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A general theory of stationary disclinations is developed for a linearly elastic, infinitely extended,
homogeneous, isotropic body. It is shown to be a special case of the anisotropic theory. Integral ex-
pressions are derived for the total displacement, elastic strain and bend-twist, and stress. Both con-

tinuous distributions and discrete lines are treated.
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1. Introduction

In a previous paper [2]' we have developed the
general theory of stationary disclinations in a linearly
elastic, infinitely extended, homogeneous, anisotropic
body. In the present paper we wish to specialize some
of those results to the case of an isotropic material.

The purpose for this is three-fold. First, for many
special applications of the general theory, the isotropic
calculations can be carried through analytically;
therefore it is convenient to have the isotropic
formulas. Second, it will be easier to compare the
present results with those in the general lietature;
many of the latter have been derived independently
with isotropy assumed a priori. Third, when the rela-
tion between isotropic and anisotropic theory is clearly
revealed, it is often possible to adapt isotropic tech-
niques to anisotropic problems: this has often been

" Figures in brackets indicate the literature references at the end of this paper,

successful, and the literature on isotropy is vastly
greater than that on anisotropy.

The general approach in this paper is to develop the
isotropic theory ab initio and show its correspondence
to the anisotropic results at many convenient and illus-
trative points.

In, section 2 we give the isotropic forms of certain
key relations, i.e., the elastic constants, Green’s tensor,
and the incompatibility source tensor.

In section 3 we review incompatible elasticity theory
without specifying the nature of the defects. We firsi
solve the plastic strain problem which gives the integral
expression for the total displacement, which is useful
for all the rest of defect theory. We illustrate the result
by Eshelby’s simplest model of a point defect. Second,
we solve the incompatibility problem, which gives the
state quantity of elastic strain as an integral over the
incompatibility tensor.
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In section 4 we review classical dislocation theory.

In section 5 we develop the theory of a continuous
distribution of defects. Integral expressions are derived
for the basic elastic fields (i.e., strain and bend-twist)
and the stress. The expressions for these state quanti-
ties are given in terms of the defect densities, i.e., the
dislocation and disclination densities.

In section 6 we specialize to the discrete defect line.
We give the total displacement as a surface integral,
and the basic elastic fields and stress as line integrals.

In this paper we shall freely refer to the results of
two previous papers [1. 2], which will be denoted as I

and IL.
2. Isotropy

For an isotropic material the elastic constants Ciju
reduce to only two independent constants. In terms
of the modulus of rigidity G and Poisson’s ratio v
we can express them as follows [3]:

C:'jk.‘=2c( Oikdji+——5= 5:;&&!) ) (2.1)
== 2 (i)
where 8j; is the Kronecker delta, and the symbaol (i)
indicates that the quantity in parentheses is sym-
metrized with respect to i and j. We have used Carte-
sian coordinates for simplicity.
For isotropy it is also possible to give the explicit
expression of Green’s tensor, as follows [3]:

1 1
Gin(r) :R(aﬁ"m_ﬁ -"',ju)a (2.2)

where r is the radius vector, and the comma indicates
differentiation. The combination C;j;/Gjn,i occurs
extensively throughout II. From (2.1-2) we find that
it reduces to

CijiiGjn i(r) = (5mi"l.qq+ OpnT g

- e+

1—p 1 (2.3)

v
— Sﬂ'ﬁr,nqq) .

Another quantity that occurs in II is the incompati-
bility source tensor, defined by (114.25)2

]. r r
Imnpq(r) = EJ Epmk €gsl Cijk.‘ Gjn.:"s’(r ) R-'dV (mn)»
(2.4)
where €pmy is the permutation symbol and R is the

magnitude of the vector R=r—r'. From (2.3) this
reduces for isotropy to

1 '
I:nnpq(r) = 3072 Epmk €qsl SinMyivivkrs

+ 1 iv Ot F',f'f'n‘x')R"' V' mny, (2.5)

2 The symbaol (114.25) is eq (4.25) in ref. [2].

where we have used the antisymmetry or skewsym-
metry of €45. From the integral

f rypR-1dV'= 2J’(r R)-'\dV'=—A4nr (2.6)

this reduces by partial integration to

1

(mn)”

(2.7)

1
fruuw(r) — 811_6;:1:-:!. Eqsf(‘a.‘n f.As+—'_8MTnx)

Finally by (114.26) this reduces to

1
Imnpq(r) =_§1’_T [qu‘anp T kk —&mn 5.0*? ikt Smn F.pq
1
= Suﬂ r‘mq + 1 — (Spq r.mn_qu r‘ﬂp):l(m") [2.8}

The specializations of this section will reduce all the
results of Il to isotropy, as we shall see. Throughout
the paper repeated indices are summed according to
the Einstein summation convention. This convention
also applies between primed and unprimed indices,
as in (2.4).

3. Review of Incompatible Theory

In this section we shall give the formal solution of
two problems, which can be posed without specifying
the nature of the defects involved, i.e., the plastic
strain problem and the incompatibility problem.

3.1. The Plastic Strain Problem

Given an infinitely extended homogeneous isotropic
body with the plastic strain e/ given as a prescribed
function of space. We seek to find the resulting dis-
placement u! throughout the body.

We solve this problem by a method similar to that of
section I12.3 The equilibrium equation for the stress
oijis (112.1)

(3.1)

Tij,i = 0.

For the isotropic case Hooke's law (I12.2) reduces by
(2.1) to
v
2(‘ (e[_; 1—9y 6!'} e)s

where we have written e for dilatation, or trace of the
elastic strain e;j, i.e., e=e;;. The total strain is defined
in terms of the total displacement (I112.4) and consists
of an elastic and a plastic part (112.5)

(3.2)

el =yt

}J
ij (Jj,i) = €ij = E‘,‘

(3.3)

The above relations (3.1-3) are conveniently combined
into the expression (c.f. 112.6)

¥ Section 112 is Section 2 in ref. [2].
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T
ot g T T T g,

8;:;, [34)

This is the set of partial differential equations we have
to solve for u! when e,f; is given. The most straight-
forward method of attack is to reduce (3.4) to a bihar-
monic equation. First we take the derivative of (3.4)
with respect to Xi to obtain

1—v v

T = e’
1— 2, Y~ G

r 35
] — 2y S (5:8)

Next, we take the Laplacian operator of (3.4) and find

1 2v

o e v,
1—2v

w, ..
ijikk

(3.6)

Ui ek — “Cijgrk 1— 92, £
Combining (3.5-6) we have

1 ; v

T — P ! P
Wy oo SSidBT = B €l
iJdikk ijJkk 1 —_ dk.ijk 1—p

(3.7)

To integrate this equation we shall use the following
relation

(8m) ' rjjxx+6(r) =0, (3.8)
where &(r) is the three-dimensional Dirac delta
function, defined in Appendix TIB. One interesting
way to derive this relation is by substituting (2.3) into
(I12.7). This shows that (3.8) is the isotropic equivalent
of the defining equation for Green’s function.

The solution of our problem now follows easily

ui(r) = f O(R) ul(x'") dV’

J‘ R JJM.M

—iwf RGT i ()

) dV’

1 p
:_a Rl:zeJJAR( )_l_pejh:_;k(r)
-ty )|
= _L 2R . " "} ..__l_ R ' !
8 Jkk ep(r T, Ko e (')
v
—+ 1—_—v R_Uj e"'(r')] dv',
(3.9)

where the integrations are taken over all space. In
the above derivation the first equality follows from the

property of the delta function (IIB3), the second
equality from (3.8), the third by partial integrations,
the fourth from (3.7), and the fifth again by partial
integrations. In the above partial integrations the
surface integrals at infinity vanish. For this to happen
the following two conditions must be satisfied: the
boundary condition for the total displacement is that
ul(r) =0 as r—=; and the condition on the pre-
scribed plastic strain is that efj(r) approaches zero
faster than r—!' as r— %. This last condition also in-
sures that the integral (3.9) is finite. It is easily shown
that (3.9) also follows by substituting (2.3) into (I12.15),
verifying the consistency between isotropic and aniso-

tropic theory. For the case that ef is constant within a

bounded volume and vanishes outside this volume,
(3.9) immediately reduces to Eshelby’s result [4]
The total distortion is easily obtained from (3.9)

7(r) = ul (r)

e

1 iy
~ 8 [ZR nme (l‘ 1 R ijki el (r')

+ '—i; R,;‘jm; e‘"(r')] dv’. (3.10)

1

The equations of this section will form the basis of the
expressions for the fields of the more specific defects
treated in subsequent sections.

Eshelby pointed out that the field of a defect can also
be simulated by a fictitious distribution of body force.
For the isotropic case it is obtained by »-.ub‘-;lltuting_
(2.1) into (I112,16). So the defect described by e" is
simulated by the fictitious body force

> e':j) .

3.2. Application: The Point Defect

it (3.11)

It will be instructive to consider a simple application
of the relations (3.9) and (3.11). Eshelby [5] regards the
discrete point dilatation as the simplest elastic model
of a point defect. In our formulation this is easily
given by the expression

eP(r) =1 AV 5, 8(r), (3.12)

i 3

where AV is a constant which represents the plastic
volume change. Then we find for (3.9)

ul (r) = cxilr?, (3.13)
where cis the “strength’ of the point defect:
1+v AV
== 105 (3.14)

361



From (3.11) we find that this point defect can be
simulated by the fictitious body force

—fi=—AVK3 (r), (3.15)
where K is the bulk modulus
1+v 2G
- e (3.16)

These results agree with Eshelby, who elaborates this
problem further. ,

In view of section 113.3 the plastic distortion B;j
can be regarded as equivalent to a dislocation loop
density vy;; (113.34). Hence eq (3.12) shows that the
point defect can be represented by a set of three equal
discrete prismatic loops at right angles. This then is
an example showing that a point defect can be repre-
sented by a discrete defect loop density.

Equation (3.15) furthermore shows that the point
defect can also be simulated by a set of three equal
fictitious discrete double forces at right angles.

3.3. The Incompatibility Problem

The incompatibility tensor n;; is given as a prescribed
function of space. To find the resulting elastic strain
ei; throughout the body.

We solve this problem by exploiting the concept of
plastic strain. If the plastic strain field eg.' is given,

then the symmetric incompatibility tensor is defined
by (114.11)

MNij = €ikl €jmn €/ 1 (3.17)
and satisfies the continuity condition (114.13)
N, =0. (3.18)

The expression (3.17) can be expanded by (114.26) into

== P op P P S e
Mij €iikk €ij + €ik.ik + ik ik + 8y (e_” €t k1)
(3.19)
From this we derive the two results
n= ef’” - e::,_m, (3.20)
ORI - P P ;
Nij — 0ij M €k € +e jk'“‘+ €k gk (3.21)

The solution of our problem now follows easily:

eij(r) —-1

8 [R'” (& irnr F €k jowe)

itk

1 y v s '
S R.ij el +mR ik efi'j'] dv
—ej;(r)

- %rf [R.n (i — 85 m + €ff e + €5y0)

1 , ,
+ =Ry (n— ) + T Roux ef;,j,] av

—e5(r)

1 '
= _a [R.kk Tfij(l‘ )

R
+ (ipr — & RM) T;(r')] av.

(3.22)
Here the first equality follows from (3.3), (3.10), and
some partial integrations, the second equality from
(3.20-21), and the third by partial integrations, (3.8),
and cancellations. It is easily shown that (3.22) also
follows by substituting (2.8) into (114.31), and using
(3.18). In the latter calculation it will be noted that
the terms in (2.8) containing r; and r4 make no con-
tribution to the integral. This shows that the precise
form of (2.8) is somewhat indeterminate.

We see that the elastic strain e;; is a state quantity,
because it is given entirely in terms of an integral over
the incompatibility 7;;, which represents a defect
distribution, and is therefore itself also a state quantity.
By a state quantity we mean a quantity that can be
measured experimentally without any knowledge of
former states of the body.

4. Review of Dislocation Theory

4.1. Continuous Distribution of Dislocations

In this section we give a formal solution to the
following problem: The plastic distortion Bf}, or the
dislocation density aj,, is given as a preseribed
function of space. To find the resulting elastic distor-
tion BU-

We solve this problem basically by using the solution
for the displacement found in section 3.1. We also
derive expressions for the strain, dilatation, stress,

and rotation. The dislocation density is defined by
(I13.4)

Qin = — €ixt BT, & (4.1)
and satisifies the continuity condition (113.6)
Xin,i = 0 {4'2}

Instead of the dislocation density it is sometimes con-
venient to use the contortion (I5.11b)

Kk =]§ Skt o — ay. (4.3)

The total distortion is defined in terms of the total
displacement and for dislocations only consists of an
elastic and plastic part (113.9)

BT.=ul,=By+ B, 4.4)
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Once the elastic distortion is found, the elastic strain
and rotation easily follow from (113.13-14)

eij= By (4.5)
1
Wk=g €ijkfij- (4.6)

To solve our problem we recall that the plastic strain
is the symmetric part of the plastic distortion (113.2)

e~ By @.7)
and therefore we find the total displacement in terms
of the plastic distortion from (3.9)

[R.mﬁ:;‘_(r') +R B (r")

8

1 v
— =l op gl S o P '
Rl () T R () |V as)
By (4.4) it is then simple to express the elastic distor-
tion in terms of the plastic distortion, which solves the
first part of our problem. Next, we want to find the
expression in terms of the dislocation density:

1 - .
ﬁij(r) =_§; IiR'“m'B.;"-I'+R'k""'8}:'j-['
__._1_HR 8" 42 p. B” | dV'—B" (r)
ey Wik kL ¥ = 5 [0S i

1 :
=§J. [R : mn(Eukam _ﬁ:,_j.)

+ R jnn(€imia;— B )

ij

1
_T__VR-fﬁ‘f(ei'kmaan_ﬁ:;_k,)
+__V_ R.jrm(fifmam.‘ . B"; l”):l dV' —,8"(1-)
1—» i, L
1 r
=a [R,Ilﬂifijkﬂm(l' } +R‘kl'm€ikia.*j(l‘)
1 L§
_ER,jMEikmaud(r )
e 1 i 5 R ,jmufi!‘mﬂl’mf(l’r):l (I'V' [49]

Here the first equality follows from (4.4), (4.8) and
some partial integrations, the second from (4.1), and
the third by partial integrations, (3.8), and some
cancellations. This result could also have been ob-
tained more directly by substituting (2.3) into (1I3.17).

There is another convenient form for (4.9), which is
obtained by using the identities

€iklC; = €igi®ji — €ximOijmi + €itmdjimi,  (4.10)
R,tfikm =R m€igl — R Ji€kim T R KEilm- (4.11)
With these we find
1 , ,
;81"} (r)= E;; [R .fnneijkaki(l' )+ R,;.-;mﬂ;;:ﬂ!ﬂ(r )
= R.kunikhnaijam!{l")
1 r

Ar = (R ijr€xim — R jem€ixt) am(r')|dV'.  (4.12)

The last term in this expression vanishes by a partial
integration and (4.2). So we obtain finally

1
Bij(r)= 8n f {R.nmfmﬂm[l"]+ R inn€iriaji(r')

R iik ' (]
o ("_ﬂ‘ = Sa_rR Jenn ) E€xtmUmi(r ):l dV". (4.13)

=

This is the elastic distortion due to the prescribed
dislocation distribution a,. It is a state quantity.
By (4.1) we can also express it in terms of the plastic
distortion. This then solves the originally posed
problem.

Next, we find the elastic strain from (4.5) and (4.13)

1
ejj(r)= %JA [R.mn:(esk.-ﬂﬂ(l")){m

=} ( M =2 5;_,R ..r‘nm) €ximmi(r’) ] dv’. (4.14)

1—v
From this we find the dilatation

1—2vi
l—v 8m

(’(]’)= i f R.knnfkrmanu{rjl)dV’s
and the stress by (3.2)

G
oijr) =7 j [ R jenn(€iriai(e’ )ip

1
+ l — (R,ijk = SIJR .krul)fk!mamf(r':':l dV'. {4.16}
The rotation is found from (4.6) and (4.13)
1 i 1 :
wi(r)= 8 R iancpi(r') — 5 R jonnce(r’)
1 ’ T’
+ E Rdnn&'_jk(l’ ) ] dV’. 4.17)
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The last term in this expression vanishes by a partial
integration and (4.2). So we have

mk(r} = é J' [: R Jnna.ﬂ(rr} — % R ,.l\-lrullﬂ‘f(l"il ]:| dv’

=-'§l'1;J'R,mank(rr)dV’, {418J

where the last equality follows from (4.3).

To summarize, in this section we have derived ex-
plicit integral expressions for the most useful elastic
fields (distortion, strain, dilatation, stress, and rotation)
of a continuous distribution of dislocations in an infinite
isotropic body.

4.2. The Discrete Dislocation Line

For a discrete dislocation line with Burgers vector

b; along the curve L the plastic distortion has the
special form (113.21)

By, (1) =—5:(S)b;, (4.20)

where 8i(S) is the Dirac delta function for a surface
S whose boundary is L, defined in Appendix 1IB.
Therefore we find for the displacement (4.8)

u? (r)

=“'1— J‘ [R,m-bde',- -+ R_j“-b;dS}
8 5]

1

-V

Rmbkds;,+—i;R,,-J-,-bkds;,], (4.21)

where we have used (ITB9). This expression could also
have been obtained directly by substituting (2.3) into
(113.30), as was done in ref. [3]. The same result was
also obtained by Kroupa [6, 7].

For the discrete dislocation line the dislocation

density is given by (113.23)

a{"(l')=5|'(L)b_j, (4.22)
where 8;(L) is the Dirac delta function for the closed
curve L. We therefore find for the elastic distortion

(4.13)

b
Bij(r) = I [R mn€ua£ﬂ +R ;.;meu.:dL
8
+(“18‘“H‘A‘ S;JRhm)EMmdL ] (423)

where we have used (IIB8). Similarly we find the elastic
strain from (4.14) or from (4.23)

eij(r)=

b
2L % [R Aﬂn(ém.’dL )(U)
L

mJL

+(&L

1 SUR .fmﬂ) €ximdL, ]

(4.24)

which agrees with ref. [3]. We find the dilatation from
(4.15) or (4.24)

1_2V b; § R.knnfklmdL;ny [4.25)

) ==7—" BnJ,

and we find the stress from (4.16)

Gb
oij(r)= 4ﬁf§ [R J.:m(EmdL )i
1
+T—_V (R,ijk _6i'jR ..*mu] GL‘lmdL ;":l, (4.26)

which agrees with ref. [3], and has been called the

formula of Peach and Koehler. Finally, we find the
rotation from (4.18)

wWj (PJ ::_;Tﬁ [R * f!lfldL;c_% R 3 knndL;] - (4'27)

In this section we have derived explicit closed line
integrals for the most useful elastic fields of a discrete
dislocation line in an infinite isotropic body. Most of
these expressions have already been given before in
the literature and proved very valuable for specific
calculations and applications of dislocation theory.

5. Continuous Distribution of Defects

As in II we shall denote the combination of disloca-
tions and disclinations by the word defects. Similarly
we shall refer to the strain and bend-twist as the
basic fields. Further discussion of the basic total,
elastic, and plastic fields is given in ref. [10].

In this section we give a formal solution to the follow-
ing problem: The basic plastic fields ef; and k[ , or the
defect densities «;, and 6, are given as prescnbed
functions of space. To find the basic elastic fields
€ij and Kij.

Again, we solve this problem basically by using the
solution for the displacement found in section 3.1. In
addition we also derive an expression for the stress.
If the basic plastic fields are given then the defect
densities are defined by (114.1-2)

@in = — €ixile], ,— €xnk7) (5.1)
0ij = — €k ;. , (5.2)
which satisfy the continuity conditions (114.3-4)
@in,i + €;nbi;= 0, (5.3)
0i;,i=0 (5.4)
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The conditions (5.3-4) can be combined into

€iktCmi,mi + 05,1=0. (5.5)
The incompatibility (3.17) can also be expressed as
(114.12)

Tif— ( Ejmnﬂin,r:1+9ij}{ij}- (5.6)
Instead of the dislocation density a, it is sometimes

convenient to use the contortion which is still defined
as before (16.5b)

1
K = 5 8rix — ayy.

B (5.7)

For the disclination density 6;; it is useful to have the
expression

6i; — 8,0 = Gu..'KUJ‘ == auek;mxm‘k
GIH(KJ;;‘ Kh"’f.}) (5.8]

where the second equality follows from the identity
(4.10) with @ replaced by k. The basic total fields are
defined in terms of the total displacement and consist
of elastic and plastic parts (114.14-15)

el; = uf; ;= eij t e, (5.9)
K{i - m;, =Kyt KE, (5.10)
where the total rotation is defined by
T = l T
Wy =5 €l (5.11)

For completeness we also include the expressions
for the characteristic vectors, i.e., the total Burgers
vector B, and the Frank vector {}; (114.5-8):

— %A (ef:l_ GjmnKI{;Iﬂ:) dL;

=f (ain— fjnmeijx_m) dsi, (5.12)
0, =—§ b dL.
A
=J%£h (5.13)
o

where A is a Burgers circuit and o the Burgers surface
which spans A.

To solve our problem we use the distortion given
by (3.10). By some partial integrations and changes
in dummy indices we have

u{-i‘(r.} = 81,“. il) A R rk"“ei:j.i" [l" )

ﬂf'

[R hme

1 2 ] D P '

— R,jk!el{-.'.i'(r ,j,mej',-.(r )] dV (5.14)
By (5.9-11) it is then simple to express the basic
elastic fields in terms of the basic plastic fields, which
solves the first part of our problem. Next, we wish to

find the expressions in terms of the defect densities.
First we find from (5.14)

u}:;(r)_s j[ hm{Euk(OiM K"‘) +EUIK}

+R J\‘rm{eiﬂ'! (a-'_j_ K

;) = eg‘k. T fiij'“}

1
D R ji{ €irm(m —«i,,) — e o+ €’}

+1TvyR.jun{EHm(amf Khn} _e,, NG }] dv’

1 >
=g J- [R Ann€ijk (o — K:_,,) +R Jenn€ikiCeij

1 v
- = pR‘ijEikmﬁ'm! ar 1— R,jrmfi.'maml'

v

= s ’l >
R wn€ikicsy .+ E R ji€ikmky,,

£ 1 i
l_ RJMIG FmK!m:I dV,‘i‘f" ( )
= ] ,)
_E'?T— R.hmfl'jk(aﬁ‘f_ K”‘.) _R,J.'rmfikfaﬂ

7= R.kmlfklmﬁi_}&mr

== l_i_u (R iji€rim— R jim€irt) mi
1

+ R (0ij— 8i;6) "FR.jf(Hi.‘_Bﬂs)] dv’

+e{;.{r)

1
=%J‘ I:R.hmeijk(aki'( _K”‘ (l" ))
+ R jnn€iriaji(r')

-+ (R.ijk
v

1— - ain .A'm:) €tmOmi (1)

+ R iy (v )+(—5"—4L aRm)qu

—l—ef_:.(r).

(5.15)

Herf‘ the first equality follows from (5.1), the second
from partial integrations, (3.8), and cancellations, the
third from (4.10-11), (5.8), partial integrations and
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cancellations, and the fourth from partial integrations

and (5.5).

From (5.15) we then find the elastic strain by (5.9)

Cij(l‘}=$f [R,J\-nn(eik;&j.'{l"))(ij}

R.; ,
i (]. — :j - SUR 'k"*')e’fhﬂanﬁ(r )+ R,nna(ij}(r')

R

+ (T__AQ;_SUR.RN) e(l")jldyf (516)

This is the elastic strain due to the prescribed defect
distributions «;, and 6;;. The result could also have
been obtained by substituting (2.3) and (2.8) into
(I14.29), using (5.4—5). In the latter calculation it will
be noted that the terms in (2.8) containing r 4, do not
contribute to the integral. We see that e; is a state
quantity because it is given in terms of the defect
densities. By (5.1-2) we can also express the elastic
strain in terms of the basic plastic fields. So (5.16)
solves half of the originally posed problem. We note
that when the disclination density vanishes, 6;;=0,
(5.16) reduces to (4.14), as expected. There is another
way to write (5.16), by doing some partial integrations

eij(r) =§lﬁj f [R.nn(fk!maﬂ.k' (r") + 8i(r" )iij

S5 (% s SFJR,HH) (Ekmamf.k'(r’) -+ 9{1" ]']]]dV!,
which agrees with (3.22) by (5.6). This then shows an

alternative way of deriving (5.16). Next we find the
dilatation from (5.16).

1=2v"1 p
e(r) =_ﬁ§f (R, knn€ximom(r")
+R,m;9[l")]dV', (5]8)
and the stress by (3.2)
oi(r) =C R o (€imiai(r')) j
i A yhnn | €kt i (ij)
1 '
+m (R, ijk—8iR  knn) € xtm@mi (")
+R.un(j(ij){r')
+_I.1—v {R,u—ﬁsﬁ‘nn}g(l")]dV'- (5.19)

To find the elastic bend-twist, we first find the total
rotation from (5.11) and (5.15)

m;{r]=%j [R,fnrt(ah'—l‘(ﬁ{) _%R,kmia

+% R L jnnQjk s R : nnfijkgli'j}dVr

1
—-L f R, [Ku(r") +x:;,(r’)]dV', (5.20)

where the second equality follows from (5.7), a partial
integration, and (5.3). Finally we find the elastic bend-
twist

1 .
KU{r} = g f lR,kankj mt= R.knm‘(ﬁj‘:'] dVr_K.‘,: (l‘)

1
- _EE,[ [R ktnnKij + R knn(€irifi
— )V = )
1 fR P
= 8’11' [ Jelnn kJ(r)

=+ R.kmreikfeif[rt)ldVr- {5.21)
Here the first equality follows from (5.10), (5.20), and a
partial integration, the second from (5.2), and the third
by a partial integration, (3.8), and a cancellation. This
is the elastic bend-twist due to prescribed defect
distributions a;, and 6;;. The same result can also be
obtained by substituting (2.3) into (I14.34), and using
(5.3) and (5.5). We see that it is also a state quantity.
By (5.1-2) we can also express it in terms of the basic
plastic fields. So (5.21) and (5.16) solve the originally
posed problem. When the disclination density vanishes,
6 =0, (5.21) reduces to the derivative of (4.18), as
expected.,

In this section we have derived explicit integral
expressions for the basic elastic fields and the stress of
a- continuous distribution of defects in an infinite
isotropic body. We have seen that when the disclina-
tion density vanishes, 6;; =0, the results reduce to
these for dislocations in section 4.1. Due to the assump-
tion of isotropy the above integrals are given in terms of
the relative radius vector R and its derivatives. Hence
those are straightforward integrations for any given
distribution of defects. For example, in the next section
we shall see how they apply to a discrete defect line.

6. The Discrete Defect Line

For a discrete defect line along the curve L the basic
plastic fields reduce to the special form (115.14-15)

P — Q%
em B{m)’

K:;": 1,"'26_;"”;,8::”‘ ! + ¢?;,

(6.1)
(6.2)

where the defect loop densities are defined by

(115.12-13)

,G;';(r) E—“S:(S){bu‘f‘qmunj(xm—3;,1:)}. {63)
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¢;(r)

Here b, and (); are the characteristic vectors, i.e., the
dlslocalmn Burgers vector and the Frank vector,
x$, is a point thru which the axis of the disclination
passes, and 8§;(S) is the Dirac delta function for a sur-
face S whose boundary is L. The defect densities are
given by (I15.19—20)

C!in(l‘) =3d; (L } {bn a5 fjmuﬂj(xm

=—8,(8)Q;. (6.4)

—x%)},  (6.5)

Bij(l')=5,'(L)Qj, (6.6)

where 8;(L) is the Dirac delta function for the closed
curve L. The contortion is by (5.7) and (6.5)

Kij(r)=1/28;8:(L){bi+ fipq(lp{xq_x::}}

—8;(L) {bx+ expelp(x,—x))}. (6.7)

The total Burgers vector is (115.17)

B,=b,— Ejmunjx:ii ) (6.8)
and the displacement jump across the surface S is
(115.1, I15.5)

[uu] B;r: =15 Gjumnjxm b+ G_mnnn (Im

We now find the total displacement from (3.9),
(6.1), and (6.3)

" 1
u{(r)zgf {bk”}‘fkumﬂm (x:;_x[:t)}
Y

[ R -ijds; +R .;::B;L-dS;

__1 R gedS)+

= = ;_,,dS’] (6.10)

where we have used (IIB9). When the disclination
vanishes, 1, =0, this equation reduces to (4.21).
We find the elastic strain from (5.16) and (6.5-6).

1 '
eij(r)zgi [{bﬁ*ﬂme (xi—=)}

{R Jenn (Eik!dL_; )(!'j]

- (R.@ B

SUR .krm) fkl'mfu‘ :N }
=

Ry
Jn (Q dL )(!ﬂ+ (l_—’”’_ S.UR nn ) deLm] L] (611)

where we have used (IIB8). Again, for ,=0, this

reduces to (4.24).

The dilatation becomes

2ul

e(r)=— % [{bf+€|'flf{(lfl(x(.a q )1

R‘knn&mr = R,mi(!m]d‘s:u, {6.]2)

and the stress becomes

1
aij(r) = 8 f [{b:+ €tpafp (x5 —x0) }

1
{R ﬁn:e(flk!dLj){Uj+ = (R ijk — ij .k:m)fkhudlz:n}

+R HH{(}' dL )t’u!+ 1 (R Wi Sin.nu)ﬂmdL:u]-

(6.13)

Finally we find the elastic bend-twist from (5.21) and
(6.6-7)

Kij(r) = [_3]_ é [{b.’;+ karfﬂﬂ(x:;_x-‘::)}

{R ktnndLj — = R jindLi; } R‘;\-,,,,e,-;;;!!jde].

(6.14)

In this section we have derived explicit closed line
integrals for the basic elastic fields and the stress of a
discrete defect line in an infinite isotropic body. We
have seen that when the disclination vanishes, {1,=0,
the results reduce to those for a discrete dislocation line
in section 4.2. All the above integrals are given in terms
of radius vectors. Hence they should be straightforward
for given geometries of the discrete defect lines. As in
the case of dislocation lines this should make the above
expressions useful for the practical application of
disclinations.

7. Summary

We have specialized previous results derived for
anisotropic disclination theory to the special case of
isotropy. We have also derived the isotropic theory
independently and showed that anisotropic theory
reduces to it.

We have given a short review of incompatible theory
which serves as the basis of departure for all subse-
quent applications to defects. We have also reviewed
dislocation theory which forms a basis of comparison
for defect theory.

For a continuous distribution of defects we have
derived the expressions for the state quantities: the
basic elastic fields and the stress. These expressions
are given in terms of the defect densities, the disclina-
tion and the dislocation density, which in turn can be
expressed in terms of the basic plastic fields. Next,
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we specialized these results to a discrete defect loop.
These expressions are given in terms of the character-
istic vectors, the total Burgers vector and the Frank
vector, as line integrals along the defect line. We have
shown explicitly that these results reduce to those for
dislocation theory when the disclinations vanish.

The results for the discrete defect line are in a useful
form for application to special geometries. In future
publications we shall apply them to straight lines
[8] and loops [9].
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