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Theory of Dissociation Pressures of Some Gas Hydrates* 

V. McKoyt AND O. SINANOGLUt 

Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 

(Received 20 July 1961) 

Dissociation pressures of some gas hydrates have been evaluated using the Lennard-Jones 12-6 28-7 and 
Kihara potentials in the Lennard-Jones-Devonshire cell model. The Lennard-Jones 28-7 pot~ntial 'gives 
the least satisfactory results. The Lennard-Jones 12-6 potential works satisfactorily for the monatomic 
gases and ClL but poorly for the rodlike molecules C2H6, C02, N2, 02, C2fu. This failure may be due to (i) 
d~~.tortio~s of t~e hydrate la~tice, (ii) neglect of.m?lecul~r shape and size in determining the cavity potential 
(m) bamer to mternal rotatIOn of the molecule m Its cavity. A crude model for the lattice shows that it is not 
distorted. The Kihara potential predicts better dissociation pressures for the hydrates of the rodlike mole­

~ules. U,nlike the previously used Lennard-Jones 12-6 potential, it depends on the size and shape of the 
mteractmg molecules. The absence of lattice distortions, improved dissociation pressures through the use 
of the Kihara potential and the restriction of the motion of the solute molecule to around the center of a 
cavity makes a large barrier to rotation unlikely. A small barrier may still be present. 

INTRODUCTION 

CLATHRATES are compounds which do not show 
ordinary chemical bonds. If water is crystallized 

slowly in the presence of some gases, a modified form 
of ice results with cavities which, for most cases, can 

trap one molecule each. These gas molecules stabilize 

the cavities. 
The new structure is different from that of ordinary 

ice.1 The gas-hydrate lattice of Structure P contains 
almost spherical cavities of radii al=3.95 A and 
a2= 4.3 A. There are 20 and 24 water molecules, re­

spectively, on the surface of these cavities. 
Equilibrium between free gas molecules over the 

gas hydrates and the molecules in the force field of the 
lattice results when their chemical potentials are equal. 
This is the case at some definite external gas pressure, 
i.e., the equilibrium dissociation pressure of the gas 

hydrate. 
Van der Waals and Platteuw2 have derived the 

thermodynamic properties of gas hydrates from a 
simple model. They consider the gas molecule moving 
about in a spherical cage formed by the water mole­
cules and apply the Lennard-Jones-Devonshire cell 
theory. The cell model is very appropriate here as the 
gas molecule is trapped in its cage and the surrounding 
molecules are fixed in their lattice positions. 

The authors2 use a Lennard-Jones 12-6 (LJ 12-6) 

potential for the force field in the cavity. The calcu­
lated dissociation pressures are good for the monatomic 
gases and the quasispherical molecule CH4 but are off 
by large factors for some nonspherical molecules, e.g., 
CO2, C2H6 (see Table I). 

* Work supported by a research grant from the National 
Science Foundation (NSF G-18895). 

t Union Carbide Corporation Fellow 1962-63. 
t Alfred P. Sloan Fellow. 
1 Hydrates crystallize in two structures, I or II. All the hy­

drates discussed in this paper belong to Structure I. For structural 
details see: M. von Stackelberg and H. R. Muller, Z. Elektrochem. 
58, 25 (1954). 

• J. H. Van der Waals and J. C. Platteuw, Advan. Chem. Phys. 
2, 1 (1959). 

The internal partition functions of encaged molecules 
are taken to be equal to those of free gas molecules. 
The force field in the cavity is too weak to affect the 
energy levels which determine the electronic and in­

ternal vibrational partition functions. They2 suggest 
that the poor agreement between calculated and ob­
served dissociation pressures may be due to (1) 
hindered rotation of these rodlike molecules in their 
cavities, and (2) failure of the central field approxima­
tion in describing the interaction between a solute 

molecule and a molecule in the lattice. 
In an attempt to remove this discrepancy between 

theory and experiment we have investigated three 
possible reasons3 for the failure of the previous theory. 

(i) The chemical potential of the lattice may not 
be independent of solute occupation. (ii) Shape and 
size of the encaged molecule cannot be neglected when 
evaluating the over-all cavity potential. (iii) Hindered 
rotation of the molecule in its cavity. 

We discuss each of these in some detail and con­
clude; (1) the failure of the previous theory is partly 
due to the neglect of the shape and size effect of the 
solute molecule in determining the force field in the 
cavity; (2) to a good approximation the chemical po­
tential of the lattice is independent of solute occupa­
tion of the cavity. Although we predict improved 

dissociation pressures by introducing the effect of 
shape and size of the molecule on the cavity potential, 
we cannot rule out a barrier to internal rotation of the 
molecule in its cavity, just on the basis of these im­
proved dissociation pressures. The dissociation pres­
sures are more sensitive to the parameters of the inter­
molecular potentials than are second virial coefficient 
data from which these parameters are determined. 
However these improved dissociation pressures, along 
with other considerations (see Sec. 2) make a barrier 
to internal rotation appear less likely as the cause for 
the failure of the previous theory. 

3 B. Alder, Ann. Rev. Phys. Chem. 12, 195 (1961). 
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THEORY OF DISSOCIATION PRESSURES 2947 

1. CELL MODEL 

Reference 2 gives a good review of the theory and 
equations of the cell model which we use. 

The final equations2 for the dissociation pressure of 
a gas hydrate are 

kT Yl kT Y2 
P diss.=---=---, 

Ql 1-Yl Q2 1-Y2 
(1) 

where YI and Y2 are the occupation nunbers for the 
cavities of radii al and a2. These occupation numbers 
are proportional to the probability of finding a mole­
cule in one of these cavities; Ql and Q2 the configura­
tional partition functions for a solute molecule in the 

cavity, 

Q=4rr! exp[ -w(r)/kTJr2dr, (2) 

where w(r) is the spherically symmetrical potential in 
the cavity, with r measured from center, and depends 
on the intermolecular potential we choose to describe 

the interaction between the engaged molecule and one 
of the water molecules in the lattice. 

TABLE I. Dissociation pressures (atm). 

P P 
(LJ 28-7) (LJ 28-7) 

P (constants (constants P 
Gas Pobs (LJ 12-6) Table I) Table II) (Kihara) 

Ar 95.5" 95.5 516 95.0 

Kr 14.5 15.4 128 14.2 

Xe 1.15 1.0 12.0 0.65 

CH. 260 19.0 150.0 16.0 13.0d 

19.0· 

N2 140b 90.0 530 72.0 115 
115 

O2 l00b 63.0 385.0 76.0 120 

CO2 12.47" 0.71 0 8.4 9.0 
1. 70 20.0 

N20 10.0 0.60 9.0 8.2 
1.52 13.0 

C2H6 5.20 1.1 13.0 8.4 

C2H. 5.44 0.50 3.0 1.31 

0.82· 

CF4 1 1.6 8.4 0.05 0.6 

'" J. H. van derWaals and J. C. Platteuw; Advan. Chern. Phys. 2, 1 (1959). 
b Calculated from data of A. van Cleff and G. A. Diepen Rec. Trav. Chim. 

79,582 (1960) and (private communication). 

C See Table I. 

d Spherical core a=O.21 (Table III). 

e Spherical core a=O.32 (Table III). 

f Pm=4.0 (Table III). 

K Pm=O.82 (Table III). 

h Calculated with parameters (d) of Table III. These replaced those of 

reference a. Danon and Pitzer's9 parameters for C02 have an unreasonably large 

core.' Convergence in Eq. (14) is then slow. 

YI and Y2 satisfy2 

v1ln( 1-YI) +v2In( 1-Y2) = - (D.J.I./kT) , (3) 

where VI and V2 are the numbers of cavities of radii al 
and a2 per lattice molecule, determined crystallo­

graphically. 1 D.J.I. is the difference in chemical potential 
between the empty gas-hydrate lattice (/3) and or­
dinary ice (a), i.e., 

(4) 

where QI, Q2, and D.J.I., along with Eqs. (1) and (3) fix 
the equilibrium dissociation pressures of a gas hydrate. 

We first discuss the effect of D.J.I. on the calculation of 
dissociation pressures and then go on to the evaluation 
of Ql and Q2 where we will examine the use of the LJ 
12-6, LJ 28-7, and Kihara potentials. 

2. CHEMICAL POTENTIAL OF THE HYDRATE LATTICE 

In their analysis van der Waals and Platteuw2 as­
sumed the chemical potential of the lattice molecules 

to be independent of the mode of occupation of the 
cavities, i.e., the solute molecule does not interfere with 
the dynamics of the lattice. They then obtain Eq. (3) 

with D.J.I. equal to the difference in chemical potential 
between the unperturbed gas-hydrate lattice ({3 ice) 
and ordinary ice (a ice). We now give quantitatively 
approximate reasons justifying this assumption. 

D.J.I. is determined by chemical analysis on a gas 
hydrate with molecules of dimensions such that they 

go only into the large cavities, i.e., YI = 0, Y2~0. The 
analysis then gives the concentration of the gas hy­

drate, V2Y2, i.e., the number of gas molecules per lattice 
molecule. With Y2 known, Eq. (3) gives D.J.I.=J.l.f3_J.l.a. 

From a study of bromine hydrate2 D.J.I.= 167 cal/mole 
at T=273°K. 

If there are no lattice distortions in the Br2 hydrate 

or in any other of the hydrates, then this value of D.J.I. is 
a constant for all the hydrates. If the lattice is dis­
torted, Eq. (3) no longer holds. From a simple model, 

the possible lattice distortions appear to have a very 
small effect on the thermodynamic properties of the 
lattice. D.J.I., determined for the Br2 hydrate, can then 
be used throughout all the calculations. 

How does a solute molecule perturb the lattice? A 

gas molecule spends most of its time near the center of 
the cavity and is never further away than about 0.5-1 

A from this center. We show this quantitatively later 
(see Fig. 1). The molecules of interest, e.g., N2, C2H6, 

have bond lengths between 1 and 1.5 A. The center of 
such a molecule is not further than 1 A from the 
center of the cavity so that one end of it is never closer 
than 2.5-3 A from the molecules in the cavity wall. 
The molecule then does not push the water molecule 
permanently out of its equilibrium position. However, 
it may affect the vibrational frequency of a lattice 
molecule about its equilibrium position. We now show 
that the lowest frequencies of the lattice molecule are 
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2948 v. McKOY AND O. SINANOGLU 

FIG. 1. Boltzmann probability factor vs r (distance from center 
of cavity), N2 hydrate. (LJ 12--6) 

so much higher than those of the solute molecule, 

regarded as a "cavity oscillator," that they are un­

affected to a good approximation, as assumed in Ref. 2. 

The dispersion and repulsive forces between the 

lattice molecules and the solute give rise to the field 

in which the solute molecule moves in its cavity. We 

expand this cavity potential w(r) of the Lennard­

Jones-Devonshire cell model4 in terms of ria, where r 
is the distance from the cavity and a is the cavity 

radius. For small ria 

w(r) =w(O) + (ZEO/ a2) [22 (ro/ a) 12-10(ro/ a)6Jr2+0(r4) , 

(5) 

where EO and ro are intermolecular parameters [see 

Eq. (8)]; Z is the number of lattice molecules in the 

wall of the cavity, and w(O) is the potential at the 

center of the cavity. The coefficient of r2 is equal to 

k/2 of the three-dimensional harmonic oscillator 

potential 
w(r) =w(O) +tkr2, (6) 

and w(r) should be close to w(r) for small ria. 

The frequency of oscillation of this molecule is now 

Vg = 27r-1 (k/m) i, (7) 

where m is the mass of the molecule. That the gas 

molecule oscillates with frequency Vg is only an approxi­

mation but our results do not depend critically on Vg. 

Typical Vg be between lOLlOS sec1
• 

We now examine to what extent a perturbation by 

this frequency Vo can disturb the frequency spectrum 

of the empty hydrate lattice. This in turn determines 
how the thermodynamic properties of the lattice will 

change. The motion of the H20 molecule in the ice 
lattice (a or (3) is resolved approximately into three 

dependent vibrations5 : (i) the translational vibra­

tion of the centers of gravity about their equilibrium 
positions, (ii) the rotational oscillations of the rigid 

4 See for example R. H. Fowler and E. A. Guggenheim, Sta­
tistical Thermodynamics (Cambridge University Press, New 
York,1939). 

6 R. W. Blue, J. Chern. Phys. 22, 280 (1954). 

molecule, and (iii) the internal vibrations of individual 

water molecules. 

The three modes correspond roughly to bands be­

tween 52-500 cm-I (2.1OIL2.1013 secl
); 800 cm-I

; 

1600 cm-I and higher, respectively.6 

The frequencies 2.1012 to 2.1013 secl are the lowest 

in the frequency spectrum of the lattice. Comparing 

this frequency range with that of the solute molecule 

(or cavity oscillator in our model), 104 to 105 secI, we 

do not expect the frequency spectrum of the lattice to 

be affected, to a good approximation anyway. The 

thermodynamic properties of the lattice will then be 

independent of solute occupation. The spectroscopic 

bands quoted above refer to ordinary ice. These may 

change in going from the a to f3 lattice, but certainly 

not enough to invalidate the order-of-magnitude 

argument above. 

3. INTERMOLECULAR POTENTIAL AND FORCE FIELD 
IN THE CAVITY 

We first select an intermolecular potential <I>(r) , for 

the interaction between the gas molecule and one of 

the water molecules in the lattice. This interaction is 

then averaged over all neighboring H20 molecules 

(nearest neighbors only) to obtain w(r), the cavity 

potential.' 
The motion of the molecule is pretty much confined 

to around the center of the cage. This can be seen from 

the following simple argument. The Boltzmann factor 

exp[ -w(r)/kTJr2 at rl and r2 gives the relative prob­

abilities of finding the molecule somewhere on shells of 

radii rl and r2. From Figs. 2 to 5 we see that the cavity 

potential w(r) rises sharply at about r= 1 A. In Figs. 

1 and 6 we plot exp[ -w(r)/kT]r2 vs r. The molecule 

then has a very small probability of being at r> 1 A. 
(See Fig. 1.) 

8 

6 wId 
"iT 

4 

2 

o· ·4 

-14 

FIG. 2. Spherically symmetrical cavity potential w (r) for 
C2H6 hydrate. 2: Kihara, 3: LJ 12-6. 

6N. Ockman, Advan. Phys. 7,199 (1958). 
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4 

3 wlr) 
liT 

2 

0·2 0'2 0·6 '4 

rIll 
-I 

-2 

-3 

FIG. 3. Spherically symmetrical cavity potential w (r) for N2 
hydrate (parameters as in Fig. 9).1: LJ 28-7, 2: Kihara, 3: LJ 
12-6. 

Thus the motion of the molecule is quasivibration 
combined with rotation mainly around the center. 
This rotation is therefore not expected to be hindered. 
If, on the other hand, the cage potential had a much 
wider bowl, a molecule would have wandered too near 
the wall with a complicated tumbling motion. The 
result of this would show up as a strong change in the 
rotational partition function as compared to that of 
an unrestricted rotator. It then appears that no im­
provement in the theory of van der Waals and Platteuw 
can be expected2

•
3 from considering the restricted rota­

tion of a diatomic molecule near the walls of the cavity, 
simply because the molecule is hardly ever there. Alder 

12 . 

10 

8 

6 l't!rl 
kT 

4 

2 

1·0 0·2 (}2 "0 

-2 

-14 

8 

6 

4Wl 
2 

0·2 0'2 

-2 

-4 

-6 

-8 

-10 

-12 

-14 

FIG. 5. Spherically symmetrical cavity potential w (r) for CO2 

hydrate (parameters of Fig. 1).2: Kihara, 3: LJ 12-6. 

suggested that the previous theory may have been 
improved by this consideration. 

We now examine a few intermolecular potentials 
and see if the discrepancy between the calculated and 
observed dissociation pressures is due to the inade­
quacy of the LJ 12-6 potential previously used.2 

A. Lennard-Jones 12-6 Potential 

Van der Waals and Platteuw chose the LJ 12-6 
potential, 

(8) 

to describe the interactions in the cavity. This two­
parameter potential, with EO the potential minimum and 
To its position, does not depend on the shape and size 
of the interacting molecules. 

With this potential they2 obtain dissociation pres­
sures in very good agreement with experiment for the 
monatomic gases xenon and krypton (see Table I). 
The dissociation pressure of argon hydrate is a special 
case since the empirical intermolecular potential param­
eters for the lattice molecule are chosen so that the 

440 

To 360 

.. 
~"280 

• • 20 

120 

40 

0 
0·' '·0 

rCA) 

FIG. 4. Spherically symmetrical cavity potential w (r) for C2H. FIG. 6. Boltzmann probability factor vs r (distance from cen-
hydrate (parameters of Fig. 10). 1: LJ 28-7, 2: Kihara, 3:LJ 12-6. ter of cavity), C2H6 hydrate. (LJ 12-6) 
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2950 V. McKOY AND O. SINANOGLU 

calculated dissociation pressure agrees exactly with 
experiment. For CH4 hydrate the calculated dissocia­
tion pressure is less than the experimental value but 
still in satisfactory agreement (Pobs=26 atm; P ca1c= 
19 atm). However, this potential (LJ 12-6) gives low 
dissociation pressures for the hydrates of C2H6, C2H4, 

CO2, N20, and even for the diatomic molecules N2 

and O2. 
The interaction between a single water molecule in 

the lattice and one of these solute molecules, e.g., 

N2, C2H6, and even CH4, is noncentral; the noncentral 
part gets partly smoothed out when the potentials of 
all the H20 molecules in the cell wall are added up, 

because the cell is very nearly spherical and the solute 

is confined pretty much to the center. Nevertheless, a 
more realistic potential would still take into account 

the shape-dependent effective size of the molecule 
after cell averaging. The resulting cell potential is then 
expected to have a narrower bowl which should lead 
to a smaller free volume and higher dissociation pres­

sures [See Eq. (1)]. 

B. Kihara Potential 

Consider first the Kihara potentiaU This potential 
assigns a core to each molecule. It therefore includes 
the effect of the finite size of the molecules on their 

interaction. This potential gives second virial coeffi­
cients in good agreement with experimental values7 

for many gases, e.g., those of rodlike molecules N2, O2, 
C2H6, C2H4, CO2, and has been successfully used in 

calculating cohesive energies and lattice constants for 
crystalline N2, CO2, and C2H4.8 

The core of a homopolar diatomic molecule is de­

fined as the line segment between the nuclei. The core 
of other molecules may be specified in a similar way, 
e.g., the 0-0 distance in CO2, the C-C distance in 
C2H4 or C2H6, and a spherical core for CH4.9 

The energy of interaction <I>(p) between two such 

molecules is then assumed to be of the LJ 12-6 form. 
However the argument of <I> is now taken to be the 

shortest distance between molecular cores, 

with e the potential minimum and Pm its position. 
We now consider two cases in particular (i) a mole­

cule with a thin rod core of length I, e.g., N2, C2H6, 

interacting with a point molecule of core length zero 
([=0), (ii) a molecule with a spherical core, e.g., CH4 

of radius a interacting with a "point molecule" ([=0). 
The thin rod or spherical core molecule will represent 
the solute molecule in the cavity while the point mole­
cule represents the water molecule in the lattice. The 

7 T. Kihara, J. Phys. Soc. (Japan) 6, 289 (1951). 
8 T. Kihara, J. Phys. Soc. (Japan) 14, 247 (1959); 16, 627 

(1961) . 
9 A tetrahedral core is more obvious, but for CR. a spherical 

core is satisfactory. See F. Danon and K. S. Pitzer, J. Chern. Phys. 
36, 425 (1962). 

water molecule is assigned zero core length for this 
reason: in its interaction with a solute molecule the 
oxygen atom of the water molecule plays the dominant 
role. As far as the nonpolar part of the potential is 
concerned we thus neglect the shape effects of H20's. 
(Effect of water dipoles on the potential is examined 
in a later section.) To a good approximation atoms can 
be assigned a core 1=0.10 Also, all the intermolecular 
parameters for the lattice molecule are fixed empirically, 

i.e., eo and ro for the LJ 12-6, and eo, Pm, and I for the 
Kihara potential. With this empirical procedure, 

along with the good agreement obtained for krypton 
and xenon hydrates with LJ 12-6 (for 1=0 the Kihara 
potential reduces to the LJ 12-6), we take 1= 0 and 

fix e and Pm rather than fix all three parameters. 
We now obtain the equations of the Lennard-Jones­

Devonshire cell theory for these model systems. Con­
sider a thin rod of length I with center at a distance R 
from a point (the lattice molecule). The shortest 

distance between molecular cores P is the distance from 
this external point to a point on the surface of a hemi­
sphere which the near end of the thin rod molecule 
sweeps out as it rotates. With if; and cp orienting the 
rod, b= 1/2, we average Eq. (9): 

(<I>(R, b) )AV= (<I>(R, if;, cp, b) )AV 

= e(PmI2 (11 pl2 )AV- 2Pm6 (11 p6 )Av) , (10) 

< ~> =~j" j" sinif;dif;dcp(R2+b2)-nI2 
P A, 211" 0 0 

X[1-2Rb(R2+b2)-1 sinif; sincp]-nI2. (11) 

Expand the last term in the integrand and integrate 
term by term 

(<I>(R, b) )AV= eI)n[PmI2 (anl Rn+12) - Pm6 (,Bnl Rn+6)], 
n=O 

(12) 

where an and ,Bn are constants. The series is infinite 
but converges rapidly for b«R. The first term in the 
series has the ordinary LJ 12-6 form. 

Equation (12) is a quasispherical approximation, 
for we have removed all angular dependence. It does 
depend, however, on the molecular size through b=!l, 
and on shape through its derivation. 

We now look at such a rodlike molecule located a 
distance r from the center of a gas hydrate c3;vity. 
Equation (12) describes its interaction with one of the 
lattice molecules. Summing this interaction in the 
usual manner4 we obtain the spherically symmetrical 
potential w(r), 

ZEj2"j" w(r) = A- <I>(R, b) sin8d8dcp, 
"rIr 0 0 

(13) 

10 For argon see T. Kihara and S. Koba, J. Phys. Soc. (Japan) 
9, 608 (1954). 
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(J and cp now locate the molecule in the cavity and z is 

the number of nearest neighbors. 
Substituting Eq. (12) into Eq. (13) we obtain 

w(r) = ~E ?;(bla) { in~~~) - gnA:~Y)], (14) 

where in and gn are constants, y= (rla)2, 

a= (aIPm).3 

J.'n(Y) = 1/Y{(1_;l)n+1O (1+;l)n+1O], 

An(Y) = 1/Y{(1_~l)n+4 - (1+~!)nHl 

and 

(15) 

(16) 

This is a convenient series in bl a (ratio of half-core 
length to cavity radius) for the spherically symmetrical 

potential in the cavity and reduces to that obtained 
by starting from the LJ 12-6 potential if 1=0. 

For the case of a solute molecule with a spherical 
core of radius c, we obtain, instead of Eqs. (12) and 

(13), 

[ 
Pm12 2Pm6 ] 

<p(R, c) = E (R-c)12 - (R-c)6 ' (17) 

w(r) = ZE(~{ 1 
2 lOallr [1-(rla)-(cla)Jo 

1 } Pm12C 

- [1+(rla)-(cla)Jo +l1a12r 

X{[1_ (rla)1_ (cla)Jll - [1+ (rla)1_ (cia) Jll} 

Pm
6 {1 1} 

2a5r [1- (ria) - (cia) J4 [1+ (ria) - (cia) J4 

2;'';([1_ ('/.)1_ (c/.)]' [1+ ('I a) 1_ (clan)) 
(18) 

Putting Eq. (14) or Eq. (18) into Eq. (2), we 
evaluate first the configurational partition function 
and then the dissociation pressures for the gas hydrates 
of N2, O2, C2H4, C2H6, CO2, N20, and CH4• 

C. LENNARD-JONES 28-7 POTENTIAL 

Hamann and Lambertll have shown that a Lennard­

Jones 28-7 potential suitably describes the interaction 
between two quasispherical molecules: 

<p(r) = EmI3[(ro/r)2L4(ro/r)7]. (19) 

They obtained the energy of interaction between 
two such quasispherical molecules by summing the 
individual atomic interaction energies and averaging 

11 S. D. Hamann and J. A. Lambert, Australian J. Chern. 7, 
1 (1954). 

the resulting potential over all orientations. The inter­

action between two atoms, one in each of the mole­
cules, is described by the LJ 12-6 potential, Eq. (8). 
The resulting expression is not suitable for computa­
tions but a LJ 28-7 potential is a good fit to the curve 
for the total interaction. The equations of the cell 
theory for this potential are given in reference 11. 

So far our model for the solute molecule, e.g., N2 is a 
freely rotating one that spends most of its time close 
to the center of the cavity. In its interaction with a 
lattice molecule a rotating dumbbell 3-5 A away from 

the lattice, should appear quasispherical. We then use 
this quasispherical LJ 28-7 potential to describe the 

force field in the cavity. The resulting dissociation 
pressures have only a qualitative meaning for two 
major reasons. We discuss the first below and the 
second in the next section. 

The averaging used to obtain a quasispherical ap­
proximation starting from the Kihara potential is 
conceptually equivalent to that used by Hamann and 

LambertY Our averaging is done explicitly for the 
two cases, (1) a rodlike molecule interacting with a 
point molecule, (2) a "spherical-core" molecule inter­
acting with a point molecule. The LJ 28-7 potential 

was derived explicitly for the interaction between two 
quasispherical molecules. In the cavity a point molecule 
interacts with a quasispherical one. The quasispherical 
potential, Eq. (12), is therefore better suited to the 
interactions in the gas hydrate cavities. 

The LJ 28-7 potential will be steeper than the quasi­
spherical approximation, Eq. (12). We look at a quasi­
spherical molecule as made up of a central atom joined 
to some peripheral atoms. In the interaction of two 

such quasispherical molecules the contribution from 
the interaction between peripheral atoms in different 
molecules is the steepest. For a given separation be­
tween centers of these molecules, the peripheral atoms 

approach one another quite closely. 
It should be mentioned that the averaging used in 

deriving the LJ 28-7 potentialll from individual atomic 
interactions is not strictly correct. In averaging the 
interaction between a central atom, A, in one quasi­
spherical molecule, say AB4, and the peripheral atoms 
Blo 0 0 B4 in the other, only the interaction between 

central atom A and one of the peripheral atoms 
Blo 0 0 B4 can be averaged independently of molecular 

geometry. Fixing one of the "B" atoms BI(bl(JI~I) 

(b= bond length), completely determines the location 
of the other three shell atoms B2, B3, B4. The integra­
tion over ~I, (JI is independent but those over, e.g., 
((J2~2), ((J4~4) are not since, e.g., (J2 is a function of 
(01~1)' We do not have eight independent variables 
(0100 

0 ~4)' In their integrations Hamann and Lambert 
treat all the angular variables as independent. The 
correct averaging can be carried out with the use of 
Gegenbauer polynomials.12 However, the two methods, 

12 See, for example, O. Sinanoglu, J. Chern. Phys. 30, 850 
(1959) and R. Balescu, Physica 22,223 (1956). 
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TABLE II. Potential parameters for calculating lattice-solute 
interaction by the geometric mean and hard sphere approximation 
for LJ 12-6." 

Gas ro (A) folk (OK) 

Ar 3.83 119.5 

Kr 4.13 166.7 

Xe 4.57 225.3 

CH4 4.28 142.7 

02 3.88 118.0 

N2 4.15 95.1 

CO2 4.57 205 
5.04 189 

CJI4 5.08 199 

C2He 4.44 243 

N20 b 4.67 205 
5.15 189 

CF4 5.28 152 

H2O. 2.80 167 

" J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory o/Gases 

and Liquids (John Wiley & Sons, Inc., New York, 1954). 

b See the section on parameters for intermolecular potentials, this article. 

• J. H. van der Waals and J. C. Platteuw. Advan. Chern. Phys.2, (1959). 

one including the geometry of the molecule the other 
neglecting it are equivalent in our case. This is only so 
because of the spherical symmetry of the enclosure in 
which the molecule is located. 

4. PARAMETERS FOR THE INTERMOLECULAR 
POTENTIALS 

The calculated dissociation pressures are very sen­

sitive to the intermolecular force constants used. 
There are different values of these parameters reported 
even for the rare gases which have been most studied, 
e.g., eo/k= 124 OK, ro= 3.84 A, eo/k= 116, ro= 3.90 A 
from viscosity data and Ejk= 120oK, ro=3.83 A; 
e/k= 122°K, ro=3.82 A, from second vi rial coefficient 
data for argon with LJ 12-6 potential,13 This range of 

values for the intermolecular force constants becomes 
larger for bigger molecules (see Tables II and III). 
This is partly due to: (i) inadequacy of the LJ 12-6 

potential to fit experimental second virial coefficient 
data over a wide temperature range with one set of 
parameters; and (ii) B(T), second virial coefficient 
data, are too insensitive to small changes in the empirical 
parameters of the potential used to calculate them. 

In Tables II to IV we list the parameters used in 
calculating the dissociation pressures. We first discuss 
those of the Kihara potential in Table III. The values 
Pm=3.40~A; e/k= 132°K and 1= 1.19 A for N2 given 
by Danon and Pitzer9 are those obtained when the 

13 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular 
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 
1954). 

quadrupole moment of N2 is neglected. They are close 
to those given by Kihara. Pitzer9 also gives values of 
these parameters when quadrupole-quadrupole inter­
actions are considered. We do not consider such effects 
as quadrupole-dipole or quadrupole-quadrupole inter­
actions. These are known to be small effects.8,14 

Four sets of parameters are listed for CO2. The set 

Pm=3.70 A; Ejk=279°K 1=2.2 A was replaced by the 

new values Pm=3.36, e/k=309°K 1=2.3 A by Kihara 
so as to fit more recent second virial coefficient data.7

,8 

We use only the new set in calculating the dissociation 
pressure of CO2 hydrate. Neglecting quadrupole­
quadrupole interactions Danon and Pitzer obtain 
parameters Pm=2.72 A, e/k=400oK and 1=3.29 A. A 
core length 1= 3.29 A is unreasonably large (the 0-0 
distance in CO2 is 2.30 A), but even with this large 

core agreement is obtained with second vi rial coefficient 
data. Including quadrupole-quadrupole interactions, 

Danon and Pitzer obtain Pm=3.42 A, e/k=270oK 
1= 1. 73 A even though the core length is now reason­

able, such a change in parameters due to quadrupole­
quadrupole interactions is unexpected since these 
interactions are known to be small.13 ,14 

TABLE III. Potential parameters for lattice-solute molecule 
by geometric-mean and hard-sphere approximation for Kihara 
potential. 

Gas 
I (A) or a (A) Pm (A) 

(core length or radius) 

N2 1.094- 3.47 
1.190b 3.40 

O2 1.10· 3.14 

CO2 2.200 3.70 
2.30d 3.36 
3.29b 2.72 

C2~ 1.34- 4.0 
1.33" 4.2 

C2He 1.541 2.59 

N20 2.31" 3.40 

CH, 0.21b 3.81 
0.32b 3.35 
0.30i 3.39 

CF, O.72 i 3.22 

o T. Kihara, J. Phys. Soc. (Japan) 6, 289 (1951). 

b F. Danon and K. S. Pitzer, J. Chern. Phys. 36, 425 (1952). 

• T. Kihara and S. Koha, J. Phys. Soc. (Japan) 9, 608 (1954). 

E/k (OK) 

124 
132 

153 

279 
309 
400 

266 
256 

609 

309 

178 
205 
204 

291 

d T. Kihara, Rev. Mod. Phys. 25,831 (1953). These parameters replaced those 

in reference a for CO,. 

" S. Koha, J. Phys. Soc. (Japan) 16, 627 (1961). 

f Present work. 

" Obtained by adjusting those of Co. (reference d) with theorem of corre­
sponding states. 

h Present work. 

i D. R. Doulsen, Symposium on Thermophysica/ Proper/its (Academic Press 

Inc., New York, 1962). 

14 B. J. Castle, L. Jansen, and J. M. Dawson, J. Chern. Phys. 
24,1078 (1956). 
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For CIL Pitzer and Danon obtain Pm=3.82 A, 
€/k= 175°K, a (radius of spherical core) =0.21 A. This 

core appears to be too small as a core of this radius 
does not contain much of the polarizable electron 
density. With a tetrahedral core formed by the mid­
points of the C-H bonds of CH4 Kihara obtains good 
agreement with second virial coefficient data. l

• As an 
improved spherical core we choose a sphere inscribed 
in the cube formed by this tetrahedral core. 

For the LJ 28-7 potential we use two sets of param­
eters. First the constants were chosen to be the same 
as those of the LJ 12-6. The true parameters for the 
LJ 28-7 will certainly be different from those of the 
LJ 12-6. The dissociation pressures calculated with 
these parameters have only a qualitative meaning 

showing the effect of the shape of the potential well on 
dissociation pressures since these dissociation pressures 

are quite sensitive to minimum parameters (ro, EO). 
The second set of constants is those obtained by 

fitting the second virial coefficients to the theoretical 
LJ 28-7 curvell (Table IV). The potential well elk so 
obtained is about twice as deep as those of the LJ 12-6 
or Kihara potentials. Such a well depth is unrealistic, 

particularly for the monatomic gases and the diatomics 
N2, O2, for which any change from the LJ 12-6 well 
depth cannot be large. These values of Em for the LJ 
28-7 potential come out so large for the following 
reason. The parameters rm and elk were determined by 

fitting the theoretical curve for B(T) vs log (kT/E) 
at different rm to a graph of the experimental B(T) 
vs T. For the first six gases listed in Table IV this 
fitting was done mainly around the Boyle temperature. 

TABLE IV. Potential parameters for calculating lattice-solute 
interaction by the geometric mean and hard sphere approximation. 
(LJ 28-7)." 

Gas Tm (1) Em/k (OK) 

Ara 3.36 240 

Kr 3.48 340 

Xe 3.88 470 

CH4 3.63 310 

N2 3.64 190 

O2 3.42 240 

CO 3.69 200 

CF4 4.63 315 

H20b 2.70 338 

as. D. Hamann and J. A. Lambert, Australian J. Chern. 7, 1 (1954). 

b Present work. 

Ili Figure 1 of reference 9 shows Kihara's B (T) second virial 
coefficients vs T lying below the experimental values. This refers 
to a core identical to the nuclear framework of CH4. Kihara8 re­
placed this core by the one above, giving good agreement with 
experiment. 

Second virial coefficients around the Boyle tempera­
ture for gases Argon, O2, N2( T~3000K) are deter­

mined mainly by the attractive part of the potential. 

Out in the attractive region, e.g., r= 2ro, the total 
potential <I>(r) is given mainly by the second terms of 
Eqs. (8) and (19) 

LJ 12-6 <I>(r) = -2Eo(ro/r)6, (20) 

LJ 28-7 <I>(r) = -!Em(rm/r) 7. (21) 

But in this region an inverse 6 potential c/rS should 
be close to the true potential-energy curve for a point 
molecule and approximately so for N2, O2 or CH4• A 
satisfactory potential should go over to an inverse 6 
potential at large enough r. The Kihara potential 

satisfies this condition, but the LJ 28-7 does not. This 
wrong "asymptotic" behavior affects Em as follows: at 

r~2ro choose Em SO that 

<I>(LJ 28-7)r-v<l>(LJ 12-6). (22) 

For Argon and O2, Em~1.8EO. This is only an order of 
magnitude argument but agrees well with the values 
given in Tables I and II, where Em~2Eo. 

The most convenient method of fixing parameters 

rm and E/k for a lattice molecule is that used by van 
der Waals and Platteuw.2 They take ro equal to the 
van der Waals radius of the oxygen atom, 2.8 A. This 

is close enough to the ro value of the Stockmayer po­
tential for H20-H20 interaction ro=2.82 A.13 (elk)H20 
is then chosen so as to obtain agreement between calcu­
lated and experimental dissociation pressures for argon 
hydrate using the LJ 12-6 potential. These values of 
ro and Eo/k for the lattice molecule are then used in the 
calculations on the other gas hydrates along with com­
bining rules for parameters, i.e., the hard-sphere 

rAB= (rA +rB) /2 and geometric-mean EAB= (EAEB)1 
approximations. 

For the Kihara potential the lattice molecule is 
assigned zero core length (1=0). The Kihara potential 
then reduces to the LJ 12-6 potential and hence the 

parameters of the lattice molecule are the same in the 
two potentials. This equivalence for 1=0 and the com­

bining rules PAB= (Pa+Pb)/2 and €AB= (EAEB)i have 
been shown to be true for the Kihara potential. lO 

For the LJ 28-7 potential we selected Em (LJ 28-7)r-v2 
(LJ 12-6) for the lattice molecule since this is the case 
for the parameters listed by Hamann and Lambertll 

(Tables II and IV). (rm) lattice is then fixed so as to ob­
tain agreement between calculated and experimental 
dissociation pressures of the argon hydrate. 

Van der Waals and Platteuw2 include only the repul­
sive and dispersion forces in the interaction between 
solute and lattice molecules. All the solute molecules 
have zero dipole moment but the lattice molecule has 
a dipole moment J.lb= 1· 83.10-18 esu. For the interaction 
between a nonpolar molecule, polarizability aA, and a 
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:5 I 2 

-1'0 

FIG. 7. Potential-energy curve for CO2-single lattice molecule 
interaction. Well depth is Elk of Kihara potential. 1: LJ 28-7 
(parameters of Table I), 2: Kihara (Pm=3.36 A, Elk=309°K), 
3: LJ 12-6 (ro=4.57 A, Elk=205°K). 

polar molecule, dipole moment Jlb we can write13 

.p(r) = (~a~b) l[ (r 00/ r) 12_ 2 (r 00/ r) 6J- aAJlNr6, (23) 

roo= (ra+rb)/2, (24) 

with ra and rb the position of the potential minima and 

~a, ~b their depths in the ordinary LJ 12-6 potential 
[Eq. (8)]. Equation (23) can be put into the 12-6 

form l3 

.p(r) = (~oo')[(roo/r)12-2(rool/r)6J, (24) 

~ab'=7]2(~a~b)!, (25) 

rab' = (1/7]1/6)rab, (26) 

7]= 1 +aaJlb2/[2ra3rb3(~a~b)lJ. (27) 

The parameter that van der Waals determined 

empirically is ~oo' and not ~ab= (€a~b)!. For argon hy­
drate they2 chose ra=3.83 A. With rb (lattice mole­
cule) = 2.8 A, rab= 3.3 A. Again this quantity is not 
rab but rab'. Interpreting these parameters correctly 
we have recalculated some dissociation pressures. The 
dissociation pressures calculated in these two approxi­
mations will be in better agreement the closer its 7] 

value [Eq. (27) J is to 7] (argon). Ethane has a polariza­
bility a=4.40XlO-24 cm3 compared to a (argon) = 
1.63X 10-24 a(N2) = 1.74 X 10-24 ; £1'(02) = 1.57X 10-24 ; 
a(C02) = 2.65X 10-24 cm3

• The new dissociation pres­
sure for ethane is 0.89 atm compared to 1.1 atm given 
by van der Waals. 2 Such a small change is expected 

since the third term [Eq. (23)J is only about 8% of the 
second and assuming 7] (C2H6) ~7] (Argon) already 
takes part of this into account. 

5. RESULTS 

Table I summarizes the results obtained with the 
three different potentials. The cell theory with the 

LJ 12-6 potential predicts good dissociation pressures 
for krypton and xenon. Empirical lattice parameters 
are fixed to make the calculated and experimental 
dissociation pressures for argon hydrate agree exactly. 
The LJ 12-6 potential gives a reasonable result for 

CH4 hydrate, but the calculated dissociation pressure 
is below the experimental (Pea l e =19 Pobs=26 atm). 
The experimental dissociation pressure for CF4 is un­
reliable, reported to be approximately 1 atm.2 However 
the LJ 12-6 gives increasingly poor results for the 
hydrates of N2, O2, C2H6, N20, CO2, C2H4, the ratio 

P obs to Peale increasing from 1.5 to 10. 

With the Kihara potential we obtain improved dis­
sociation pressures for the rodlike molecules N2, O2, 

C2H6, N20, CO2 and C2H4 the improvement being least 
for C2H4. With the exception of C2H4 the ratio P obs 

to Peale now lies between 1.2 and 0.6. The Kihara po­
tential curve for one of these molecules interacting 
with a lattice molecule has a narrower bowl than does 
the LJ 12-6 (see Figs. 7 to 10). The cavity potential, 
w(r), of the Kihara potential lies above that of the 
LJ 12-6. This is a result of the repulsive forces between 
the molecules becoming important at a smaller distance 

R, than the LJ 12-6 predicts. Figure 2, w(r) for 
ethane hydrate, shows that the "point" molecule can 
wander about 0.7 A away from the center before seeing 

the same potential that the rodlike molecule sees while 
still at the center. The Kihara cavity potential w(r) 
for ethylene hydrate is not much different from that 
of the LJ 12-6. Both potentials predict low dissociation 
pressures. The intermolecular parameters for C2H4 are 
less reliable than those of C2H6• Those of C2H4 are 

determined from second virial coefficient data over a 
rather narrow temperature range. Van der Waals and 

Platteuw suggested that the low dissociation pressure 
predicted for C2H4 hydrate may be due to anisotropic 
forces caused by the 11' electrons. Such anisotropic con-

2 

. 'i' 
:5 4 R(ll 5 

-e- . 
I 
2 
3 

-0,5 

-1·0 

FIG. 8. Potential-energy curve for 02-single lattice molecule 
interaction. Well depth is Elk of Kihara potential. 1: LJ 28-7 
(parameters of Table 1),2: Kihara, 3: LJ 12-6. 
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tributions are essentially cancelled out when the po­

tentials of all the H 20 molecules in the cell wall are 

added up. (See the section on the LJ 12-6 potential.) 

The LJ 12-6 potential does not consider the shape 
and size of molecules in describing their interactions. 

We first see the consequence of this on the dissociation 

pressure of CH4 hydrate, which falls below the experi­

mental value (Table IV). With the spherical core of 

reference 9, the Kihara potential gives a dissociation 

pressure p= 13 atm, which is lower than the LJ 12-6 
value of 19 atm. We have mentioned that Danon and 

Pitzer's9 core, a= 0.21 A, appears too small and we 

selected a core of radius a=0.32 A.16 With these new 

parameters the dissociation pressure comes out equal 

to 19 atm (LJ 12-6 value also 19 atm). We do not 

expect a large size effect for CH4• With the larger core, 

a=0.32, A we obtain a higher dissociation pressure, 

3 

FIG. 9. Potential-energy curve for N,.-single lattice molecule 
interaction. Well depth is E/k of Kihara potential. 1: LJ 28-7 
(parameters of Table I), 2: Kihara (Pm=3.47 A, .jk=124°K), 
3: LJ 12-6. 

p= 19 atm. The size effect shows up quite dearly in 

this case. 

There is some uncertainty in the observed dissocia­

tion pressure of CF4 hydrate2 (approximate value = 1 
atm). The Kihara potential predicts p=0.6 atm and 

the LJ 12-6, p= 1.6 atm. 

The dissociation pressures calculated with the LJ 
28-7 potential are the least satisfactory. For the case 

where we used the same parameters as in the LJ 12-6 
potential the pressures are too high. The dissociation 

pressures are sensitive to the potential parameters 

(E/k, Tm) and the true parameters for the LJ 28-7 po­

tential are certainly not equal to those of the LJ 12-6 
(see Tables I and II). These pressures then have only 
a qualitative meaning: the effect of narrowing the po­

tential bowl on dissociation pressures, i.e., going from 

LJ 12-6 to LJ 28-7. 
With parameters given by Hamann and Lambert,ll 

16 This choice turns out to be quite close to 0.30 A, Table III, 
obtained by D. R. Douslin, Symposium on Thermophysical 
Properties (Academic Press, Inc., New York, 1962). 

FIG. 10. Potential-energy curve for C2H,-single lattice molecule 
interaction. Well depth is E/k of Kihara potential. 1: LJ 28-7 
(parameters of Table I), 2: Kihara (Pm=4.0 A; ./k=266°K), 
3: LJ 12--6. 

i.e., the set derived by fitting second virial coefficients 

to the theoretical 28-7 curve, the dissociation pressures 

are too low. The depth of the potential well E/ k in this 

case is about twice that of the LJ 12-6 or Kihara po­

tentials and seem to be in error.17 These large values 

of f/k lead to larger free volume integrals and hence 

lower dissociation pressures. 

In order of steepness of the potential bowls we have 

(see Figs. 7 to 10): (1) LJ 28-7, (2) Kihara, (3) LJ 
12-6. We have already given reasons why the LJ 28-7 

potential is expected to have too narrow a bowl for 

the interaction between a quasi spherical molecule and 

a "point" molecule. 

Table V gives the occupation numbers Yl and Y2, 
[Eq. (1)], for some hydrates. These numbers are pro­

portional to the probability of finding a molecule in 

cavities of radii al and a2. 

Calculated dissociation pressures are sensitive to the 

TABLE V. Occupation numbers (YI, Y2) for some hydrates. 

YI Y2 
Hydrate LJ 12-6" Kihara LJ 12-6" Kihara 

O2 0.821 0.821 0.839 0.839 

N2 0.810 0.843 0.845 0.843 

CO2 0.786 0.528 0.861 0.879 

C.H, 0.523 0.740 0.879 0.852 

C2H6 0.837 0.860 0.827 0.818 

• J. H. van derWaals and J. C. Platteuw, Advan. Chern. Phys. 2,1 (1959). 

17 See the section, "Parameters for Intermolecular Potentials," 
This article. 
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TABLE VI. Effect of varying the empirical parameters (ro, Eolk) 
of water molecules in the lattice on calculated dissociation pres­
sures (LJ 12-6). 

ro changed from No change Eolk changed from 
Gas 2.& to 2.7 A in (ro, EO) 167 to 187°K 

N2 110 atm 90 65 

C2H6 1.61 1.0 0.6 

C2H. 0.58 0.58 0.24 

empirical parameters of the intermolecular potentials. 
Those of the solute gases are determined from second 

virial coefficient data. f/k and '0 for the water molecule 
in the lattice are chosen so as to obtain agreement 
between calculated and observed dissociation pressures 

of argon hydrate. In Table VI, we show the effect of 

small changes in these flk and '0 (lattice parameters) 
on dissociation pressures. A 4% decrease in '0 of the 
lattice changes the dissociation pressures by factors of 

1.2 to 1.6 while a 13% increase in folk does likewise 

by a factor of 1/2 to 2/3. 

6. DISCUSSION AND CONCLUSIONS 

With dissociation pressures as a criterion we conclude: 
(1) LJ 12-6 potential is satisfactory for the hydrates 
of the monatomic gases and C~; (2) for the rodlike 
molecules, N2, O2, C2H4, C2H6, N20, CO2, the Kihara 
potential is more suitable; (3) the LJ 28-7 is the least 
satisfactory whether (a) we use the same parameters 

for the LJ 28-7 potential as in the LJ 12-6, or (b) the 
experimental well depthsll Elk obtained separately 

which are unrealistically large. The LJ 28-7 potential 

is steeper than the actual potential curve for the inter­
action of a quasispherical molecule and a point molecule 

would be. 
The effect of molecular size shows up strongly in the 

dissociation pressures of C2H6, CO2, N20, etc. With a 
more realistic model for the interacting molecules the 
Kihara potential yields an improved force field for 
the gas hydrate cavities. From Figs. 7 to 10 the bowl of 

the Kihara potential lies below that of the LJ 28-7 

(with same parameters as the LJ 12-6) but above that 
of the LJ 12-6. The Kihara potential then gives a 
smaller configurational partition function than the 

LJ 12-6 and hence higher dissociation pressures. 
The failure of previous theory2 had been attributed 

to two reasons2
,3 (i) failure of the central field point 

molecule approximation for the cavity potential, and 
(ii) restricted rotation of the molecules in their cavities. 
We also investigated (iii) the effect of possible distor­
tions of the lattice by the solute molecule. One sees 
that: (1) to a good approximation, lattice distor­
tions are not significant, (2) the molecule is con­

fined pretty much to the center of the cage and does 
not collide with the wall (i.e., no hindered rotation or 
"tumbling"). A small barrier to internal rotation may 

still be present but such a barrier would be observable 
at low temperatures. IS With the molecule around the 

center of the cavity the main improvement comes from 
the use of the Kihara potential which remedies the 

LJ 12-6 potential by taking into account the size and 

shape of the molecule. This gives improved dissociation 
pressures. The dissociation pressures are sensitive to 
intermolecular parameters; nevertheless, a comparison 
of the Kihara and LJ 12-6 potentials is meaningful be­
cause the experimental parameters of both potentials 
have the same reliability. They are determined from the 
same second virial coefficient data. Therefore with the 
molecule being mainly around the center of the cavity, 
which is nearly spherical, a large barrier to internal 

rotation is very unlikely. 
With some care, the calculation of dissociation pres­

sures can be used as a sensitive test for selecting inter­

molecular force constants. Table VI shows the sensitive 

dependence of dissociation pressures on force constants. 
The parameters of this paper may be very useful in 
estimating thermodynamic properties of gaseous mix­
tures, e.g., C2H 6-H20. 

18 N. G. Parsonage and L. A. K. Staveley, Mol. Phys. 3, 59 
(1960) found no barrier in quinol clathrate of CH. hydrate since 
(i) lattices of both clathrates are hy:drogen-bonded structures 
(ii) cavities have same radii (a=3.95 A). 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

131.215.248.200 On: Sat, 17 Oct 2015 03:41:25


