̃T* 5
b̃

11b̃/8
. ~9!

These results coincide with those predicted by Jones17 where
a field method is performed. By using this field model, Jones
took into account the effect of the first-order dipole-induced-
dipole interaction on the local field inside the particles.

B. Spectral representation and dispersion spectrum

In a recent paper,18 we studied the dielectric behavior of
colloidal suspensions by employing the Bergman-Milton
spectral representation of the effective dielectric constant.14

The spectral representation is a rigorous mathematical for-
malism of the effective dielectric constant of a composite
material. By means of the spectral representation, we derived
the dielectric dispersion spectrum in terms of the electrical
and structure parameters of the particles. The essence of the
spectral representation is to define the following transforma-
tions. If we denote a complex material parameter

s̃5S 12
ẽ1

ẽ2
D 21

, ~10!

then the dipole factorb̃* admits the general form

b̃* 5(
m

F ~m!

s̃2s~m!
, ~11!

wherem is a positive integer, i.e.,m51,2,..., andF (m) and
s(m) are themth microstructure parameters of the composite
material.14

Thus the spectral representation offers the advantage of
the separation of material parameters~namely, the dielectric
constant and conductivity! from the particle structure param-
eters~i.e., the size of colloids, the separation between col-
loids, and the particle alignment against the direction of the
external field, like transverse field or longitudinal field
cases!, thus simplifying the study. Using the spectral repre-
sentation, one can readily derive the dielectric dispersion
spectrum, i.e., the dispersion strength as well as the charac-
teristic frequency are explicitly expressed in terms of the
structure parameters and the material parameters.18 The ac-
tual frequency dependence of the real and imaginary parts of
the dielectric constant in the relaxation region can be
uniquely determined by the Debye relaxation spectrum, pa-
rametrized by the characteristic frequencies and the disper-
sion strengths. So, we can study the impact of these param-
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eters on the dispersion spectrum directly. In what follows, we
further express the dipole factorb̃ and b̃* in the spectral
representation. The dipole factorb̃ admits the form b̃
5F (1)/( s̃2s(1)), whereF (1)521/3 ands(1)51/3. To make
this approach tractable, we further define a dielectric-
constant contrast and a conductivity contrast, respectively,18

s5~12e1 /e2!21 and t5~12s1 /s2!21. ~12!

After simple manipulations, the dipole factor of an isolated
particle becomes16

b̃5
F ~1!

s2s~1!
1

de~1!

11 i f / f c
~1!

, ~13!

where f c
(1) is the characteristic frequency, andde (1) is the

dispersion magnitude:

de~1!5F ~1!
s2t

~ t2s~1!!~s2s~1!!
, ~14!

f c
~1!5

1

2p

s2

e2

s~ t2s~1!!

t~s2s~1!!
. ~15!

Similarly, b̃* can be exactly rewritten in the spectral
representation as16

b̃* 5 (
m51

`
F ~m!

s̃2s~m!
, ~16!

where

F ~m!52 4
3m~m11!sinh3 ae2~2m11!a,

~17!
s~m!5 1

3@12Ye2~112m!a#.

It is worth noting thatFL
(m)5FT

(m) . In fact, for the longitudi-
nal field and transverse field cases,FL

(m) is naturally equal to
FT

(m) . Both of them should satisfy a sum rule predicted by
the spectral representation theory for two identical particles,
that is,

(
m51

`

FL
~m!52

1

3
5 (

m51

`

FT
~m! .

In the above derivation, we have used the identity

1

sinh3 x
5 (

m51

`

4m~m11!e2~112m!x. ~18!

Thus, the spectral representation ofb̃* consists of a discrete
set of simple poles.16 The m51 pole s(1) deviates signifi-
cantly from 1/3 whiles(1) becomes smaller than 1/3 in the
touching limit ~a→0!. Next, we will show that this pole
gives a significant contribution to the DEP spectrum at low
frequencies. Asm increases, however, the seriess(m) con-
verges to 1/3, giving rise to a dominant contribution near the
isolated-sphere characteristic frequency. Moreover, each
term in the spectral representation expression ofb̃* can be
rewritten as

F ~m!

s̃2s~m!
5

F ~m!

s2s~m!
1

de~m!

11 i f / f c
~m!

, ~19!

wherede (m) and f c
(m) are the dispersion magnitudes and the

characteristic frequencies, obtained, respectively, by replac-
ing F (1) ands(1) in the expressions ofde (1) and f c

(1) in Eqs.
~14! and ~15! with F (m) and s(m). Note that the first (m
51) characteristic frequency of a pair is significantly lower
than that of an isolated particle in the longitudinal field case.
Obviously, in this case the real part ofb̃* can be expressed
as

Re@ b̃* #5 (
m51

` S F ~m!

s2s~m!
1

de~m!

11~ f / f c
~m!!2D . ~20!

It is worth remarking that Eq.~20! is indeed the exact trans-
formation of Eq. ~4!, which represents the infinite-order
dipole-induced-dipole interaction. Thus, we have the DEP
force

FDEP* 5 1
4pe2D3 Re@ b̃* #“uEu2 ~21!

in terms of a series of dispersion strengthes (de (m)) and char-
acteristic frequencies (f c

(m)). Hence, the DEP spectrum of
two touching spheres consists of a series of subdispersions.
In the next section we will investigate the effect of multiple
images on the DEP spectrum of a pair of touching particles.

FIG. 1. The DEP spectrum~real part of the dipole factor! for an isolated
sphere~lines! and touching spheres~symbols! for three different conductiv-
ity contrastst for ~a! the longitudinal field and~b! transverse field cases,
respectively. Parameters:s51.1 ands252.831024 S/m.
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III. NUMERICAL RESULTS

We are now in a position to investigate the DEP spec-
trum numerically, based on Eq.~4! and Eq.~20!. Please note
Eq. ~20! is an exact transformation of Eq.~4!, as stated
above. To discuss the effect of the images~Figs. 5 and 6!, we
resort to Eq.~20!. Moreover, it is worth noting that both Eq.
~4! and Eq.~20! are convergent for the parameters in use
~Fig. 6!. Hence, for our numerical calculations it suffices to
set the upper limit ofm to be 100. We should remark that, we
selected the large variation oft because the variation of con-
ductivities of colloidal particles~e.g., biological cells! can be
very large, whereas we selected small variation ofs because
the variation of real dielectric constants of various colloidal
particles is small indeed.

Figure 1 shows the effect of conductivity contrasts~t! on
the DEP spectrum for isolated particles and touching par-
ticles for ~a! the longitudinal field case and~b! the transverse
field case, respectively. Here the DEP spectrum is denoted by
the real part of the dipole factor. From Fig. 1, it is shown that
the effect of multiple images plays an important role in the
DEP spectrum in the low frequency region. The effect of

multiple images increases~decreases! the induced-dipole
moment of the individual particles in the longitudinal~trans-
verse! geometry, and hence the DEP force can be enhanced
~reduced! significantly for the longitudinal~transverse! field
case. In particular, a subdispersion, which is located at the
low frequency region, appears for the longitudinal field case
@Fig. 1~a!# but not for the transverse field case@Fig. 1~b!#,
due to the highly anisotropic presence of multiple images.
Moreover, for both the longitudinal field and transverse field
cases, decreasing the conductivity contrastt leads to the dis-
persions being located at lower frequencies~redshifted!, to-
gether with a lower DEP force within the corresponding fre-
quency region.

Some interesting results are found for the crossover fre-
quency in which the DEP force changes its sign. It is shown
that the crossover frequency for the longitudinal~transverse!
field casef CF

L ( f CF
T ) will move to lower frequencies~higher

frequencies! in touching case than in isolated case, which is
caused by the effect of multiple images. In addition, for a
smallert, we observe a smallerf CF

L or f CF
T .

In Fig. 2, we investigate the effect of the dielectric con-
trast ~s! on the DEP spectrum for~a! the longitudinal field
case and~b! the transverse field case, respectively. We se-

FIG. 2. Similar to Fig. 1 but for three different dielectric contrastss. Insets:
Enlargement of the high frequency spectrum for clarity. Parameters:t
521/90 ands252.831024 S/m.

FIG. 3. Similar to Fig. 1 but for three different medium conductivitiess2 .
Parameters:s51.1 andt521/90.
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lected small variation ofs because the variation of real di-
electric constants of various typical colloidal particles is
small indeed. This figure shows thats has essentially no
effect on the DEP force at low frequencies, but a minor effect
at high frequencies. In addition, unlike thet effect ~Fig. 1!,

the parameters variation does not change the location of the
dispersions or the crossover frequency.

The effect of medium conductivitys2 on the DEP spec-
trum is shown in Fig. 3. Obviously, decreasings2 leads both
the dispersions and the crossover frequencies to move to
lower frequencies~redshifted! either in touching case~sym-
bols! or isolated case~lines!.

The dependence of the DEP force on the separations
between particles is shown in Fig. 4, in an attempt to discuss
the effect of multiple images. It is found that the effect of
multiple images is small enough to be neglected, especially
at large separations~such as,R/D>2.0), as expected. In
other words, the multiple images play an important role in
the case where the particles are close enough. Actually, this
result is quite reminiscent of that in a recent work16 where
we discussed the electrorotation spectrum of a pair of touch-
ing particles.

In Fig. 5, we plot the dispersion magnitude (deL
(m) and

deT
(m)) versus the characteristic frequencies (f cL

(m) and f cT
(m)),

for m51 – 100 with different medium conductivitys2 . Here
de (m) and f c

(m) are themth dispersion strength and character-
istic frequency, respectively. As shown in Sec. II A, an infi-
nite number of subdispersions exist, but most of them are
located close to the main dispersion, and converge to the

FIG. 4. Similar to Fig. 1 but for three different reduced separationsR/D.
Insets: Enlargement of the high frequency spectrum for clarity. Parameters:
s51.1, t521/90 ands252.831024 S/m.

FIG. 5. The dispersion magnitudede (m) vs the characteristic frequencyf c
(m)

for two touching spheres at variousR/D ’s for the longitudinal~open sym-
bols! and transverse~filled symbols! cases. The lines are guides to the eyes.

FIG. 6. The dispersion magnitudede (m) and the characteristic frequency
f c

(m) plotted vsm for two touching spheres at varioust for the longitudinal
~L! and transverse~T! cases.
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main dispersion (m>5) asm increases, both for the longi-
tudinal field and transverse field cases. This is the reason
why only one or two dispersions are visible in Figs. 1–4.

For a better understanding of them dependence ofmth
dispersion strength and characteristic frequency, we plot the
dispersion magnitudes (deL

(m) anddeT
(m)) as a function ofm

@Fig. 6~a!#, and the characteristic frequencies (f cL
(m) and f cT

(m))
@Fig. 6~b!#.

Figures 5 and 6 show that the difference between the
longitudinal field and transverse field cases is quite large,
especially at smallm; however, at largem, this difference
disappears. From the analysis of the spectral representation
theory ~see Fig. 5 or Fig. 6!, we can conclude that the ap-
pearance of the one subdispersion in Figs. 1–4 is actually
due to the overlap of the infinite subdispersions. In a word,
by using the spectral representation theory in Fig. 5~or Fig.
6!, we can understand our results more clearly.

IV. DISCUSSION AND CONCLUSION

Here some comments are in order. In view of the results
of a two-particle system under consideration in the present
work, an extension to the high concentration case is neces-
sary. In doing so, we could resort to an effective medium
theory to include the many-body~local-field! effect.19

The present theory can be applied to investigate the de-
pendence of DEP spectra on gradation~inhomogeneity!20,21

inside colloidal particles or biological cells.
To sum up, we discussed the DEP spectrum of a pair of

touching polarizable colloidal particles. For two touching
particles, the multiple images effect plays an important role
in their respective dipole moment and the DEP spectrum,
especially at low frequencies. Our methods was based on the
multiple image method. We found the multiple images have
a crucial effect on the DEP spectrum, but a weak effect on
the crossover frequency. Our results can be well understood

by using the spectral representation theory. As a result, the
present results will show some clues on the correlation effect
between the colloidal particles in ac electrokinetic phenom-
ena.
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