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Theory of Double-Chirped Mirrors

Nicolai Matuschek, Franz X. &rtner, and Ursula Kelletylember, IEEE

Abstract—A theory of double-chirped mirrors (DCM’s) for
dispersion compensation in ultrashort pulse laser sources is pre- [T
sented. We describe the multilayer interference coating by exact SiOp-
coupled-mode equations. They show that the analysis and synthe- Substrate
sis of a coating with a slowly varying chirp in the layer thicknesses
can be mapped onto a weakly inhomogeneous transmission line (@)
problem. Solutions of the transmission line equations are given
using the WKB-method. Analytic expressions for reflectivity and ]
group delay are derived. The solutions show that the main SiOa-
problem in chirped mirror design is the avoidance of spurious Substrate
reflections, that lead to Gires—Tournois-like interference effects
responsible for the oscillations in the group delay. These oscilla-
tions are due to an impedance matching problem of the equivalent
transmission line. The impedance matching can be achieved by
simultaneously chirping the strength of the coupling coefficient ]
and the Bragg wavenumber of the mirror. An adiabatic increase SiOz-
in the coupling coefficient removes the typical oscillations in the | Substrate
group delay and results in broad-band mirrors with a controlled
dispersion. Finally, the mirror is matched to air with a broad-
band antireflection coating. We discuss a complete design of a
laser mirror with a reflectivity larger than 99.8% and a controlled (c)
d!sperS|qn over 400-nm bandwidth. Using such mirrors in a Fig. 1. Schematic of different types of mirrors. (a) Standard dielectric
Ti:sapphire laser, we have demonstrated=30-fs pulses, tunable qguarter-wave Bragg mirror. (b) Simple-chirped mirror. Here, the Bragg
over 300 nm, as well as 8-fs pulses from the same setup. Awavelength is chirped to higher values, such that longer wavelengths penetrate
different design resulted in 6.5-fs pulses. deeper into the mirror than shorter wavelengths, producing a negative GDD.

. . . (c) DCM. An impedance-matching section and an AR-coating on top of the
Index Terms—Chirped mirrors, coatings, coupled-mode anal- pirror avoid the oscillation in the group delay.

ysis, dielectric films, electromagnetic coupling, thin-film devices,
transmission line theory, WKB analysis.
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being reflected [Fig. 1(b)]. Such mirrors show an enlarged
high-reflectivity range. However, the dispersion properties

of these mirrors were found to be inadequate for ultrashort

U LTRASHORT pulse generation has advanced to a levgljise generation [2]. Szjjes and Krausz designed the first

where the bandwidth of standard Bragg mirrors, comghirped mirrors with an extended high-reflectivity range and
posed of SiQ and TiQ; quarter-wave layers, limits the pulse; controlled group delay [3], [4]. For 10 fs-Ti:sapphire lasers,
width [Fig. 1(a)]. The limitation is two fold. First, due to myitiple bounces on such mirrors achieve enough negative
the limited difference in refractive mo_lex of bot_h_matenalsGDD to compensate for the positive dispersion in the laser
nsjo, = 1.45 andntig, ~ 2.4, the high-reflectivity band- ¢rysta| without any additional use of prism pairs [5]. Even

width of a standard quarter-wave Bragg mirror at 800 Nfyseq quartz prism pairs generate too much higher order
is only about 200 nm. Second, the higher order group delgypersion for sub-10-fs pulse generation [6]. Chirped mirrors
dispersion (GDD) produced by quarter-wave Bragg mirotge o156 peneficial for the compression of high energy pulses,

further limits the useful ban_dwidth to about 100 nm for 10-fge 5,50 they produce high dispersion with little material in
pqlses. The effects of the dispersion from quarter-wave Br beam path, thereby avoiding nonlinear effects in the

a&%%pressor [7]. Thus, the design of these mirrors is extremely
important for the further development of ultrafast laser physics.
Lo o : : . It turns out that the simple picture of a chirped mirror,

|nd|V|dL_JaI layer pairs is varied from layer pair to layer Pailg presented in Fig. 1(b), is not true. Using standard transfer
_(e.g., I|near_|y), so that longer wavelengths penetrate dee Aitrix analysis of the multilayer structure, one observes that
into the mirror structure than shorter wavelengths befo[ﬁe group delay produced by such a chirped mirror does
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1.000 . of some of the bandwidth of the high-reflectivity region, as
osos] will be explained later.

oo The paper is organized as follows. In Section Il, we state
2> o090k £ r ! I the main results of [12] and clarify notation. A dielectric
'é e R v ot el o 1 120 multilayer structure can be thought of as a strongly inhomo-
= 08 - - - - Linearly Matched 100 geneous transmission line. The introduction of coupled-mode
an)

—— Quadratically Matched ,

80 equations transforms the strongly inhomogenous transmission

line into a transmission line with a slowly varying character-
istic impedance, as described in Section Ill. The transmission
f 20 line model for the chirped Bragg grating gives two stationary
T R ! | dq Schiddinger equations for the equivalent voltage and current.
500 600 700 800 oo 1000 1100 In Section IV, we study the solutions of these Sulinger
Wavelength, nm equations qualitatively using WKB-solutions and derive an
Fig. 2. Reflectivity and group delay for a mirror which is linearly chirpecexplicit expression for the complex reflection coefficient of the
in the Bragg wavenumber, as described in Fig. 6. The upper plot shows @fjrror, The expression shows that the origin of the oscillation
enlarged view of the top 1% of the reflectivity. The dotted lines show tl . . . .
results for a simple-chirped mirror (i.e., impedance is not matched). ™ the group delay is an impedance mismatch in the front
dashed and solid lines show results for a DCM, where both the Braggction of the mirror. This impedance mismatch and, therefore,
wavenumber and the thickness of the high-index layers are chirped. Tipffa gscillation in the group delay, can be eliminated, if we
dashed and solid lines represent the case of linearly and quadratically chlr%%dlrp the coupling coefficient along with the period of the
high-index layers, respectively, as described in Fig. 7.
grating [Fig. 1(c) and Fig. 2, dashed and solid lines]. In this
way, we generate DCM’s with a controlled group delay and an
The cause of these oscillations is the following. Longeixtended high-reflectivity range in comparison with standard
wavelengths have to pass the first section of the Bragglectric Bragg mirrors. In Section V, we demonstrate the
mirror, which acts as a transmission grating for these wavigse of the WKB-solutions to generate a starting structure
Iengths. S“ght reflections in the front section interfere W|th)r a mirror W|th a desired group de'ay and a desired h|gh_
the strong reflection from the back, as in a Gires—Tourndjigflectivity range. The analytic starting structure automatically
interferometer (GTI) [8]. The oscillations in the group delayvoids internal resonances in the multilayer structure, which
have an amplitude of several tens of femtoseconds, whigfight plague other mirror designs. The second matching
make these simple-chirped mirrors useless for ultrashort puls@blem, the matching of the mirror to the air using a broad-
generation. Szipcs and others eliminate these oscillations byand antireflection (AR)-coating, is discussed in Section VI.
using special computer optimization algorithms [3]. RecentlBased on these considerations, we have designed a broad-band
a semi-empirical algorithm has been presented that resuligror with a reflectivity higher than 99.8% and a smooth
in a starting structure for computer optimization [9]. In thgroup delay over a bandwidth of almost 400 nm. As we
case of chirped Bragg gratings, the oscillations are suppresggge demonstrated, a set of these mirrors in a Ti:sapphire
by apodization of the grating [10], [11], i.e., an adiabatifaser is appropriate for the tunability ef30-fs pulses over a
increase or decrease of the coupling in the reflected wavebahdwidth of 300 nm (700-1000 nm). Additionally, we have
the beginning and end of the grating. used these DCM’s in the same setup for the generation of 8-fs
The transfer matrix calculus usually used to evaluate diulses [14].
electric multilayer coatings is easy to implement, but it gives
very little insight into how a chirped mirror works and it does
not answer the following questions. What kind of starting Il. DESCRIPTION OFMULTILAYER INTERFERENCE
Structure iS appropriate fOI’ Computer Optimization, in Order COAT|NGS WITH EXACT COUPLED‘MODE EQUATlONS
to achieve a certain group delay? How much negative secondA il ting | d of alt ting |
third or higher order dispersion can be produced with a mirror. multiiayer coating 1S composed of afternaling layers

composed of two given materials? To answer at least sow';[h high and low refractive indicesy, andny, respectively
@52
0

w60
40

s} ‘Aejeqg dnoig

of these questions analytic insight is needed. Recently, 9. 3).' In a standard quarter-wave Bragg mirror, the op-
- : ical thickness of each layer equals a quarter of the center

have shown that coupled-mode theory, originally invented . : .

. : : I . WavelengthAp in the stopband of the mirror, i.edy, - ny, =
describe the interaction of beams propagating in weakly index ) . .

L ) n1 = Ap/4. The analysis of such a mirror by transfer matrix

modulated media, is structurally equivalent to the transfﬁq} . )
matrix method for layered media composed of two different eory or coupled-mode theory and the resulting reflection

. ay P ._and transmission properties can be found in standard text
materials [12]. In this paper, we use these results to derlveD
detailed theory for chirped mirrors, which results in doubl
chirped mirrors (DCM’s), as briefly described in [13]. Fig.
(dashed and solid lines) summarizes the effects of do
chirping. We can clearly see that, in principle, it is possible
to reduce and eliminate the disturbing oscillation in the group . s .
delay by a sufficiently slow increase in the coupling coefficient a <4(z)> — <_Z§ —kKe B) <4(z) ) (1)
in the front section of the mirror. This comes at the expense 4% B(z) res p

8oks. In the following, we generally call a Bragg mirror
Swith unequal optical properties of the individual index steps

2& chirped mirror.
Uberne coupled-mode equations for a chirped mirror are [12]



MATUSCHEK et al: THEORY OF DOUBLE-CHIRPED MIRRORS

|

U

I I

I ! ~

| | A

1 | —_—
I

| | =
| | °

— : n L
[ : [
lesle 2l
1

%d I,m d h,m gd I,m

' | p4

T
! m i m+1
Zm Zm+1

m-1

199

with
In(|Fr| + F3Z—1), for|Fr|21
= V1-F3
K iarctan | Y——2 | for |Fx| < 1 ©)
| Fx|
where
1
IR = T2 (cos(¢) — 7% cos(Ag)) (10)
g

in order to avoid complex coupling and detuning coefficients
for the caseFr > +1. This situation may arise when the
optical thicknesses of the high-and low-index layer are not

Fig. 3. Refractive-index profile of a chirped mirror with a symmetricallyequal (A¢ # 0). With the definition given here, the coupling

defined local Bragg period.

and detuning coefficients are real quantities for all cases, but
they are discontinuous whehr changes from negative to

Here’A andB are the Comp|ex amp"tudes of the forwarcpositive values. In addition, for the Ca% > 0, the transfer
and backward propagating wave, respectively, see Fig. 3. TRarix of the chirped Bragg grating resulting from a solution
coefficients in the equation are the local effective propagati&h (1) differs by an overall facto{—1)" from the correct
Constantﬁ(z), the local Coup“ng Coefﬁcieng(z) and the transfer matriX, whereV € N is the total number of index
Bragg phasé(z). To describe a chirped mirror with coupled-steps considered. However, this factor is irrelevant for the
mode theory exactly, these coefficients have to be determirfe@dnputation of the reflectivity and the group delay. Therefore,

for an actual layer structure, according to [12]

pla) =5 228 L) @
where
s 2
¢5(2) I/O NG dz 3)
3y == o (sin(@) +2sn(Ag) (@)
and
(2) == Tz sin(o) ®)
with
L ny —n
= 47111 o (6)

Here, 6(z) denotes the exact detuning coefficient. The

we skip it.
We introduce the slowly varying field amplitudes with
respect to the Bragg phase, i.e.,

A =Acir()/2 (11)

B =Be#8(2)/2, (12)

The slowly varying amplitudes for the forward and back-
ward waves obey the following coupled-mode equations, nor-
malized with respect to an index step of thicknéss = 1,

i.e., dz = dm - A(2)

A (Am) _ (=8m) —s(m) (Am)Y g

dm \B(m) wm)  6(m) ) \B(m)
where m is now considered to be a continuous variable.
r(m) = kA andé(m) = §A are the normalized local coupling
and detuning coefficients, respectively, which describe the
multilayer coating completely.
These coefficients are functions of only two independent

detuning and coupling coefficients are constant within tlgriables, for example) and A¢, according to (4) and (5).

interval = € [z, 2m+1], Where(—m) € N counts the number

of symmetric index steps, see Fig. 8(zp,) = di,m + dim iS
the total length of thé—m)th index step,
reflectivity at one index discontinuity. In (2)-(5}.1 =

kny 1 dy 1 denote the optical phase shift in the high/low-inde
layer,¢ = k(ny, dy,+n1 d)) is the total optical phase shift, and
A¢ = k(ny, dy, — n1 dy) is the difference in the optical phas

shifts, wherek = (w/c) is the vacuum wavenumber.
In the following, we denote

27 ™
kg=—=—-——— 7
P78 mndy+md %

Fig. 4(a) and (b) show plots of both coefficients as a function
of ¢ and A¢. In this paper, we are interested in a correct

and is the Fresnel description of broad-band highly reflecting laser mirrors. Thus,

we will always operate at wavelengths whefex #. Fig. 4
ghows that a linearization of the coefficients arounavith
respect top gives an excellent approximation over the range

d# — 7| = /2, if the expansion coefficients are considered

to be functions ofA¢. For a chirped mirror composed of
TiO-/SiO,, the Fresnel reflectivity is approximately 0.25.
Since » is small, we can even neglect quadratic or higher
order terms in. ThenFr(¢p =7) = -1l anda(p =n) =1
and we obtain

as the Bragg wavenumber, because it is the wavenumberwheﬁrzad)’ Ag) = —2r {COS <%> 1 sin <%> (- W)}

the strongest Bragg reflection occurs. In contrast to [12], we

define the factor by

7 8)

o = sign (—FRr) ()

2 2

(14)
6<¢,A¢>=¢—w=w<kﬁ—1). (15)

B
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Fig. 5. Equivalent transmission line model for the coupled-mode problem.
The reactanceX and susceptancE change slowly along the transmission

line.

with the generalized inhomogeneous reactalicand suscep-

2 tanceY
S
1 4 i X(m) = 8(m) — n(m) (20)
S % % % 0
S g S and
YW
02 0r,
% . Y(m) =6(m) + r(m) (21)
’, //<‘
< . . .
e that depend on the index step considered. If the Bragg grating
: under consideration consists of identical index steps, the
o new transmission line is homogeneous, whereas the original
(b) problem would be strongly inhomogeneous. Of course, the

Fig. 4. (a) Exact coupling coefficient and (b) exact detuning coefficient ¥9ltages and currents of the new transmission line only agree
functions of¢ and A¢, which are the sum and difference phase shifts in thgyjth those of the old ones at the discrete valuesiof The
high- and low-index layers. The coupling coefficient depends on badimd ; ;
A¢, whereas the detuning coefficient depends almost only.on telegraph equ_z_itl_ons (18) an,d (19) can be used to derive two
stationary Schidinger equations for the voltage and current.
As we can see. the detuning coefficient depends onl Ir}] order to do so, we assume that the coupling and detuning
4. In contrast thé counlin cogefﬁcient de engs on b@t%/ @efficients are sufficiently smooth functions+af Thus, we
' ' ping . pends ' think of a smoothed version of the stepwise constant coupling
and A¢. Thus, the coupling and detuning coefficients can baend detuning coefficient over,

engineered independently. e e T current from (18) and (19)
[ll. EQUIVALENT TRANSMISSION LINE MODEL leads to
A multilayer coating can also be considered as a strongly V. X' dV
i i L : - — — - +tXYV =0 (22)
inhomogeneous microwave transmission line, with variations de X / dm
on a subwavelength scale. If the coupling and detuning co- I Y’ dl XY -0 23)
dm? Y dm ‘

efficients vary slowly from index step to index step, the

coupled-mode equat_ions for the slowly vz_;trying amplitudes Here and in the following, a prime at physical quantities

(13) do not show this strong inhomogeneity. Thus, We Cqjstes their derivative with respecta The substitutions

go backward from the coupled-mode equations to weakly

inhomogeneous transmission line equations. V=+vXV and I=VYI (24)
We introduce the generalized voltagé and current/ of

an effective TEM-transmission line (see Fig. 5) [15], [16lyield

equivalent to the forward and backward propagating waves

) : - - )
in the modulated med|um1. With _% U ()T =0 25)
V=—(A+DB) (16) m
\? and
I=—1(A-D) (17) )
v2 —d—IQ +U(m)I =0 (26)
we obtain from (13) dm
Z_V — —iX(m)] (18) with the potentials
m
Uy (m) = Us(m) + Uy, 27
dm Ur(m) =Uo(m) + Ur,1(m) (28)
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where 0.4 . . [ ;
P —— Linear Fit .
Uo(m) = —XY = I{Q — 62 (29) DO ’ m12(li0) , L ‘/rn'1 (X=0) ‘in
3 X2 1 X" - 00 : = -
UVl(m) 24 -4 (30) _g *Yolr\ - L X<<O‘Y<0 -
’ 4 X2 2 X § 02p X0Y0 N oo lout
3 Y/Q 1 Y// E<L> ol Potential for A=800 nm ""!_"‘
U[l(m)z— — — = - (31) o) 04 -
’ 4Y2 2VY £ sl Ao .
g “ s
Equations (25) and (26) are Sédinger equations with (%’ 081 =y J
scattering potentialé/;- and U/;. The kinetic energy of the ol Potential for =850 nm |
incident “particle” is zero. These Sadihger equations can be ' i
solved by standard methods known from Quantum Mechanics. ;s 0 R o = 0
Here, we are interested in qualitative solutions to understand m
the ergln of the oscillation in the group delay of a m!rror Wltn:ig. 6. Scattering potentidly for two different wavelengths of a chirped
a chirped Bragg wavenumber and how to prevent it. mirror consisting of 25 layer pairs, with, = 2.5 andn; = 1.5. The Bragg

wavenumber is linearly chirped fromy = 2#/(600 nm) tok,in = 27/(900
nm) over the first 20 index steps and then kept constant. For numerical
IV. WKB-SOLUTIONS FOR MIRRORS evaluation of the WKB-solution, the steps in the potential are linearly fitted.

A. General WKB-Solution for a Mirror inside the mirror than the short wavelength, which leads to

The WKB-method [17] is applicable to our problem if wethe negative dispersion.
assume that the scattering potentials,; are only slowly  From Fig. 4(a), we see that < 0 for |Ad| « .
varying functions over the index steps, while the wave fun&Or @ chirped mirror with negative GDD, i.e., the Bragg
tions V and I vary on the scale ofn. In terms of the wavenumber is decreasing with increasipg|, for a fixed
coupling and detuning coefficients, this condition is written a¥avelength, the detuning is negative in the front section of the
(1/k)(dr/dm) = O(e) < 1 and(1/8)(ds/dm) = O(e) < 1. mirror and increases along the mirror d.ue to thg decr_ease in
Then, the additional corrections in the potential (30) and (3 Bragg wavenumber. Therefore, the right turning peiat
contribute only to second order, as shown in Appendix A. Weorresponds to the conditioi = 0 and the left turning point
neglect these terms in the following, because these terms I&d corresponds t&” = 0, see Fig. 6. As discussed before, the
to effects one order beyond the usually used and well-knowight turning point is a singularity in the scattering potential
WKB-solution in physical optics approximation [17]. Thusfor the voltage according to (30) and the left turning point

we are interested in the WKB-solution of for the current according to (31). Thus, for a wave incident
o from the right, we can apply the WKB-method only to the

_ﬂ + UV =0 (32) Schiddinger equation for the current (33) and determine the

dm?~ corresponding voltage via (19), which is not singular anywhere

d?1 in this range. For evaluation of the WKB-expressions, the

B +Uol =0. (33) scattering potential/y has to be a continuous function. Thus,

dm?
The equations for the current and the voltage are nof\W the numerical calculations, we fit two neighboring and

identical, but one has to remember that they are derived fr(m?cewise constant parts of the scattering potential linearly,

: . as shown in Fig. 6.
different equations, where we neglected the téfyny or Uy 1, . . .
The turning points of the classical motion, corresponding t In Appendix A, we derive the standard WKB-solution for

(32) or (33), are determined by the zeros of the potential tﬂe range whereX' < 0 for a highly reflecting mirror. The

result is
= X = — = fad 1 .
to=0= b-r=0 I(m) = ——=— sin (¢:(m)) (35)
VY = §+r=0. (34) q(m)
with
At these turning points, one of the corrections in the
potential (30) or (31) diverges. Thus, it is wise to solve the r m
approximate equation (32) or (33) for that quantity where the pr(m) = i / q(m) dm (36)

vy

correction to the potential is small even at the turning points.
To make the discussion more precise, we consider onherem € [m;,, 0]. The frequency range of high reflectivity is
the family of generic potentials with one or two classicahe range of interest in mirror design. Hegés the propagation
turning points, to avoid internal resonances in the mirror. Sugbnstant, where the solution has an oscillatory behavior
potentials are shown in Fig. 6. The potentials shown arise if we -
consider a chirped mirror that generates a negative GDD, the g(m)=+/-Uy=VXY = V62 — k2. (37)
case we want to concentrate on in the following. The detailgthen, we obtain for the current
parameters of the mirror will be discussed later. The potential i —
is shown for two different wavelengths, 800 and 950 nm. As I(m) = vY sin(py) = sign(Y)
we can see, the long wavelength is reflected more deeply q 2

sin(ey) (38)
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where mirror the phase of the corresponding current wayeeaches
X R a value of several time&r. Thus, the trigonometric functions
Z(m) = Y =Vsx (39) of the phasep; occurring in (44) lead to strong oscillations
\/ \/ ;«; A

in the group delay, because the phagedepends strongly on
is the characteristic impedance of the inhomogeneous trafrequency.
mission line. From (19), we obtain for the voltage In the high-reflectivity region, the power transmission coef-
ficient of the chirped mirror is given by [17]

i dl
Vim) =5 gm
i A ) T(k)=-¢e -2 VvV Uo(m) dm
= {qcos(d)j)-i- — 51n(</)1)}. (40) () = exp < me olm) )
sign(Y") 20V 72 2
The solutions for the current and the voltage determine the = exp <—2 ' VK2 =62 dm)
reflection coefficient of the mirror for a wave incident from My
the right with respect to the point = 0 by =1— R(k). (45)
i () = A(0) _ A(0) _ V(0) +1(0) in WKB-approximation, whereR denotes the reflectivity of
B(0) B(0) V(0)-1(0) the mirror.
_ 1414z(0) 41
T — ix(0)’ (41) B. WKB-Solutions for a Mirror with Matched Impedance

From (42) to (44), we find that the oscillations in the phase
, and group delay vanish, if the characteristic impedatige =
+ = with ¢;=¢;— . (42) 0) is identical to one and its derivative with respectsio

2q 2 vanishes,Z'(m = 0) = 0, for all frequencies. This is only
Note, that for the scattering potential, as illustrated in Fig. 8chieved if the coupling coefficient and its derivative vanish
Y(0) < 0, and thereforesign(Y (0)) = —1. In the WKB- at the beginning of the mirror
approximation, the phase of the reflected light follows from Zm=0)=1 V6= x(m=0)=0 (46)

(41) to be
Z'(m=0)=0 V6= r'(m=0)=0. 47)

Here, we introduced the normalized impedancgiven by

x = Ztan(¢y)

Dry (k) = 7 + 2arctan(z(0)) (43)
_ _ ~ The physical reason for these conditions is impedance match-
and, therefore, the group delal, of the chirped mirror is jng to the homogeneous low-index layer, where the structure

generally given by is so far embedded and where the characteristic impedance is
Oy, ok O¢n,, one due to the lack of coupling. The second condition, that

Ty(h) =———F ==~ - the derivative of the impedance should also vanish, means

Jw dw Ik p ,
1 2 9z that the coupling coefficient should be increased as slowly as
- 1+ 22 Ok o possible in order to avoid spurious reflections. Thus, we have
1 9 07 - R to increase the coupling coefficientin at least with a power

=—=— {— tan (¢r) greater than 1 in order to be ideally matched to the low-index
¢cltz ok material. Equation (5) for the exact coupling coefficient shows

Z d¢r 1 0 (Z that the adiabatically increase corresponds to a chirp in the

+COSQ((/;I) ok T3 ok <2_q> (44) " thickness of the high-index layer.
m=0 Hence, to avoid spurious reflections at the front structure of

An important point to note is that the typical singularitthe mirror, we have to chirp the two independent parameters
of the WKB-solution at the classical turning point does ndh our theory, i.e., the Bragg wavenumber for an increase of
exist for the amplitude reflectivityy; (), although the current the high-reflectivity range and the coupling coefficient for the
and voltage itself diverge at this point, because of the factiripedance matching. Because of the required chirping of both
1/+4/q(m). However, as will be discussed in Section IV-Cparameters, we call these mirrors DCM'’s. In the case of an
this singularity occurs again in the group delay due to thepedance matched DCM, the expression for the phase (43)
derivative ofZ and Z’ with respect to the wavenumber. Thesgimplifies to
singularities could be avoided by using the exact solutions

to the Schodinger equations, linearized near the classical Gr (k) =7 +2¢7(0)

turning points, which are the well-known Airy-functions [17]. T 0

However, this would be at the expense of transparency of the =5 +2 /mt ) q(m) dm. (48)
equations. Thus, we stay with the expression derived above '

for the group delay (44). Thus, for the matched case, the phase of the amplitude

The expressions for phase and group delay show the origgilectivity is just two times the phase of the equivalent
of the oscillation in the group delay arising from a simpleeurrent wave¢; from the beginning of the mirror to the
chirped mirror. If the long wavelength penetrate deep into tlassical turning pointn,, of the scattering potential. For the
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group delay and the GDD we obtain the following simpl@ot matched, i.e., the coupling coefficient is nearly constant

expressions: over the whole mirror and the optical thickness of each layer
1 9y, is a quarter of the Bragg wavelength corresponding to each
To(k) ==~ index step A¢(ks(m)) = 0). As can be seen, the WKB-
2 dér results fit very well to the exact results in the region where
T ok the resulting mirror is highly reflective, namely from about
9 9 [0 k/ko = 0.59— 1.03 (580-1020 nm). Even the group delay
=—- _k/ g(m) dm shows an excellent agreement over the full high-reflectivity
¢ ey (k) range, except for the range around 0.85. At this wavenumber,
2 /0 < a (m)> dm (49) the right turning point coincides with the front of the mirror
T ¢ e, (k) ok ¢ and the group delay of the WKB-solution diverges. This
9 g2 [0 happens because the reactafcganishes at the turning point
Do(k) === +5 g(m) dm and, therefore, the derivative of the impedaiteith respect
c* Ok mey (k) to wavenumber in (44) leads to a singularity in the group delay.
) 0 52 Obviously, the high-reflectivity range of the mirror already
= =z {/mt " <W Q(m)> dm covers most of the fluorescence bandwidth of Ti:sapphire.

However, the strong oscillations in the group delay, with
7] g amplitudes as large ag25 fs, prevent the use of such mirrors
B <% q<m)> o Ok m“(k)}' ©0) for ultrashort-pulse generation in the range of 50 fs or even
. * ] T _shorter. These oscillations arise because longer wavelengths
One has to note that the classical turning point is a functige reflected deep inside the mirror and they have to pass the
of wavenumber. The last equality for the group delay and th§,qq stack responsible for reflecting the shorter wavelengths.
GDD holds because the integrand vanishes at the classiggh interference of the partial reflection at this stack, together

turning point according to (34), i.eg(m., ) = 0. with the strong reflection from the back of the mirror, leads
_ to the formation of a GTI for the long wavelength. The result
C. Comparison of Exact and WKB Results is a strong periodic oscillation of the group delay well known

In this section, we show that the derived WKB-expressiorigr a GTI.
for reflectivity and group delay are not only of qualitative As we have shown in the preceding subsection, if we
value, but even allow for a quantitative predesign of a chirpedlditionally chirp the coupling coefficient from zero at the
Bragg structure with a desired high reflectivity and groufsont of the mirror to its maximum value, we should be
delay. We compare exact results obtained by the trans@le to eliminate these oscillations and we should achieve
matrix method with our WKB-results from the precedingt smooth group delay over the high-reflectivity wavelength
subsections for a linearly chirped dielectric mirror, in the cagange of the mirror. The solid and dash—dotted curves in
of a matched and not matched impedance, respectively. THg. 7(a) and (b) show the reflectivity and group delay for
WKB-results are obtained by using the exact coupling arsd DCM, where the Bragg wavenumber is chirped over the
detuning coefficients from Section Il and linearly fitting thesame wavelength range as before, but in addition, also the
scattering potential as shown in Fig. 6. In this section, weoupling coefficient is chirped separately over the first 12
always consider the reflection with respect to the first,SiOndex steps. This means that the Bragg wavelength, which
layer. However, we do not take into account the index jumip given by twice of the total optical thickness of the high-
to the air as the ambient medium. and low-index layer of each symmetrical index step, is again

Fig. 7(a) and (b) shows the reflectivity and group delaghirped from 600 to 900 nm, but the layers are far away
for a mirror consisting of 25 index steps, where we havieom quarter-wave layers in the front section of the mirror,
used the constant refractive indices = 1.5 andn, = 2.5 i.e., A¢(kgp(m)) # 0. We chirp the thickness of the high-
(» = 0.25), which are close to the indices of the standafddex layer according t@), ,,, = 7/(2kg(12)n;,) - (|m|/12)*
dielectric materials Si® and TiQ;. Here, we neglect any over the first 12 index steps to achieve impedance matching.
frequency dependence of the refractive indices. We varied thiee solid line in Fig. 7(a) shows the reflectivity and group
Bragg wavenumber linearly over the first 20 index steps frodelay, if the thickness of the high-index layer is chirped
ko = 2x/(600 nm) to ki, = 2#/(900 nm), according to linearly over the first 12 index steps, i®.= 1, and therefore,
k= ky—(Jm| —1)- (ko — kmin)/19. For the last 5 index Z’(0) # 0. Again, the agreement between the exact and the
steps the Bragg wavenumber is kept constant on its minimMvyKB-results is excellent, both in reflectivity and group delay.
value k,;,. In all figures, the wavenumber is normalized t®f course, the new mirror shows a reduced reflectivity for
the maximum Bragg wavenumbéy for the first index step. normalized wavenumbers beyond 0.96 (below 625 nm), due
Thus, in principle, the mirror is easily scalable to any desirdd the reduced coupling coefficient at the beginning of the
wavelength range. Here, we choose a range suitable for satsucture. Now, the mirror is almost completely transmissive
10-fs pulse generation from a Ti:sapphire laser, see [18] aftdt normalized wavenumbers at around 1.2 (500 nm), which is
[19]. in our case an additional advantageous side effect of the double

In Fig. 7(a), the dashed and dotted curves show results fitirping, because, at that wavelength range the mirror should
the case in which the impedance at the front of the mirror e transparent for the pump light of the Ti:sapphire laser.
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Fig. 7. Comparison of the exact reflectivity and group delay with the WKB-results for a mirror which is chirped in the Bragg wavenumber, as described
in Fig. 6. (a) The dashed and the dotted lines show the results calculated with transfer matrix theory and the WKB-method, respectively. In these cases
the coupling coefficient is nearly constant for all wavelengths (i.e., impedance is not matched). This leads to a broad high-reflectivity rangeatiocomb

with strong oscillations in the group delay. The solid and dash—dotted lines show the corresponding results if the thickness of the high-ingex layer i
linearly chirped over the first 12 index steps. In that case, the oscillations are strongly reduced at the expense of the high-reflectivity raagmlitb) Th

and the dash—dotted lines show the exact and WKB-results, respectively, for a quadratically chirped thickness of the high-index layer. Tinisaresults
very smooth group delay. The figure also shows the group delay derived from an approximate expansion of the WKB-solution. The dotted line shows the
zeroth-order approximation, and the dashed line shows the first-order approximation.

Note, the simple linear chirp already removed the undesirelirp always has the tendency to produce a positive third-
oscillations in the group delay considerably. Neverthelessider dispersion (TOD), which has already been found [20]
the oscillations are too strong for sub-10-fs pulse generatidrut which has not yet been explained.
Fig. 7(b) shows the result for a quadratically chirped coupling
coefficient, i.e.,a = 2, and therefore, in additio&’(0) = A. Analytic Expressions for the Dispersion of a Mirror
0. Howevefr, th|sdcrj(_e§ults| :cn a very fsrglo?ﬁhhgro;:p d_e_lay at theGenerally, it is not possible to derive an analytic expression
expense of an a 't'g.na raction 0 tI I_e ngn-re fCt'\QtyJan.g?Or the GDD, due to the complexity of the propagation constant
o e T e o vros ) = Y 2 n (50) However,  gain urher s

: . ! . ihto the dispersion that can be generated by a given mirror,
described in this section. we develop in this chapter approximate expressions for the

dispersion of a linearly chirped mirror. Therefore, we expand
V. APPLICATION OF THE THEORY ON A DCM wITH the square root in a series according to
A LINEARLY CHIRPED BRAGG WAVENUMBER

The usefulness of the theory derived above can be further Ve =5 3 <1/2> <_f>u -
demonstrated by application to an example. We derive an im0 \H 6

analytic expression for the GDD of a DCM with a linearly

chirped Bragg wavenumber. We show that a mirror with lineaince §2 > x? in the interval [m,,,0] and we take only
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the zeroth-order terni| for an analytic computation of the and finally, for the TOD we obtain
phase properties. In Appendix B, we give the results for the

first-order correction term which is quadratic An 0/4n _ 2m ko 2
Now, we further simplify the coupling coefficient (14) from Dy (k) = Ak kE N >0 (58)
Section Il by x(m) = k9 = —2r = counst. This additional

approximation is justified if we assume that the impedange piscussion of Results
matching section of the mirror is short compared to the rest of

the mirror. Then, most of the layers are near quarter-waveEduation (58) shows that a linearly chirped mirror has a
layers for all wavelengths and, thereforg\¢| < . As positive TOD, although one might think that a linear chirp in

shown in Fig. 4, the simplified linear approximation for thé"€ Bragg wavenumber would lead to a linear group delay,
detuning coefficient (15) around = = is always sufficient |.e.,.van|sh_|ng TOD. Obwous!y, in this case, only the classical
for arbitrary A¢, whereas the strong dependence of the exdtfing pointm,, depends linearly on the wavenumber
coupling coefficient om\¢ will have a detrimental impact on Put the GDD shows a hyperbolic dependence. If we take the
the results. Later on in this section, we will see that deviatiof&!ues from the example d|1scussed In deta|ll in Section IV,
to the full WKB-solution are caused by the neglect of théto = _0'5,' ko = 10.47pym™", ky = 0.17 pm™") the GDD
higher order terms in the sum above and the assumption of&[! P& written as

constant coupling coefficient. Nevertheless, the approach taken

here gives analytical insight. Dy (k) ~ —39% fis? (59)
Thus, for the group delay (49) we obtain to lowest order
with (15) and, for the TOD, we obtain
0 2 0 a 2
Ty(k) = c/,ml(k) o, |01 dm DY(k) ~ 12<%) 3, (60)
om0 L
T me, (k) EB(M) " From these expressions, for the dispersion at 800-nm wave-
1 /0 length, i.e.,k/ky = 0.75, we estimate the following values:
== / Ap(m) dm. (52) DY ~ —52 f& and D9 ~ 21 fs’.
€ Sy (k) It is remarkable that, to lowest order, within our approxima-

As we can see, the group delay in zeroth-order approximatiBns, (57) and (58) do not depend on the coupling coefficient.
is given by the time delay of the light from the front of thelhe coupling coefficient itself only influences the group delay

mirror to the classical turning point and back. by an additive constant and, most importantly, the reflectivity
The right turning point is implicitly defined by conditionof the mirror.

(34), which results in In Fig. 7(b), we plotted the zeroth-order approximation of

1 the group delay, (56), and the first-order approximation, (B1),

kr(ms, (k)) = —5 K (53) given in Appendix B, in addition to the exact group delay and

1+ P the full WKB-solution. The agreement of the simplified zeroth-

) ) . . and first-order expressions with the exact results is remarkably
|f the coupllng coefficient is assumed to b_e constant._ _T od, and gives the right order of magnitude for the group

linearly chirped Bragg wavenumber at the different positionfy|ay. The deviations are due to the neglect of the higher

in the mirror can be written as order terms and the fact that the prerequisite of an almost
kp(m) =ko+kim, ko,ky >0,m € [my,,0]. (54) constant coupling coeffi_cient is not fulfilled iq the example of
Section IV. The reason is that for demonstration of the double-

For this case, the classical turning point follows from (533hirp technique the impedance was quadratically matched very

according to slowly over the first 12 index steps. That is nearly half of the
ko 7 L mirror and, therefore, the assumption of a short impedance
my, (k) = o {W——W B 1} (55) matching section is not really satisfied. This leads to the

stronger curvature of the exact group delay in comparison to
Hence, with (54) and (55), (52) yields for the group delay ahe zeroth- and first-order approximation of the WKB-solution.

a linearly chirped mirror to lowest order Additionally, the explicit additive dependence of (56) on the
o 7 — |ko| ko coupling coefficient results in a critical dependence of the
Tgo(k) = In < - f) absolute group delay value. In contrast, the accuracy of the
1

approximate GDD and TOD relative to the group delay is
- 2n {ln <1 _ M) +1n <%) } (56) better due to their independence of the coupling coefficient. To

cky i summarize this section, although the expressions derived for
Using this result, the GDD follows directly to this example are not very precise, they allow for an estimate
of the desired dispersion properties of the mirror. Therefore,
DY(k) = _22_7r <@) (57) they can be used to compute a good starting structure for later
ko \ k computer optimization.
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sl P | L3 computer optimization program which improves the design
S TETSCIY FELOING N performance, i.e., it minimizes the oscillations in the group
delay and modifies the reflectivity slightly, if necessary. Our

. Not Matched, A i
601 \ Without AR-Coating [ .

0
[}
"‘i | A \ % designs are optimized using a standarq gradient method (Broy-
§ ‘oot Matched, \ Z den—FIetcher—GoIdfarb—Shz_inno alg_onthm from [21]), t_)ecause
o ith AR-Coating , % we already start from a design that is close to the design goal.
g 20 \ .”j =7 - ‘Matched § g As an example, Fig. 9 shows the desired and designed
e ; 1 ., 5 properties of a broad-band DCM after computer optimization,
0 e el 3" ©  as well as the measured properties of the fabricated mirror.
YR I v ] The desired group delay, Fig. 9(a), is exactly the group delay
600 700 800 900 1000 shown in Fig. 8. The final mirror consists of 62 layers and
Wavelength, nm was designed to show the following properties: a reflectivity

Fig. 8. Influence of the different design steps on the theoretical design oPh More than 99.8% over a bandwidth of about 400 nm
chirped mirror. The dashed line shows the desired group delay for a particyl820—1020 nm), a high transmission from 480 to 550 nm

design problem. The dotted line represents the group delay of the analytical 0 ; i
predesigned mirror without an AR-coating but ideally matched to the ambi t# < 3/0) useful for different pump lasers (e.g. argon-—ion

medium. The dash—dotted line indicates the group delay of the analytica§S€r around 500 nm, frequency-doubled Nd:Yag laser at 532
predesigned mirror, not matched to the air. The solid line shows suppressigm). The deviations in the group delay from the desired values

of the oscillations when an AR-coating is put on top of the predesigned mirr ; i i ; ;

Also shown is the reflectivity of the 14-layer AR-coating. %re less thart1 fs in the hlgh reflectlwty. region [Fig. 9(a)].
Fig. 9(b) shows the resulting GDD. Obviously, the measured
mirror properties are very close to the designed properties,

V1. DESIGN OF A BROAD-BAND DCM although the dispersion characteristic is extremely sensitive

The design of a complete mirror is more complicated thai deposition errors. The precise fabrication of the mirrors
that which has been discussed so far. Till now the reflectivit§ achieved by using ion beam sputtering [22] with an active
of the mirror was calculated with respect to a reference planel@yer control during growth [23].
the first low-index layer. The structure still has to be matched Recently, similar DCM’s with much smaller oscillations in
to air. The jump from air to the low-index material agaithe GDD, however, over a restricted wavelength range of
introduces a reflection and, therefore, a GTl-like oscillation i@bout 250 nm have been used to generate pulses as short
the group delay, which makes the design useless, despite #5e6.5 fs directly from the laser [18], [19]. In contrast, the
impedance matching structure at the front part of the mirrgiurrent mirror design is appropriate for the tunability~e80
Note, that it is not possible to find an easy solution for this pulses from 700 to 1000 nm, which covers most of the
matching problem to air, as described by the adiabatic incredglt gain—bandwidth of Ti:sapphire. Additionally, the use of
of the coupling coefficient. Therefore, we design a broad-baftese DCM'’s allows for the generation of sub-10-fs pulses
AR-coating in order to suppress oscillations caused by thedigectly from the oscillator. However, the tradeoff between
additional GTI-like effects as much as possible. broad-band tunability and smoothness of the GDD prohibited

Fig. 8 illustrates the influence of the different matchingh€ generation of pulses shorter than 8 fs [14]. The published
problems on the group delay by an example. The dashed Ifff@ad-band mirrors show only reflectivities of more than
shows the desired group delay for a particular design proble®®.0% over a range of 400 nm and with considerably larger
Assuming, that we are ideally matched to the ambient mediuf$cillations in the group delay. This allows only for tuning of
we can design a mirror with a group delay, which follow85-fs pulses over a bandwidth of less than 300 nm [24].
closely the desired group delay (dotted line). This analytic
design is nearly perfect over a wavelength range from 600 to
1000 nm. The bandwidth is limited due to the limited number VII. ConcLusioN
of layers and small deviations are caused by the finite lengthwe have presented an analytic treatment of chirped mir-
of the thinnest layer. If we take the refractive-index jump fromors that is based on an exact coupled-mode theory and
air to the first layer into account, that causes a reflection WKB-analysis. The transformation to a quantum mechanical
about 4%, we end up with the dashed-dotted curve, where seattering problem leads to a clear physical understanding of
clearly see strong oscillations. If we put a 14-layer AR-coatirigow a chirped mirror works and the related design problems.
on top of the mirror, we obtain the solid curve. Obviously, thExplicit formulae for reflectivity and group delay have been
oscillations are only suppressed in the wavelength range fralerived from the WKB-solutions. A comparison with exact
about 680-920 nm, in which the reflectivity of the AR-coatingesults obtained from the transfer matrix formalism shows that
(—--—--— line), is low enough to suppress the GTl-effectthe WKB-results are rather accurate in the high-reflectivity
sufficiently. Thus, our current limitation in the theoreticategion, which is the interesting range in the mirror design.
design of a DCM is given by the bandwidth of about 240’he WKB-solutions explain the oscillations typically observed
nm, over which we can easily achieve an AR-coating with ia the group delay as an impedance matching problem in the
reflectivity less than 10% front section of the mirror and the air. Matching the impedance

Nevertheless, the theoretical design (solid line) is an ete the low-index layer is equivalent to an adiabatic increase
cellent approximation to the desired design goal. This aof the coupling coefficient, that leads to the DCM design
alytic predesign can be used as a starting structure formeethod. Application of the theory to a linearly chirped mirror
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100p200 600 700 800 900 1000 1100 to a rescaling of all derivatives in the Soldiiiger equation
et ' MV '“‘ E (33) by (d/dm) — e(d/dm) [25]. Thus, we obtain from (26)
0.996 - — Designed S with (28) and (31):
.. 0994 -_‘ i Measured ]
£ -
g 1.0 — ‘ T T 2 &1 2 I
2 3 ) —& —+(Uo+€ U[l)IIO (Al)
5 L —Designed 2 >
¢ o - LY o
0.6 - ©
g Now, we write the solution of this equation as an asymptotic
o4r ) expansion ine [17], i.e.,
0.2 - &
o0 50V(—) w0 70 w0500 10001108 I=exp <h;l +ho+ehi +-- ) (A2)
Wavelength, nm €
@ For the three lowest order expansion coefficignts, i, and
40 . . . . hq1, after substitution of expansion (A2) into (Al), we obtain
20 1 k —_— Besignded .
0 " Measured P O ho =4+ / NG o (A3)
\!Q -20 ~f-
) 1
?'7 40 61: ho :_Z In (Uo) (A4)
-60 1 U// 5 U/2
2 0 0
chy ==+ —— U, -0 _ = 20 L gm.
-80 SV €. / 2o { 1+ U, 16 U2 } m
-100 (A5)
12800 700 500 : 500 1000
Wavelength, nm In solving the Schisdinger equation (A1), we assumed that the

potential has the shape as shown in Fig. 6. We further assume

(b) T .
Fig. 9. Broad-band design of a DCM. (a) Designed and measured reflectiv:iE/at the I’eerCtIVI_ty IS h.lgh’ S0 that we can r.]egle(?t reflections
and group delay. Also shown is the desired group delay. The bandwidth pm the left turning pointn, . Then, the semiclassical WKB-
the highly reflective region is about 400 nm f&r > 99.8%. The deviation solution for this Schisdinger equation can be written as
of the designed to the desired group delay is less than 1 fs over the entire
high-reflectivity range. (b) Designed, desired, and measured GDD of the
mirror. The amplitude of the oscillations of the designed GDD is less than f(m) — Sin(d)j(m)) (AB)
25-30 f¢ over the wavelength range from 620 to 1020 nm. As can be seen,
the measured data of the DCM lie closely to the designed curves.

N[
2

its in simol . for th q h where ¢ is an effective propagation constant add is the
results in simple expressions for the GDD and TOD, that agg qe of the current wave from the beginning of the mirror

usgful for an estimat!on of the dispersion expecFed for giv B the classical turning point. Equation (A6) follows from
chirp parameters. This is only one example that illustrates t EZ) with (A3)—(A5) and by asymptotically fitting the wave

usefqlness OT the_thec_)ry. Further investigations of the WKEq+tion on the left and right side of the right turning point
solutions derived in this paper should allow for an even bett%rt [17], for e = 1
1 ’ - H

“straight forward” mirror design in the near future.
The major problem in the practical design of a DCM is the
matching of the Bragg mirror to the ambient medium (air). ¢=v-Up20,
Currently, we solve this problem by a broad-band AR-coating.
This might not be the optimum solution to the matchingnd
problems involved in chirped mirror design. Thus, further
investigations are necessary to find analytical solutions for the pr(m) =
matching problems.
Finally, we have demonstrated the design of broad-band
DCM’s with a reflectivity of more than 99.8% and a smootlwith
group delay over an extended bandwidth of about 400 nm.

"1 1Uy 5 URY
APPENDIX A P2 = —/mt % {Ul,l +7 To 16 U2 dm.  (A9)
DERIVATION OF THE SEMICLASSICAL WKB-SOLUTION !

Here, we introduce an ordering parameteg 1 in order to ¢, is a second-order correction to the phase, which is one order
derive the solution for the currefitas an asymptotic expansionbeyond the standard WKB-solution. In the paper, we neglect
with respect to this parameter. The condition of a slowlthis additional phase shift;, which means that we consider
varying potential in the semiclassical limit is then equivalerinly the zeroth-order terrfyy of the scattering potential.

for m 2 my, (A7)

+ / " gm) dm+ g (A8)

ltl

|
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APPENDIX B
FIRST-ORDER TERMS OF THE EXPANSION
OF THE WKB-SOLUTION

(9

[10]

With the first-order correction-+3/(2|6|) of the propaga-
tion constanty(m), the first-order contributions to the groupi1]
delay and GDD are calculated in the same way as was

demonstrated in Section V. The results are

[12]
2 m
17y — _Ho o1
Tg (k) 2 - Ik |(§| dm [13]
_m fn (kT
o 7TC/$‘1 |I<E0| ko [14]
+1n [(l—1> <@—1>} (B1)
ol g [15]
2 —2
Ly Ko ke [0k
Dak) == e % <1 k0> ' (B2) e
[17]

Thus, the complete group delay and GDD, up to first order,

are given by + T, and DY + D3, with T and DY given

in Section V.

[29]
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