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Abstract—A theory of double-chirped mirrors (DCM’s) for
dispersion compensation in ultrashort pulse laser sources is pre-
sented. We describe the multilayer interference coating by exact
coupled-mode equations. They show that the analysis and synthe-
sis of a coating with a slowly varying chirp in the layer thicknesses
can be mapped onto a weakly inhomogeneous transmission line
problem. Solutions of the transmission line equations are given
using the WKB-method. Analytic expressions for reflectivity and
group delay are derived. The solutions show that the main
problem in chirped mirror design is the avoidance of spurious
reflections, that lead to Gires–Tournois-like interference effects
responsible for the oscillations in the group delay. These oscilla-
tions are due to an impedance matching problem of the equivalent
transmission line. The impedance matching can be achieved by
simultaneously chirping the strength of the coupling coefficient
and the Bragg wavenumber of the mirror. An adiabatic increase
in the coupling coefficient removes the typical oscillations in the
group delay and results in broad-band mirrors with a controlled
dispersion. Finally, the mirror is matched to air with a broad-
band antireflection coating. We discuss a complete design of a
laser mirror with a reflectivity larger than 99.8% and a controlled
dispersion over 400-nm bandwidth. Using such mirrors in a
Ti:sapphire laser, we have demonstrated�30-fs pulses, tunable
over 300 nm, as well as 8-fs pulses from the same setup. A
different design resulted in 6.5-fs pulses.

Index Terms—Chirped mirrors, coatings, coupled-mode anal-
ysis, dielectric films, electromagnetic coupling, thin-film devices,
transmission line theory, WKB analysis.

I. INTRODUCTION

ULTRASHORT pulse generation has advanced to a level
where the bandwidth of standard Bragg mirrors, com-

posed of SiO and TiO quarter-wave layers, limits the pulse
width [Fig. 1(a)]. The limitation is two fold. First, due to
the limited difference in refractive index of both materials,

SiO 1.45 and TiO 2.4, the high-reflectivity band-
width of a standard quarter-wave Bragg mirror at 800 nm
is only about 200 nm. Second, the higher order group delay
dispersion (GDD) produced by quarter-wave Bragg mirrors
further limits the useful bandwidth to about 100 nm for 10-fs
pulses. The effects of the dispersion from quarter-wave Bragg
mirrors on short pulse generation has already been investigated
with CPM-dye lasers ([1], and references therein).

In a chirped mirror, the Bragg wavelength of the
individual layer pairs is varied from layer pair to layer pair
(e.g., linearly), so that longer wavelengths penetrate deeper
into the mirror structure than shorter wavelengths before
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Fig. 1. Schematic of different types of mirrors. (a) Standard dielectric
quarter-wave Bragg mirror. (b) Simple-chirped mirror. Here, the Bragg
wavelength is chirped to higher values, such that longer wavelengths penetrate
deeper into the mirror than shorter wavelengths, producing a negative GDD.
(c) DCM. An impedance-matching section and an AR-coating on top of the
mirror avoid the oscillation in the group delay.

being reflected [Fig. 1(b)]. Such mirrors show an enlarged
high-reflectivity range. However, the dispersion properties
of these mirrors were found to be inadequate for ultrashort
pulse generation [2]. Szipöcs and Krausz designed the first
chirped mirrors with an extended high-reflectivity range and
a controlled group delay [3], [4]. For 10 fs-Ti:sapphire lasers,
multiple bounces on such mirrors achieve enough negative
GDD to compensate for the positive dispersion in the laser
crystal, without any additional use of prism pairs [5]. Even
fused quartz prism pairs generate too much higher order
dispersion for sub-10-fs pulse generation [6]. Chirped mirrors
are also beneficial for the compression of high energy pulses,
because they produce high dispersion with little material in
the beam path, thereby avoiding nonlinear effects in the
compressor [7]. Thus, the design of these mirrors is extremely
important for the further development of ultrafast laser physics.

It turns out that the simple picture of a chirped mirror,
as presented in Fig. 1(b), is not true. Using standard transfer
matrix analysis of the multilayer structure, one observes that
the group delay produced by such a chirped mirror does
not vary linearly with wavelength, as one would expect
for a mirror with linearly chirped Bragg wavelength. The
average of the group delay shows the expected tendency
to increase linearly with increasing wavelength. However,
it also exhibits strong oscillations (Fig. 2, dotted lines) [2].
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Fig. 2. Reflectivity and group delay for a mirror which is linearly chirped
in the Bragg wavenumber, as described in Fig. 6. The upper plot shows an
enlarged view of the top 1% of the reflectivity. The dotted lines show the
results for a simple-chirped mirror (i.e., impedance is not matched). The
dashed and solid lines show results for a DCM, where both the Bragg
wavenumber and the thickness of the high-index layers are chirped. The
dashed and solid lines represent the case of linearly and quadratically chirped
high-index layers, respectively, as described in Fig. 7.

The cause of these oscillations is the following. Longer
wavelengths have to pass the first section of the Bragg
mirror, which acts as a transmission grating for these wave-
lengths. Slight reflections in the front section interfere with
the strong reflection from the back, as in a Gires–Tournois
interferometer (GTI) [8]. The oscillations in the group delay
have an amplitude of several tens of femtoseconds, which
make these simple-chirped mirrors useless for ultrashort pulse
generation. Szip̈ocs and others eliminate these oscillations by
using special computer optimization algorithms [3]. Recently,
a semi-empirical algorithm has been presented that results
in a starting structure for computer optimization [9]. In the
case of chirped Bragg gratings, the oscillations are suppressed
by apodization of the grating [10], [11], i.e., an adiabatic
increase or decrease of the coupling in the reflected wave at
the beginning and end of the grating.

The transfer matrix calculus usually used to evaluate di-
electric multilayer coatings is easy to implement, but it gives
very little insight into how a chirped mirror works and it does
not answer the following questions. What kind of starting
structure is appropriate for computer optimization, in order
to achieve a certain group delay? How much negative second,
third or higher order dispersion can be produced with a mirror
composed of two given materials? To answer at least some
of these questions analytic insight is needed. Recently, we
have shown that coupled-mode theory, originally invented to
describe the interaction of beams propagating in weakly index
modulated media, is structurally equivalent to the transfer
matrix method for layered media composed of two different
materials [12]. In this paper, we use these results to derive a
detailed theory for chirped mirrors, which results in double-
chirped mirrors (DCM’s), as briefly described in [13]. Fig. 2
(dashed and solid lines) summarizes the effects of double
chirping. We can clearly see that, in principle, it is possible
to reduce and eliminate the disturbing oscillation in the group
delay by a sufficiently slow increase in the coupling coefficient
in the front section of the mirror. This comes at the expense

of some of the bandwidth of the high-reflectivity region, as
will be explained later.

The paper is organized as follows. In Section II, we state
the main results of [12] and clarify notation. A dielectric
multilayer structure can be thought of as a strongly inhomo-
geneous transmission line. The introduction of coupled-mode
equations transforms the strongly inhomogenous transmission
line into a transmission line with a slowly varying character-
istic impedance, as described in Section III. The transmission
line model for the chirped Bragg grating gives two stationary
Schr̈odinger equations for the equivalent voltage and current.
In Section IV, we study the solutions of these Schrödinger
equations qualitatively using WKB-solutions and derive an
explicit expression for the complex reflection coefficient of the
mirror. The expression shows that the origin of the oscillation
in the group delay is an impedance mismatch in the front
section of the mirror. This impedance mismatch and, therefore,
the oscillation in the group delay, can be eliminated, if we
chirp the coupling coefficient along with the period of the
grating [Fig. 1(c) and Fig. 2, dashed and solid lines]. In this
way, we generate DCM’s with a controlled group delay and an
extended high-reflectivity range in comparison with standard
dielectric Bragg mirrors. In Section V, we demonstrate the
use of the WKB-solutions to generate a starting structure
for a mirror with a desired group delay and a desired high-
reflectivity range. The analytic starting structure automatically
avoids internal resonances in the multilayer structure, which
might plague other mirror designs. The second matching
problem, the matching of the mirror to the air using a broad-
band antireflection (AR)-coating, is discussed in Section VI.
Based on these considerations, we have designed a broad-band
mirror with a reflectivity higher than 99.8% and a smooth
group delay over a bandwidth of almost 400 nm. As we
have demonstrated, a set of these mirrors in a Ti:sapphire
laser is appropriate for the tunability of30-fs pulses over a
bandwidth of 300 nm (700–1000 nm). Additionally, we have
used these DCM’s in the same setup for the generation of 8-fs
pulses [14].

II. DESCRIPTION OFMULTILAYER INTERFERENCE

COATINGS WITH EXACT COUPLED-MODE EQUATIONS

A multilayer coating is composed of alternating layers
with high and low refractive indices, and , respectively
(Fig. 3). In a standard quarter-wave Bragg mirror, the op-
tical thickness of each layer equals a quarter of the center
wavelength in the stopband of the mirror, i.e.,

. The analysis of such a mirror by transfer matrix
theory or coupled-mode theory and the resulting reflection
and transmission properties can be found in standard text
books. In the following, we generally call a Bragg mirror
with unequal optical properties of the individual index steps
a chirped mirror.

The coupled-mode equations for a chirped mirror are [12]

(1)
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Fig. 3. Refractive-index profile of a chirped mirror with a symmetrically
defined local Bragg period.

Here, and are the complex amplitudes of the forward
and backward propagating wave, respectively, see Fig. 3. The
coefficients in the equation are the local effective propagation
constant , the local coupling coefficient and the
Bragg phase . To describe a chirped mirror with coupled-
mode theory exactly, these coefficients have to be determined
for an actual layer structure, according to [12]

(2)

where

(3)

(4)

and

(5)

with

(6)

Here, denotes the exact detuning coefficient. The
detuning and coupling coefficients are constant within the
interval where counts the number
of symmetric index steps, see Fig. 3. is
the total length of the th index step, and is the Fresnel
reflectivity at one index discontinuity. In (2)–(5),

denote the optical phase shift in the high/low-index
layer, is the total optical phase shift, and

is the difference in the optical phase
shifts, where is the vacuum wavenumber.

In the following, we denote

(7)

as the Bragg wavenumber, because it is the wavenumber where
the strongest Bragg reflection occurs. In contrast to [12], we
define the factor by

(8)

with

for

for
(9)

where

(10)

in order to avoid complex coupling and detuning coefficients
for the case . This situation may arise when the
optical thicknesses of the high-and low-index layer are not
equal . With the definition given here, the coupling
and detuning coefficients are real quantities for all cases, but
they are discontinuous when changes from negative to
positive values. In addition, for the case , the transfer
matrix of the chirped Bragg grating resulting from a solution
of (1) differs by an overall factor from the correct
transfer matrix, where is the total number of index
steps considered. However, this factor is irrelevant for the
computation of the reflectivity and the group delay. Therefore,
we skip it.

We introduce the slowly varying field amplitudes with
respect to the Bragg phase, i.e.,

(11)

(12)

The slowly varying amplitudes for the forward and back-
ward waves obey the following coupled-mode equations, nor-
malized with respect to an index step of thickness ,
i.e.,

(13)

where is now considered to be a continuous variable.
and are the normalized local coupling

and detuning coefficients, respectively, which describe the
multilayer coating completely.

These coefficients are functions of only two independent
variables, for example and , according to (4) and (5).
Fig. 4(a) and (b) show plots of both coefficients as a function
of and . In this paper, we are interested in a correct
description of broad-band highly reflecting laser mirrors. Thus,
we will always operate at wavelengths where . Fig. 4
shows that a linearization of the coefficients aroundwith
respect to gives an excellent approximation over the range

, if the expansion coefficients are considered
to be functions of . For a chirped mirror composed of
TiO /SiO , the Fresnel reflectivity is approximately 0.25.
Since is small, we can even neglect quadratic or higher
order terms in . Then and
and we obtain

(14)

(15)
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(a)

(b)

Fig. 4. (a) Exact coupling coefficient and (b) exact detuning coefficient as
functions of� and��, which are the sum and difference phase shifts in the
high- and low-index layers. The coupling coefficient depends on both� and
��, whereas the detuning coefficient depends almost only on�.

As we can see, the detuning coefficient depends only on
. In contrast, the coupling coefficient depends on both,

and . Thus, the coupling and detuning coefficients can be
engineered independently.

III. EQUIVALENT TRANSMISSION LINE MODEL

A multilayer coating can also be considered as a strongly
inhomogeneous microwave transmission line, with variations
on a subwavelength scale. If the coupling and detuning co-
efficients vary slowly from index step to index step, the
coupled-mode equations for the slowly varying amplitudes
(13) do not show this strong inhomogeneity. Thus, we can
go backward from the coupled-mode equations to weakly
inhomogeneous transmission line equations.

We introduce the generalized voltage and current of
an effective TEM-transmission line (see Fig. 5) [15], [16],
equivalent to the forward and backward propagating waves
in the modulated medium. With

(16)

(17)

we obtain from (13)

(18)

(19)

Fig. 5. Equivalent transmission line model for the coupled-mode problem.
The reactanceX and susceptanceY change slowly along the transmission
line.

with the generalized inhomogeneous reactanceand suscep-
tance

(20)

and

(21)

that depend on the index step considered. If the Bragg grating
under consideration consists of identical index steps, the
new transmission line is homogeneous, whereas the original
problem would be strongly inhomogeneous. Of course, the
voltages and currents of the new transmission line only agree
with those of the old ones at the discrete values of. The
telegraph equations (18) and (19) can be used to derive two
stationary Schr̈odinger equations for the voltage and current.
In order to do so, we assume that the coupling and detuning
coefficients are sufficiently smooth functions of. Thus, we
think of a smoothed version of the stepwise constant coupling
and detuning coefficient over .

Elimination of the voltage or current from (18) and (19)
leads to

(22)

(23)

Here and in the following, a prime at physical quantities
denotes their derivative with respect to. The substitutions

and (24)

yield

(25)

and

(26)

with the potentials

(27)

(28)
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where

(29)

(30)

(31)

Equations (25) and (26) are Schrödinger equations with
scattering potentials and . The kinetic energy of the
incident “particle” is zero. These Schr¨odinger equations can be
solved by standard methods known from Quantum Mechanics.
Here, we are interested in qualitative solutions to understand
the origin of the oscillation in the group delay of a mirror with
a chirped Bragg wavenumber and how to prevent it.

IV. WKB-SOLUTIONS FOR MIRRORS

A. General WKB-Solution for a Mirror

The WKB-method [17] is applicable to our problem if we
assume that the scattering potentials are only slowly
varying functions over the index steps, while the wave func-
tions and vary on the scale of . In terms of the
coupling and detuning coefficients, this condition is written as

and .
Then, the additional corrections in the potential (30) and (31)
contribute only to second order, as shown in Appendix A. We
neglect these terms in the following, because these terms lead
to effects one order beyond the usually used and well-known
WKB-solution in physical optics approximation [17]. Thus,
we are interested in the WKB-solution of

(32)

(33)

The equations for the current and the voltage are now
identical, but one has to remember that they are derived from
different equations, where we neglected the term or
The turning points of the classical motion, corresponding to
(32) or (33), are determined by the zeros of the potential

(34)

At these turning points, one of the corrections in the
potential (30) or (31) diverges. Thus, it is wise to solve the
approximate equation (32) or (33) for that quantity where the
correction to the potential is small even at the turning points.

To make the discussion more precise, we consider only
the family of generic potentials with one or two classical
turning points, to avoid internal resonances in the mirror. Such
potentials are shown in Fig. 6. The potentials shown arise if we
consider a chirped mirror that generates a negative GDD, the
case we want to concentrate on in the following. The detailed
parameters of the mirror will be discussed later. The potential
is shown for two different wavelengths, 800 and 950 nm. As
we can see, the long wavelength is reflected more deeply

Fig. 6. Scattering potentialU0 for two different wavelengths of a chirped
mirror consisting of 25 layer pairs, withnh = 2.5 andnl = 1.5. The Bragg
wavenumber is linearly chirped fromk0 = 2�/(600 nm) tokmin = 2�/(900
nm) over the first 20 index steps and then kept constant. For numerical
evaluation of the WKB-solution, the steps in the potential are linearly fitted.

inside the mirror than the short wavelength, which leads to
the negative dispersion.

From Fig. 4(a), we see that 0 for .
For a chirped mirror with negative GDD, i.e., the Bragg
wavenumber is decreasing with increasing , for a fixed
wavelength, the detuning is negative in the front section of the
mirror and increases along the mirror due to the decrease in
the Bragg wavenumber. Therefore, the right turning point
corresponds to the condition 0 and the left turning point

corresponds to 0, see Fig. 6. As discussed before, the
right turning point is a singularity in the scattering potential
for the voltage according to (30) and the left turning point
for the current according to (31). Thus, for a wave incident
from the right, we can apply the WKB-method only to the
Schr̈odinger equation for the current (33) and determine the
corresponding voltage via (19), which is not singular anywhere
in this range. For evaluation of the WKB-expressions, the
scattering potential has to be a continuous function. Thus,
for the numerical calculations, we fit two neighboring and
piecewise constant parts of the scattering potential linearly,
as shown in Fig. 6.

In Appendix A, we derive the standard WKB-solution for
the range where 0 for a highly reflecting mirror. The
result is

(35)

with

(36)

where . The frequency range of high reflectivity is
the range of interest in mirror design. Here,is the propagation
constant, where the solution has an oscillatory behavior

(37)

Then, we obtain for the current

(38)
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where

(39)

is the characteristic impedance of the inhomogeneous trans-
mission line. From (19), we obtain for the voltage

(40)

The solutions for the current and the voltage determine the
reflection coefficient of the mirror for a wave incident from
the right with respect to the point by

(41)

Here, we introduced the normalized impedancegiven by

with (42)

Note, that for the scattering potential, as illustrated in Fig. 6,
0, and therefore 1. In the WKB-

approximation, the phase of the reflected light follows from
(41) to be

(43)

and, therefore, the group delay of the chirped mirror is
generally given by

(44)

An important point to note is that the typical singularity
of the WKB-solution at the classical turning point does not
exist for the amplitude reflectivity , although the current
and voltage itself diverge at this point, because of the factor

. However, as will be discussed in Section IV-C,
this singularity occurs again in the group delay due to the
derivative of and with respect to the wavenumber. These
singularities could be avoided by using the exact solutions
to the Schr̈odinger equations, linearized near the classical
turning points, which are the well-known Airy-functions [17].
However, this would be at the expense of transparency of the
equations. Thus, we stay with the expression derived above
for the group delay (44).

The expressions for phase and group delay show the origin
of the oscillation in the group delay arising from a simple-
chirped mirror. If the long wavelength penetrate deep into the

mirror the phase of the corresponding current wavereaches
a value of several times . Thus, the trigonometric functions
of the phase occurring in (44) lead to strong oscillations
in the group delay, because the phasedepends strongly on
frequency.

In the high-reflectivity region, the power transmission coef-
ficient of the chirped mirror is given by [17]

(45)

in WKB-approximation, where denotes the reflectivity of
the mirror.

B. WKB-Solutions for a Mirror with Matched Impedance

From (42) to (44), we find that the oscillations in the phase
and group delay vanish, if the characteristic impedance(
0) is identical to one and its derivative with respect to
vanishes, ( 0) 0, for all frequencies. This is only
achieved if the coupling coefficient and its derivative vanish
at the beginning of the mirror

(46)

(47)

The physical reason for these conditions is impedance match-
ing to the homogeneous low-index layer, where the structure
is so far embedded and where the characteristic impedance is
one due to the lack of coupling. The second condition, that
the derivative of the impedance should also vanish, means
that the coupling coefficient should be increased as slowly as
possible in order to avoid spurious reflections. Thus, we have
to increase the coupling coefficient in at least with a power
greater than 1 in order to be ideally matched to the low-index
material. Equation (5) for the exact coupling coefficient shows
that the adiabatically increase corresponds to a chirp in the
thickness of the high-index layer.

Hence, to avoid spurious reflections at the front structure of
the mirror, we have to chirp the two independent parameters
in our theory, i.e., the Bragg wavenumber for an increase of
the high-reflectivity range and the coupling coefficient for the
impedance matching. Because of the required chirping of both
parameters, we call these mirrors DCM’s. In the case of an
impedance matched DCM, the expression for the phase (43)
simplifies to

(48)

Thus, for the matched case, the phase of the amplitude
reflectivity is just two times the phase of the equivalent
current wave from the beginning of the mirror to the
classical turning point of the scattering potential. For the
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group delay and the GDD we obtain the following simple
expressions:

(49)

(50)

One has to note that the classical turning point is a function
of wavenumber. The last equality for the group delay and the
GDD holds because the integrand vanishes at the classical
turning point according to (34), i.e., 0.

C. Comparison of Exact and WKB Results

In this section, we show that the derived WKB-expressions
for reflectivity and group delay are not only of qualitative
value, but even allow for a quantitative predesign of a chirped
Bragg structure with a desired high reflectivity and group
delay. We compare exact results obtained by the transfer
matrix method with our WKB-results from the preceding
subsections for a linearly chirped dielectric mirror, in the case
of a matched and not matched impedance, respectively. The
WKB-results are obtained by using the exact coupling and
detuning coefficients from Section II and linearly fitting the
scattering potential as shown in Fig. 6. In this section, we
always consider the reflection with respect to the first SiO
layer. However, we do not take into account the index jump
to the air as the ambient medium.

Fig. 7(a) and (b) shows the reflectivity and group delay
for a mirror consisting of 25 index steps, where we have
used the constant refractive indices 1.5 and 2.5
( 0.25), which are close to the indices of the standard
dielectric materials SiO and TiO . Here, we neglect any
frequency dependence of the refractive indices. We varied the
Bragg wavenumber linearly over the first 20 index steps from

/(600 nm) to /(900 nm), according to
/19. For the last 5 index

steps the Bragg wavenumber is kept constant on its minimum
value . In all figures, the wavenumber is normalized to
the maximum Bragg wavenumber for the first index step.
Thus, in principle, the mirror is easily scalable to any desired
wavelength range. Here, we choose a range suitable for sub-
10-fs pulse generation from a Ti:sapphire laser, see [18] and
[19].

In Fig. 7(a), the dashed and dotted curves show results for
the case in which the impedance at the front of the mirror is

not matched, i.e., the coupling coefficient is nearly constant
over the whole mirror and the optical thickness of each layer
is a quarter of the Bragg wavelength corresponding to each
index step ( 0). As can be seen, the WKB-
results fit very well to the exact results in the region where
the resulting mirror is highly reflective, namely from about

0.59 1.03 (580–1020 nm). Even the group delay
shows an excellent agreement over the full high-reflectivity
range, except for the range around 0.85. At this wavenumber,
the right turning point coincides with the front of the mirror
and the group delay of the WKB-solution diverges. This
happens because the reactancevanishes at the turning point
and, therefore, the derivative of the impedancewith respect
to wavenumber in (44) leads to a singularity in the group delay.
Obviously, the high-reflectivity range of the mirror already
covers most of the fluorescence bandwidth of Ti:sapphire.
However, the strong oscillations in the group delay, with
amplitudes as large as25 fs, prevent the use of such mirrors
for ultrashort-pulse generation in the range of 50 fs or even
shorter. These oscillations arise because longer wavelengths
are reflected deep inside the mirror and they have to pass the
Bragg stack responsible for reflecting the shorter wavelengths.
The interference of the partial reflection at this stack, together
with the strong reflection from the back of the mirror, leads
to the formation of a GTI for the long wavelength. The result
is a strong periodic oscillation of the group delay well known
for a GTI.

As we have shown in the preceding subsection, if we
additionally chirp the coupling coefficient from zero at the
front of the mirror to its maximum value, we should be
able to eliminate these oscillations and we should achieve
a smooth group delay over the high-reflectivity wavelength
range of the mirror. The solid and dash–dotted curves in
Fig. 7(a) and (b) show the reflectivity and group delay for
a DCM, where the Bragg wavenumber is chirped over the
same wavelength range as before, but in addition, also the
coupling coefficient is chirped separately over the first 12
index steps. This means that the Bragg wavelength, which
is given by twice of the total optical thickness of the high-
and low-index layer of each symmetrical index step, is again
chirped from 600 to 900 nm, but the layers are far away
from quarter-wave layers in the front section of the mirror,
i.e., 0. We chirp the thickness of the high-
index layer according to
over the first 12 index steps to achieve impedance matching.
The solid line in Fig. 7(a) shows the reflectivity and group
delay, if the thickness of the high-index layer is chirped
linearly over the first 12 index steps, i.e. 1, and therefore,

(0) 0. Again, the agreement between the exact and the
WKB-results is excellent, both in reflectivity and group delay.
Of course, the new mirror shows a reduced reflectivity for
normalized wavenumbers beyond 0.96 (below 625 nm), due
to the reduced coupling coefficient at the beginning of the
structure. Now, the mirror is almost completely transmissive
for normalized wavenumbers at around 1.2 (500 nm), which is
in our case an additional advantageous side effect of the double
chirping, because, at that wavelength range the mirror should
be transparent for the pump light of the Ti:sapphire laser.
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(a)

(b)

Fig. 7. Comparison of the exact reflectivity and group delay with the WKB-results for a mirror which is chirped in the Bragg wavenumber, as described
in Fig. 6. (a) The dashed and the dotted lines show the results calculated with transfer matrix theory and the WKB-method, respectively. In these cases,
the coupling coefficient is nearly constant for all wavelengths (i.e., impedance is not matched). This leads to a broad high-reflectivity range in combination
with strong oscillations in the group delay. The solid and dash–dotted lines show the corresponding results if the thickness of the high-index layer is
linearly chirped over the first 12 index steps. In that case, the oscillations are strongly reduced at the expense of the high-reflectivity range. (b) The solid
and the dash–dotted lines show the exact and WKB-results, respectively, for a quadratically chirped thickness of the high-index layer. This resultsin a
very smooth group delay. The figure also shows the group delay derived from an approximate expansion of the WKB-solution. The dotted line shows the
zeroth-order approximation, and the dashed line shows the first-order approximation.

Note, the simple linear chirp already removed the undesired
oscillations in the group delay considerably. Nevertheless,
the oscillations are too strong for sub-10-fs pulse generation.
Fig. 7(b) shows the result for a quadratically chirped coupling
coefficient, i.e., 2, and therefore, in addition
0. However, this results in a very smooth group delay at the
expense of an additional fraction of the high-reflectivity range.

In Section VI, we discuss practical limitations for the design
of DCM’s that prevent us from the direct use of mirrors as
described in this section.

V. APPLICATION OF THE THEORY ON A DCM WITH

A LINEARLY CHIRPED BRAGG WAVENUMBER

The usefulness of the theory derived above can be further
demonstrated by application to an example. We derive an
analytic expression for the GDD of a DCM with a linearly
chirped Bragg wavenumber. We show that a mirror with linear

chirp always has the tendency to produce a positive third-
order dispersion (TOD), which has already been found [20]
but which has not yet been explained.

A. Analytic Expressions for the Dispersion of a Mirror

Generally, it is not possible to derive an analytic expression
for the GDD, due to the complexity of the propagation constant

in (50). However, to gain further insight
into the dispersion that can be generated by a given mirror,
we develop in this chapter approximate expressions for the
dispersion of a linearly chirped mirror. Therefore, we expand
the square root in a series according to

(51)

since in the interval and we take only
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the zeroth-order term for an analytic computation of the
phase properties. In Appendix B, we give the results for the
first-order correction term which is quadratic in.

Now, we further simplify the coupling coefficient (14) from
Section II by . This additional
approximation is justified if we assume that the impedance
matching section of the mirror is short compared to the rest of
the mirror. Then, most of the layers are near quarter-wave
layers for all wavelengths and, therefore, . As
shown in Fig. 4, the simplified linear approximation for the
detuning coefficient (15) around is always sufficient
for arbitrary whereas the strong dependence of the exact
coupling coefficient on will have a detrimental impact on
the results. Later on in this section, we will see that deviations
to the full WKB-solution are caused by the neglect of the
higher order terms in the sum above and the assumption of a
constant coupling coefficient. Nevertheless, the approach taken
here gives analytical insight.

Thus, for the group delay (49) we obtain to lowest order
with (15)

(52)

As we can see, the group delay in zeroth-order approximation
is given by the time delay of the light from the front of the
mirror to the classical turning point and back.

The right turning point is implicitly defined by condition
(34), which results in

(53)

if the coupling coefficient is assumed to be constant. The
linearly chirped Bragg wavenumber at the different positions
in the mirror can be written as

(54)

For this case, the classical turning point follows from (53)
according to

(55)

Hence, with (54) and (55), (52) yields for the group delay of
a linearly chirped mirror to lowest order

(56)

Using this result, the GDD follows directly to

(57)

and finally, for the TOD we obtain

(58)

B. Discussion of Results

Equation (58) shows that a linearly chirped mirror has a
positive TOD, although one might think that a linear chirp in
the Bragg wavenumber would lead to a linear group delay,
i.e., vanishing TOD. Obviously, in this case, only the classical
turning point depends linearly on the wavenumber
but the GDD shows a hyperbolic dependence. If we take the
values from the example discussed in detail in Section IV,
( 0.5, 10.47 m , 0.17 m ) the GDD
can be written as

(59)

and, for the TOD, we obtain

(60)

From these expressions, for the dispersion at 800-nm wave-
length, i.e., 0.75, we estimate the following values:

52 fs and 21 fs .
It is remarkable that, to lowest order, within our approxima-

tions, (57) and (58) do not depend on the coupling coefficient.
The coupling coefficient itself only influences the group delay
by an additive constant and, most importantly, the reflectivity
of the mirror.

In Fig. 7(b), we plotted the zeroth-order approximation of
the group delay, (56), and the first-order approximation, (B1),
given in Appendix B, in addition to the exact group delay and
the full WKB-solution. The agreement of the simplified zeroth-
and first-order expressions with the exact results is remarkably
good, and gives the right order of magnitude for the group
delay. The deviations are due to the neglect of the higher
order terms and the fact that the prerequisite of an almost
constant coupling coefficient is not fulfilled in the example of
Section IV. The reason is that for demonstration of the double-
chirp technique the impedance was quadratically matched very
slowly over the first 12 index steps. That is nearly half of the
mirror and, therefore, the assumption of a short impedance
matching section is not really satisfied. This leads to the
stronger curvature of the exact group delay in comparison to
the zeroth- and first-order approximation of the WKB-solution.
Additionally, the explicit additive dependence of (56) on the
coupling coefficient results in a critical dependence of the
absolute group delay value. In contrast, the accuracy of the
approximate GDD and TOD relative to the group delay is
better due to their independence of the coupling coefficient. To
summarize this section, although the expressions derived for
this example are not very precise, they allow for an estimate
of the desired dispersion properties of the mirror. Therefore,
they can be used to compute a good starting structure for later
computer optimization.
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Fig. 8. Influence of the different design steps on the theoretical design of a
chirped mirror. The dashed line shows the desired group delay for a particular
design problem. The dotted line represents the group delay of the analytically
predesigned mirror without an AR-coating but ideally matched to the ambient
medium. The dash–dotted line indicates the group delay of the analytically
predesigned mirror, not matched to the air. The solid line shows suppression
of the oscillations when an AR-coating is put on top of the predesigned mirror.
Also shown is the reflectivity of the 14-layer AR-coating.

VI. DESIGN OF A BROAD-BAND DCM

The design of a complete mirror is more complicated than
that which has been discussed so far. Till now the reflectivity
of the mirror was calculated with respect to a reference plane in
the first low-index layer. The structure still has to be matched
to air. The jump from air to the low-index material again
introduces a reflection and, therefore, a GTI-like oscillation in
the group delay, which makes the design useless, despite the
impedance matching structure at the front part of the mirror.
Note, that it is not possible to find an easy solution for the
matching problem to air, as described by the adiabatic increase
of the coupling coefficient. Therefore, we design a broad-band
AR-coating in order to suppress oscillations caused by these
additional GTI-like effects as much as possible.

Fig. 8 illustrates the influence of the different matching
problems on the group delay by an example. The dashed line
shows the desired group delay for a particular design problem.
Assuming, that we are ideally matched to the ambient medium,
we can design a mirror with a group delay, which follows
closely the desired group delay (dotted line). This analytic
design is nearly perfect over a wavelength range from 600 to
1000 nm. The bandwidth is limited due to the limited number
of layers and small deviations are caused by the finite length
of the thinnest layer. If we take the refractive-index jump from
air to the first layer into account, that causes a reflection of
about 4%, we end up with the dashed-dotted curve, where we
clearly see strong oscillations. If we put a 14-layer AR-coating
on top of the mirror, we obtain the solid curve. Obviously, the
oscillations are only suppressed in the wavelength range from
about 680–920 nm, in which the reflectivity of the AR-coating,

line), is low enough to suppress the GTI-effects
sufficiently. Thus, our current limitation in the theoretical
design of a DCM is given by the bandwidth of about 240
nm, over which we can easily achieve an AR-coating with a
reflectivity less than 10 .

Nevertheless, the theoretical design (solid line) is an ex-
cellent approximation to the desired design goal. This an-
alytic predesign can be used as a starting structure for a

computer optimization program which improves the design
performance, i.e., it minimizes the oscillations in the group
delay and modifies the reflectivity slightly, if necessary. Our
designs are optimized using a standard gradient method (Broy-
den–Fletcher–Goldfarb–Shanno algorithm from [21]), because
we already start from a design that is close to the design goal.

As an example, Fig. 9 shows the desired and designed
properties of a broad-band DCM after computer optimization,
as well as the measured properties of the fabricated mirror.
The desired group delay, Fig. 9(a), is exactly the group delay
shown in Fig. 8. The final mirror consists of 62 layers and
was designed to show the following properties: a reflectivity
of more than 99.8% over a bandwidth of about 400 nm
(620–1020 nm), a high transmission from 480 to 550 nm
( 3%) useful for different pump lasers (e.g. argon–ion
laser around 500 nm, frequency-doubled Nd:Yag laser at 532
nm). The deviations in the group delay from the desired values
are less than fs in the high-reflectivity region [Fig. 9(a)].
Fig. 9(b) shows the resulting GDD. Obviously, the measured
mirror properties are very close to the designed properties,
although the dispersion characteristic is extremely sensitive
on deposition errors. The precise fabrication of the mirrors
is achieved by using ion beam sputtering [22] with an active
layer control during growth [23].

Recently, similar DCM’s with much smaller oscillations in
the GDD, however, over a restricted wavelength range of
about 250 nm have been used to generate pulses as short
as 6.5 fs directly from the laser [18], [19]. In contrast, the
current mirror design is appropriate for the tunability of30
fs pulses from 700 to 1000 nm, which covers most of the
full gain–bandwidth of Ti:sapphire. Additionally, the use of
these DCM’s allows for the generation of sub-10-fs pulses
directly from the oscillator. However, the tradeoff between
broad-band tunability and smoothness of the GDD prohibited
the generation of pulses shorter than 8 fs [14]. The published
broad-band mirrors show only reflectivities of more than
99.0% over a range of 400 nm and with considerably larger
oscillations in the group delay. This allows only for tuning of
85-fs pulses over a bandwidth of less than 300 nm [24].

VII. CONCLUSION

We have presented an analytic treatment of chirped mir-
rors that is based on an exact coupled-mode theory and
WKB-analysis. The transformation to a quantum mechanical
scattering problem leads to a clear physical understanding of
how a chirped mirror works and the related design problems.
Explicit formulae for reflectivity and group delay have been
derived from the WKB-solutions. A comparison with exact
results obtained from the transfer matrix formalism shows that
the WKB-results are rather accurate in the high-reflectivity
region, which is the interesting range in the mirror design.
The WKB-solutions explain the oscillations typically observed
in the group delay as an impedance matching problem in the
front section of the mirror and the air. Matching the impedance
to the low-index layer is equivalent to an adiabatic increase
of the coupling coefficient, that leads to the DCM design
method. Application of the theory to a linearly chirped mirror
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(a)

(b)

Fig. 9. Broad-band design of a DCM. (a) Designed and measured reflectivity
and group delay. Also shown is the desired group delay. The bandwidth of
the highly reflective region is about 400 nm forR > 99.8%. The deviation
of the designed to the desired group delay is less than 1 fs over the entire
high-reflectivity range. (b) Designed, desired, and measured GDD of the
mirror. The amplitude of the oscillations of the designed GDD is less than
25–30 fs2 over the wavelength range from 620 to 1020 nm. As can be seen,
the measured data of the DCM lie closely to the designed curves.

results in simple expressions for the GDD and TOD, that are
useful for an estimation of the dispersion expected for given
chirp parameters. This is only one example that illustrates the
usefulness of the theory. Further investigations of the WKB-
solutions derived in this paper should allow for an even better
“straight forward” mirror design in the near future.

The major problem in the practical design of a DCM is the
matching of the Bragg mirror to the ambient medium (air).
Currently, we solve this problem by a broad-band AR-coating.
This might not be the optimum solution to the matching
problems involved in chirped mirror design. Thus, further
investigations are necessary to find analytical solutions for the
matching problems.

Finally, we have demonstrated the design of broad-band
DCM’s with a reflectivity of more than 99.8% and a smooth
group delay over an extended bandwidth of about 400 nm.

APPENDIX A
DERIVATION OF THE SEMICLASSICAL WKB-SOLUTION

Here, we introduce an ordering parameter in order to
derive the solution for the currentas an asymptotic expansion
with respect to this parameter. The condition of a slowly
varying potential in the semiclassical limit is then equivalent

to a rescaling of all derivatives in the Schr¨odinger equation
(33) by [25]. Thus, we obtain from (26)
with (28) and (31):

(A1)

Now, we write the solution of this equation as an asymptotic
expansion in [17], i.e.,

(A2)

For the three lowest order expansion coefficients and
after substitution of expansion (A2) into (A1), we obtain

(A3)

(A4)

(A5)

In solving the Schr̈odinger equation (A1), we assumed that the
potential has the shape as shown in Fig. 6. We further assume
that the reflectivity is high, so that we can neglect reflections
from the left turning point . Then, the semiclassical WKB-
solution for this Schr̈odinger equation can be written as

(A6)

where is an effective propagation constant and is the
phase of the current wave from the beginning of the mirror
to the classical turning point. Equation (A6) follows from
(A2) with (A3)–(A5) and by asymptotically fitting the wave
function on the left and right side of the right turning point

[17], for 1,

for (A7)

and

(A8)

with

(A9)

is a second-order correction to the phase, which is one order
beyond the standard WKB-solution. In the paper, we neglect
this additional phase shift , which means that we consider
only the zeroth-order term of the scattering potential.
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APPENDIX B
FIRST-ORDER TERMS OF THEEXPANSION

OF THE WKB-SOLUTION

With the first-order correction of the propaga-
tion constant , the first-order contributions to the group
delay and GDD are calculated in the same way as was
demonstrated in Section V. The results are

(B1)

(B2)

Thus, the complete group delay and GDD, up to first order,
are given by and with and given
in Section V.
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F. X. Kärtner acknowledges helpful discussions with Prof.
H. A. Haus. The authors greatly appreciate the fabrication of
the DCM’s at the Technische Hochschule Darmstadt by Dr.
V. Scheuer and Prof. T. Tschudi. They are also grateful to Dr.
I. D. Jung and D. H. Sutter for measuring the reflectivity and
dispersion of the DCM’s.

REFERENCES

[1] S. De Silvestri, P. Laporta, and O. Svelto, “Analysis of quarter-wave
dielectric-mirror dispersion in femtosecond dye-laser cavities,”Opt.
Lett., vol. 9, pp. 335–337, 1984.

[2] P. Laporta and V. Magni, “Dispersive effects in the reflection of
femtosecond optical pulses from broadband dielectric mirrors,”Appl.
Opt., vol. 24, pp. 2014–2020, 1985.

[3] R. Szip̈ocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multi-
layer coatings for broadband dispersion control in femtosecond lasers,”
Opt. Lett., vol. 19, pp. 201–203, 1994.

[4] R. Szip̈ocs, A. Stingl, C. Spielmann, and F. Krausz, “Chirped dielectric
mirrors for dispersion control in femtosecond laser systems,” inSPIE,
1995, vol. 2377, pp. 11–22.

[5] A. Stingl, M. Lenzner, Ch. Spielmann, F. Krausz, and R. Szip¨ocs, “Sub-
10 fs mirror-dispersion-controlled Ti:sapphire laser,”Opt. Lett., vol. 20,
pp. 602–604, 1995.

[6] M. T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and
M. N. Murnane, “Generation of 11 fs pulses from a self-mode-locked
Ti:sapphire laser,”Opt. Lett., vol. 18, pp. 977–979, 1993.

[7] S. De Silvestri, private communication, 1997.
[8] F. Gires and P. Tournois, “Interferometre utilisable pour la compression

d’impulsions lumineuses modulees en frequence,”C. R. Acad. Sci. Paris,
vol. 258, pp. 6112–6115, 1964.

[9] G. Tempea, F. Krausz, K. Ferencz, and Ch. Spielmann, “Advances in
chirped mirror technology,” presented at the Conf. Ultrafast Optics,
Monterey, CA, Aug. 3–8, 1997, paper TP-12.

[10] F. Ouellette, “Dispersion cancellation using linearly chirped Bragg
grating filters in optical waveguides,”Opt. Lett., vol. 12, pp. 847–849,
1987.

[11] P. Tournois and P. Hartemann, “Bulk chirped Bragg reflectors for
light pulse compression and expansion,”Opt. Commun., vol. 119, pp.
569–575, 1995.

[12] N. Matuschek, F. X. K¨artner, and U. Keller, “Exact coupled-mode
theories for multilayer interference coatings with arbitrary strong index
modulations,”IEEE J. Quantum Electron., vol. 33, pp. 295–302, 1997.
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