
UC Irvine
UC Irvine Previously Published Works

Title
Theory of Double Ladder Lumped Circuits with Degenerate Band Edge

Permalink
https://escholarship.org/uc/item/2vb0w6v8

Journal
IEEE Transactions on Circuits and Systems I: Regular Papers, 65(1)

ISSN
1549-8328

Authors
Sloan, JT
Othman, MAK
Capolino, F

Publication Date
2018

DOI
10.1109/TCSI.2017.2690971

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2vb0w6v8
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


SLOAN, OTHMAN, CAPOLINO, THEORY OF DOUBLE LADDER LUMPED CIRCUITS . . .               UC IRVINE, March 2017 
1 

 

 

 
This material is based upon work supported by the Air Force Office of Scientific 
Research under award number FA9550-15-1-0280 and under the Multidisciplinary 
University Research Initiative award number FA9550-12-1-0489 administered through 
the University of New Mexico.   
   The Authors are with the Department of Electrical Engineering and Computer Science, 
University of California, Irvine, CA 92697 USA. (e-mail: sloanj@uci.edu, 
mothman@uci.edu, f.capolino@uci.edu) 
 

Abstract—A conventional periodic LC ladder circuit 

forms a transmission line that has a regular band edge 

between a pass and a stop band. Here for the first time we 

develop the theory of simple yet unconventional double 

ladder circuit that exhibits a special degeneracy condition 

referred to as degenerate band edge (DBE). The degeneracy 

occurs when four independent eigenstates coalesce into a 

single eigenstate at the DBE frequency. In addition to 

possible practical applications, this circuit may provide 

insight into DBE behavior that is not clear in more complex 

systems. We show that double ladder resonators exhibit 

unusual behavior of the loaded quality factor near the DBE 

leading to a stable resonance frequency against load 

variations. These two properties in the proposed circuit are 

superior to the analogous properties in single ladder 

circuits. Our proposed analysis leads to analytic expressions 

for all circuit quantities thus providing insight into the very 

complex behavior near degeneracy points in periodic 

circuits. Interestingly, here we show for the first time that 

DBE is obtained with unit cells that are symmetric along the 

propagation direction. The proposed theory of double 

ladders presented here has potential applications in filters, 

couplers, oscillators, and pulse shaping networks.  

Index Terms—Degenerate Band Edge, Cavity Resonators, 

Circuit Theory, Slow-Wave Circuits, Ladder Oscillators. 

I. INTRODUCTION 

ERIODIC structures and circuits have been utilized in many 
RF components and devices due to their unique properties 
such as the existence of electromagnetic band edges and 

bandgaps [1]–[3]. The “band edge” condition refers to a point 
in the phase-frequency dispersion relation which separate a pass 
band and a stop band in a periodic structure. Dispersion 
diagrams are associated with structures of infinite length with a 
unit cell periodically repeated. The band edge is accompanied 
with a significant increase in delay and quality factor of periodic 
resonators. The band edge is also associated with degenerate 
eigenstates of the field quantities (electric and magnetic field 
states in waveguides, or voltage and current states in circuits)  
 
 
 
 
 

  
and they correspond to a standing resonant mode.  Beyond the 
band edge, a band gap is typically formed in which signal flow 
is inhibited inside the periodic circuit resulting in only 
attenuation (evanescent wave in electromagnetic band gap 
structure). 

A particular class of degeneracy may exist in a periodic 
circuits where four periodic eigenstates coalesce and form a 
single degenerate periodic eigenstate [4]–[6]. This condition, 
explored here, is called a degenerate band edge (DBE), contrary 
to the scenario in conventional spatially periodic structures 
where only two periodic eigenstates coalesce forming a regular 
band edge (RBE). A DBE can be found in periodic structures 
employing stacks of anisotropic layers [4], [7], [8], structured 
transmission lines or striplines [9], [10], metallic [11] or optical 
waveguides [12], [13]. When four periodic eigenstates coincide 
at the edge of the Brillouin zone, the dispersion relation close 
to the degeneracy point is characterized by (ωd ω) ( )4  
where ωd is the angular frequency at which this fourth order 
degeneracy occurs, and  is the state phase delay of circuit 
quantities from one unit cell to the next. The exponent indicates 
that this degeneracy condition is of order four. The degeneracy 
condition in such a class of periodic waveguiding structures [7], 
[9], [11] is associated with a dramatic reduction of group 
velocity and an increase in loaded quality factor that is crucial 
for various application including filters, oscillators, and pulse 
forming networks for high speed communication [14]–[18]. 
DBEs were also investigated for directive antenna applications 
[10], [19]. Slow-wave structures (SWSs) with DBEs, in which 
phase velocity is much less than the speed of light, allow for 
superior electron beam synchronism condition that leads to high 
gain [6] compared to conventional SWSs. It has been also 
shown that utilizing a DBE in an active devices will lower the 
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Fig. 1. (a), (b) Unit cells of a conventional periodic single ladder of T and π 
configurations, respectively. (c), (d) Symmetric unit cells with four ports of 
periodic lumped circuits, called here “double ladders”, that develop DBE at 

an angular frequency 1/d LC  , with T/ π and π/T configurations 
respectively. All voltages are referred to the ground.  
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oscillation threshold in cavities [20] compared to operating near 
an RBE [21], in which the latter was shown to have modal 
oscillation instabilities and mode jumping issues [22], [23].  

Here we propose for the first time a periodic lumped double 
ladder circuit, whose unit cell is made of just a few reactive 
elements, that develops a degenerate band edge condition (in 
contrast to previous investigations that were focused on 
transmission lines).  

Because this lumped circuit is very simple, we show for the 
first time exact analytic steady state solutions for periodic 
voltage/current eigenstates in periodic double ladders; and the 
occurrence of an unusual resonance in double ladders with 
finite size. Our analysis provides a concrete insight into general 
DBE manifestation and characteristics of ladder lumped circuits 
for which analytical investigation of resonance and loading 
effects has not been reported before. It is important to point out 
that we do not just propose a double ladder filter design in this 
paper, but also we develop a novel theory of a class of circuits 
exhibiting a fourth order degeneracy; the applications of which 
may range from oscillators, pulse compressors and distributed 
amplifiers.  

A degeneracy of order four requires that the unit cell of the 
periodic structure consists of a four-port network with properly 
coupled and tuned reactive components. Higher order 
degeneracies can be achieved with more complicated unit cells 
with a higher number of ports, yet the same approach detailed 
in this paper can be utilized. We stress that the proposed circuit 
is one-dimensional. Two-dimensional [23], and even three-
dimensional ladder circuits may also be conceived whose 
analysis can be carried using the same Bloch-Floquet type 
solution for 2D and 3D periodic electromagnetic systems [2], 
but they are outside the scope of this study. The delay 
characteristics of these ladder circuit are analogous to wave 
propagation in one-dimensional crystals [24], [25], yet we show 
the characteristics of state degeneracies in ladder circuits that 
are analyzed here for the first time. 

In this paper, we demonstrate various new concepts and 
detailed analyses relative to degeneracies in circuits as follows: 
(ii) we propose a periodic circuit with the minimum number of 
reactive elements that exhibits a DBE and (ii) we develop 
analytical theory of such double ladders and explore their 
unusual characteristics in Sections II through V. (iii) We show 
that such DBE properties can be obtained in symmetric circuits 
in Section IV. (iv) We investigate the properties of double 
ladder resonators made of a cascade of a finite number of cells, 
and we provide analytic expressions for their design in Section 
VI.  (v) We analyze how the quality factor is affected by loading 
and importantly how it scales with structure size along with 
various loading effects. (vi) We show the superior performance 
of double ladder resonator compared to a single LC ladder with 
an RBE in Fig. 1, in terms of stability of resonance frequency 
with loading effects and the anomalous scaling of the quality 
factor in Section V.  

Throughout this paper we assume steady-state 

monochromatic signals, and phasors are based on the j t
e
  time 

convention that is implicitly assumed. 

II. DOUBLE LADDER CIRCUIT WITH SYMMETRIC UNIT CELL 

An example of a periodic circuit’s constitutive symmetric unit 
cell that develops a DBE in the steady state regime is depicted 
in Fig. 1(c) and (d). There are other circuits that have DBEs but 
this circuit is the simplest, in part due to symmetry. It is 
important to distinguish between two kinds of symmetries. The 
first is the symmetry of the top and bottom ladders (in double 
ladder case). There exists a strong asymmetry in the sense that 
the top ladder does not have nodes with capacitances to the 
ground, unlike its bottom counterpart. Therefore, the anisotropy 
here is created (top and bottom ladders are not identical) and it 
is crucial for achieving the DBE [4], [9], [11]. The second, and 
the more interesting kind of symmetry is manifested about a cut 
in the middle of the unit cell (left and right symmetry) which 
represent symmetry about a perpendicular axis to the signal 
propagation direction. It is also possible to cut this circuit in a 
variety of ways that yield a variety of unit cells, but the ones 
that are shown are the simplest due to symmetry. Contrary to 
most DBE implementations in waveguiding systems, a 
symmetric unit cell in the wave-propagation direction has not 
been reported before, see for example in [9], [13], [26]. 
Moreover, there have been some persistent difficulties in 
designing circuits with a DBE. One difficulty is that multiple 
parameters must be 

simultaneously tuned to get close to a DBE condition with 
negligible analytical insight. A related issue is that the DBE 
condition is never met exactly, but only in an approximate way. 
This can cause problems in numerical calculations; for instance 

 

 
Fig. 2.  Dispersion diagram, frequency-phase shift, relative to the unit cell 

of the periodic, infinitely long, double ladder circuit in Fig.1(c) or (d). Each 

of the 2 curves corresponds to two (backward and forward) periodic 

eigenstates. Four eigenstates coalesce at the degenerate band edge (DBE) at 

ω = ωd. Two eigenstates coalesce at the RBE at ω = ωg. Square symbols 

denotes a fitting of the DBE flat feature with  4( )d a       , and a 

is the fitting constant / 32da  . (b) Complex dispersion curve showing 

complex branches of ( )  . 



(b) 

(a) 



SLOAN, OTHMAN, CAPOLINO, THEORY OF DOUBLE LADDER LUMPED CIRCUITS . . .               UC IRVINE, March 2017 
 3 

when inverting a matrix. Another difficulty is that the 
eigenvectors are generally not easy to calculate in a simple way, 
potentially obscuring some useful information. In fact, our 
analysis shows for the first time a mathematically exact 
condition in circuits to observe a DBE.  Moreover, we believe 
that the circuit investigated in this paper is the simplest circuit 
(and one of the simplest physical systems) to exhibit a DBE. 
The eigenstate description as well as the resonance conditions 
are simple enough to be put in a very compact and concise 
analytical form near the DBE. Here we study a symmetric unit 
cell, which can be cut in either the T/π or the π/T configuration 
shown in Fig. 1. This portrays also how a double ladder that 
develops a DBE can be constructed from a simple single LC 
ladder connected in tandem, using either the conventional   or 
T topologies [15]. We assume lossless, linear reactive 
components for simplicity in our analysis. Losses in the 
resonator will be incorporated in Section VI in the form of 
external loading.  

A. Dispersion relation and state vector 

First, we qualitatively explore the voltage/current periodic 
eigenstates (in a steady state regime) of the infinitely-long 
periodic circuit whose unit cell is depicted in Fig. 1, and we 
resort to a rigorous analytical description detailed in Section IV. 
It is convenient to define a four-dimensional state vector that 
comprises the phasors for voltages and currents at the nth unit 
cell’s two ports as seen in Fig. 1 viz.  

  1 2 1 2( ) ( ) ( ) ( ) ( )
T

n V n V n I n I nΨ   (1) 

In an infinitely long periodic structure, steady state time-
harmonic solutions have the form of periodic eigenstates, i.e., 
eigenstates where the current and voltage at location n in a unit 
cell of the infinite periodic circuit in Fig. 1 is a complex 
multiple of the current and voltage at the same locations in an 
adjacent unit cell (location 1n ), as described in the following. 
We seek those periodic solutions (more properly, pseudo 
periodic, because they are periodic in space except for the 

exponential term ( )j
e

  )  for the state vectors, where ( )nΨ  is 

translated to that of the next unit cell ( 1)nΨ  via  

 ( )( 1) ( ) j
n n e

  Ψ Ψ    (2) 

for any n.  Note that here the exponential term ( )   can be 

complex. A purely real ( )   implies simply a phase shift from 

cell to cell, whereas a complex ( )   also implies exponential 

attenuation or growth and must be accounted for completeness. 
The evolution of this four-dimensional state vector ( )nΨ   from 

cell to cell is described by a 4×4 transfer matrix T  that relates 

voltages and currents between contiguous cells at location n and 
n+1 

 ( 1) ( )n n Ψ TΨ  (3) 

Here and in the following bold fonts indicate vectors whereas 
underlined bold fonts indicate matrices. The determination of 

the transfer matrix  T  for the circuit in Fig. 1 is reported in the 

Appendix. In general, for an infinite long periodic circuit whose 
unit cell has four ports as shown in Fig. 1, there are four distinct 
and independent solutions for the cell-to-cell phase progression 
at each frequency [see (2)], with 1,2,3,4m  , each of which is 

associated with a periodic eigenstate voltage/current 
eigenvector mΨ . Again, here ( )   is allowed to be complex 

so that it can describe also stop bands. To retrieve periodic 
solutions for ( )nΨ , i.e., in the form of (2), we solve the 

eigenvalue problem obtained by combining (2) and (3) 

 ( ) ( ) 0j
e n

    T 1 Ψ  (4)  

Here 1  is the 4×4 identity matrix and   is the Bloch phase 

shift between two adjacent cells. For the circuit in Fig. 1, the 
four ( )m   solutions are shown in Fig. 2, for m = 1,2,3,4, with 

the circuit parameters given in the Appendix. This is because 
the number of possible states is twice the number of nodes  
(excluding ground), or ports, shared by two contiguous unit 
cells [27], [28]. Analogously, triple ladders circuits are 
constructed by 6×6 matrices, and so forth. Analysis of higher 
order ladders can be done by increasing the dimensionality of 
the  T  matrix; which is left for another investigation.  

Phase progression of an eigenstate, or evanescence (i.e., 
exponential growth or decay) from cell to cell in the lossless 
circuit can be understood by examining both the real and 
imaginary parts of ( )m  . For instance, in a lossless structure, 

an eigenstate whose voltages and currents exhibit only phase 
progression (propagating in the context of electromagnetic 

structures) has  Im ( ) 0   , however an evanescent 

eigenstate (in the stop band of the periodic circuit) has 

 Im ( ) 0    while  Re ( )   can be non-zero. We focus on 

the simple unit cell in Fig. 1 whose dispersion diagram is 
depicted in Fig. 2 considering the circuit parameters given in 
the Appendix. The circuit is linear and reciprocal, therefore if 

( )   is a solution (even complex) then also ( )   is. 

Furthermore, the dispersion diagram of the periodic structure is 
periodic, and exhibits a mirror symmetry around the band edge 
(between pass and stop bands) that occurs at   . A typical 

dispersion diagram is conventionally illustrated by the real 
eigenstates only, whose phase ( )   is purely real, as shown in 

Fig. 2. A complex representation of the dispersion diagram is 
also shown in Fig. 2 and can be found in [6], [12], [29] for 
structures that involve wave propagation. 

At low frequency, such that ω < ωg, the ( )    relation 
shows purely real modal phase shifts ( )  , from cell to cell as 
in (2), versus frequency as depicted in the dispersion diagram 
in Fig. 2. At high frequency, such that ω > ωd, the circuit 
exhibits a cutoff where energy flows in the circuit is highly 
suppressed resembling the high frequency response of a low-
pass filter. At an intermediate angular frequency (shown in Fig. 
2) we observe two important distinct features of the dispersion 
diagram.  

B. Band edges and band gaps 

The dispersion diagram (Fig. 2) shows that there are 4 

independent periodic eigenstates (corresponding to 4 distinct 

eigenvalues of the periodic circuit) everywhere except at two 

specific frequencies, denoting the “band edges”. The band edge 
is a transition condition from power-carrying eigenstates(s) to 

evanescent eigenstates(s). The band edge point itself represents 

a standing wave eigenstate that does not allow energy to flow 
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in the periodic circuit (a point of singularity in group delay). 

There are two band edge conditions: 

1) Regular band edge: At ω = ωg  an RBE is manifested where 

two branches (phase eigenstates with opposite directions of 

energy flow) coalesce. Therefore, an RBE is a point of 

degeneracy of two states’ eigenvalues and eigenvectors. Near 

ω = ωg, in virtue of small frequency detuning, the phase-

frequency asymptotically behaves as  ( )g       2 with 

a proportionality constant specific to the circuit and 

proportional to the non-zero first derivative of the group delay. 

(For the circuit in Fig. 1, it happens that ωg =  ωd / 2 ). Exactly 

at the RBE there are three independent periodic eigenstates with 

three regular eigenvectors, which are found by solving the 

periodic system (4). One of the periodic eigenstates represents 

a standing resonant mode with infinite group delay. In fact, the 

RBE designates a transition from two states with phase 

progression ω < ωg into two purely evanescent states for ω > 
ωg, resulting in a second order degeneracy at ω = ωg. The other 

two eigenstates (the two upper branches) at ω = ωg are 

independent phase-propagating solutions and are not affected 

by the RBE. As such, there must exist one degenerate eigenstate 

in order to provide a complete basis of four eigenvectors and it 

is constructed with a non-periodic eigenstate (or pseudo-

periodic eigenstate described by generalized eigenvector [4], 

[30], [31]) that grows linearly along the double ladder. 

2) Degenerate band edge: At d   a degenerate band edge 

(DBE) is manifested. A DBE is a point of degeneracy of four 
states’ eigenvalues and eigenvectors (4). The phase-frequency 

relation near DBE is  ( )d a       4 with a 

proportionality constant specific to the circuit, that provides the 
non-zero third derivative of the group delay, and this constant 
will be found in the subsequent analysis. Despite at other 
frequencies there are generally four independent eigenstates, at 
the DBE there is only a single, degenerate, periodic eigenstate 
at d   comprising a standing resonant mode that is a 

transition from two states with phase progression and two 
evanescent ones, for d  , into four purely evanescent states 

for d  . Since there is only one independent periodic 

eigenstate solution at d  there must be three non-periodic 

eigenstates i.e., three pseudo-periodic solutions growing as n, 
n2 and n3 [32], [33] besides phase factor exp( )jn , where n 

is the integer index of the unit cell. Therefore, exactly at the 
DBE, state vectors propagate from cell to cell as ( )n nΨ q

exp( )jn , with 0,1,2,3,q   (see analogues non-periodic 

solutions in stack of anisotropic layers at the DBE in [32]). The 
rest of this paper will be dedicated to developing analytic 
framework for the intriguing properties associated with DBE in 
the infinitely periodic double ladder first, and then, most 
importantly, for double ladders resonators with finite size. 

III. CIRCUIT ANALYSIS NEAR THE DBE 

Kirchhoff’s voltage law (KVL) provides a straightforward 
route to analyzing steady state solutions in the periodic lumped 
circuit.  It is convenient to define loop currents (phasors) as 
shown in Fig. 3 for the periodic double ladder with the unit cell 
as in Fig. 1. We consider the two current loops per unit cell with 

current phasors nI  and nI  .  Current in adjacent unit cells vary 

by the constant e j  based on (2) and the band edge condition 

( )    corresponds to standing eigenstates. In the following 

we analyze the state vector (1) in close vicinity of (and not 
exactly at) the DBE where there are four periodic solutions as 
in (2). As such, we define an incremental phase angle  that is 
small in magnitude near the DBE. The DBE angular frequency 
is set to be 1/d LC  , according to the parameters of the 

circuit in Fig. 1, with a characteristic impedance parameter 

defined as cZ L C . (This will be evident in Section IV.) 

Therefore, the relation of loop currents between adjacent cells 

is In+1 = In e  j = In e j()  and we assume that n nI I   

where   is a frequency dependent constant, evaluated as 
follows.  

 
Application of KVL yields the loop voltage drops  

 

   

   

1 1 1

1 1 1

1 1
4 0

2

1 1
2 0

2

n n n n n

n n n n n

I L I I L I I
C C

I L I I L I I
C C

 
 

 
 

  

  

          
          

  (5) 

which in turn leads to the two following relations 

 

 

 

 

2
( )

2 ( )

2 1 cos ( ) ,

1
4 1 cos ( )

j

d

j

d

e

e

 

 

    


  
 

            

    
              

 (6) 

By dividing the two equations in (6) we get 

    ( ) 2 ( )1 2 1 0j j
e e

            (7) 

whose solutions for   can be easily written as  

 
 

 
2 1 ( )

2 2
1
2

1 1 4sin ( )

2sin ( )

j

j e

  


 

 
    (8) 

Equations (7) or (8) provide the exact relationship between the 
phase delay between contiguous unit cells and the ratio   of 
the upper and lower current loops within a unit cell. We show 
now a convenient approximation to derive both the phase delay 
and the current ratio as a function of angular frequency near the 

 
Fig. 3.  Loop currents used in the KVL analysis for a double ladder circuit. 
Near the DBE, the current flowing in the lower half of the circuit represented 
by the blue loops is much larger in magnitude compared to that flowing in 
the upper half of the circuit represented by the green loops. Exactly at the 
DBE only the lower blue loops carry current.
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DBE. Near the DBE 1   and we rewrite (8) using the first 

order Taylor expansion for small   as 

 

( )

2( )
j

j e

 

  


   (9) 

 Then, substitution of  into (6), and keeping only terms with 
lowest power ( )   leads to 

  41 / 32
d

 


    (10) 

that yields to a simple form of the asymptotic dispersion 
relation  

  44 ( ) ( )d a a            (11) 

with / 32da  . It is very important to stress that the Taylor 

expansion of (8) was carried out for || 0 , but not for small 

Δω = ωdω as an expansion parameter, owing to the 
degeneracy condition. In other words, to expand (8) in terms of 

small   it would require the use of a fractional power series, 
often called Puiseux series [32], [34], when dealing with a 
degenerate system. The four steady state solutions following 
from the approximate result (11) obtained with KVL near the 
DBE are shown with squares in Fig. 2(a) and are consistent with 
the exact eigenmode solution and dispersion diagram obtained 
by solving (4) for ( )   with the transfer matrix method near 

the DBE. However, when d   this first order 

approximation deviates from the exact calculations as 
demonstrated in Fig. 2. From (5) and (11) we get the current 
eigenstates near the DBE 

 
2

1 , lower loops

, upper loops

j
n n

j

n n

I e I

I j e I











 

 
 (12) 

The resulting state vector near the DBE for the T/π and π /T 
configurations in Fig.1 are constructed from the voltage and 
current of the loops, and omitting details, one gets 

T / 1 2 1 1 3 4
2 2 2

/T 1 3 1 1 2 4
2 2 2

(0) ( ) 1 ( ) ( ) ( ),

(0) ( ) ( ) 1 ( ) ( )

T
m m m

m

T
m m m

m

j j j O

j j j O

   

   





  

  

   

   

Ψ

Ψ
 

  (13) 

with m=1,2,3,4, and they are scaled such that the current 
(voltage) in upper (lower) ladder is unity in the T/π (π/T) 
topology, respectively. Near the DBE radian frequency d , the 

incremental phase angle is given by the 4th root 

1/41/4
( ) m ds a     , where we assume  

1/4
.  to be the 

principal fourth root, then  1, 1, ,ms j j   for d  , while 

sm = {j (1− j)/ 2 , − j (1− j) / 2 , j (1+ j) / 2 , − j (1+ j) / 2 }, 

for d  . Complex branches of the dispersion are shown in 

Fig. 2(b).  As such, we have four solutions for   except at the 
DBE frequency where all states coalesce to a single degenerate 
state with 0  , for d  . As mentioned in Section II, for  

d   a stop band forms and inhibits signal flow along the 

double ladder since all  solutions are complex-valued.  

IV. RESONANCES IN DOUBLE LADDERS WITH FINITE NUMBER 

OF CELLS 

A. State Vector and Boundary Conditions 

We now consider a lossless circuit with N unit cells (versus 
infinite cascaded unit cells as in previous sections) as in Fig. 4, 
whose unit cell is depicted in Fig. 1(c-d), with a signal generator 
and terminal impedances, as depicted in Fig. 4. Other 
terminations would not alter the conclusions of this Section. In 
general, close to (but not exactly at) the DBE, the state vector 

( )nΨ  at the nth node in the circuit (n = 0,1,2,…,N) is written in 

terms of the eigenvectors  (0)mΨ  of (2) at location n = 0 as 

 
4

1

( ) (0)mj n
m m

m

n c e



 Ψ Ψ   (14) 

with 1,2,3,4m   and mc  being unknown coefficients which 

indicate the weights of the four periodic eigenstates excited by 
the generator. (Note that exactly at the DBE frequency the 
expansion should be done with generalized eigenvectors since 
they form complete basis.) The weights cm’s depend on left and 
right boundary conditions (BCs), i.e., the all terminations.  In 
the case seen in Fig. 4, the upper node at node n = N is 
terminated with a load impedance LZ , and a generator with 

voltage gv  and impedance LZ   is located at the upper ladder 

node n = 0. The lower end nodes are shorted in this specific 
example. These BCs put constrains on the state vectors at n = 0 
and n = N leading to  

 
 
 

1 1 2

1 1 2

(0) (0) 0 (0) (0) ,

( ) ( ) 0 ( ) ( )

T

g L

T
L

v Z I I I

N Z I N I N I N

   



Ψ

Ψ
 (15) 

 

 
 

B. Transfer function and DBE resonance 

We define a voltage transfer function as 

1 1( ) ( ) / (0)FT V N V   that is calculated numerically using the 

transfer matrix method and depicted in Fig. 5 varying as a 
function of normalized angular frequency near the DBE for the 
T /  topology in Fig. 1(c), assuming L LZ R  to be purely 

real, and taking /L cR Z L C   as an example. For clarity 

we also plot the quantity  1( ) / / 2gV N v  which, for the circuit 

in Fig. 4, is always less than or equal unity. Circuit simulations 

 
 
Fig. 4.  A double ladder finite size array driven at one end with a voltage 
generator. The upper nodes are loaded with impedance Z L at both ends. 
The lower end nodes are grounded at both ends.  
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were also carried out using Keysight ADS and the results in Fig. 
5(b) show identical match between the transfer matrix analysis 
and ADS simulations for the voltage transfer function (and all 
other circuit quantities, not reported here for brevity).  

Several resonances are observed at angular frequencies ,r k
, at which 1 1( ) (0)V N V  or 1( ) / 2gV N v , for a lossless 

circuit, and k is the order of the resonance with k =1,2, 3,…, d, 

in the close vicinity of the DBE. The closest transmission 
resonance’s frequency to DBE radian frequency ωd, denoted by 
ωr,d (i.e., with subscript k=d) is the narrowest and the most 
significant. We show here how the transmission resonance 
mode can be analytically calculated using the asymptotic 

 
expansion for the eigenstates near the DBE, discussed in 
Section III. Since the transmission resonance angular frequency 
ωr,k is in close vicinity of the DBE, i.e., relation (11) is still 
satisfied.  At the transmission resonance, the input impedance 
seen to the right at n = 0 from the generator side is equal to LR  

for the lossless and symmetric double ladder circuit in Fig. 4. 

  Therefore, the state vectors’ quantities, i.e., voltage and 
current at the two boundaries at n=0 and N depicted in Fig. 6 
are equal in magnitude but vary in phase thanks to the symmetry 
of the circuit, and both BCs in (15) are related via 

,( ) (0)r kj
N e

Ψ Ψ , where r,k represents the accumulated 

phase shift across the N cell double ladder. Here we aim also at 
calculating r,k in terms of r,k (ωr,k) which is the periodic (real 
and positive) phase shift of the eigenstate across one unit cell at 
the transmission resonance radian frequencies. We analytically 
evaluate the resonance frequency ωr,k as well as the state vector 
at any location in the circuit at resonance by carrying out the 
following steps: Using (14) and the BCs in (15) we construct a 
system of equations to calculate the cm coefficients, as a 
function of frequency.  Once the cm coefficients are obtained as 
a function of frequency, the state vector at any location in the 
circuit is readily found from (14). Subsequently, the resonance 
frequency ωr,k, and phase shift   r,k are found by applying the 

resonance condition  ,( ) 1F r kT    or equivalently |V1(N)| = 

|V1(0)|. In the following we provide analytic expressions of the 
resonance frequency, transfer function and state vectors.  

The possible transmission resonance angular frequencies ωr,k 
(or equivalently we calculate the phase shift r,k  at ωr,k since 
the asymptotic dispersion relation is known from (11)) near the 
DBE are obtained by solving transcendental equation 

   
2

, , , , ,tanh( )cot( ) tan( )coth( ) 16c

L

Z
r k r k r k r k r kR

N         

for ,r k , where we have defined , , / 2r k r kN  , and 

, ,( )r k r k      is obtained from (11). It can be easily shown 

from (16) that for large load resistance, L cR Z , the 

resonance frequency shifts (slightly) away from the DBE to 
lower frequencies, whereas for low load resistance L cR Z  

the resonance frequency tends to approach the DBE frequency. 
At the resonance angular frequency ωr,k obtained from (16), the 
total phase shift r,k of the N double ladder circuit at resonance 
ωr,k is obtained from 

 

 
   
   

, ,,2

, ,

tan tanh
tan

2 cot coth

r k r kr k

r k r k

 
 

 
 

 
  (17) 

Currents at any node n = 0,1,2,…,N in the double ladder are 
calculated as the state vector current elements, at frequencies 

,r k  that are close to the DBE as 

 

 

0
2
,

1 2 3 0 1

2 0 , 2 3 0 1

( ) cos( ) cos( ) sin( ) sin( ) ,

( ) cos( ) cos( ) sin( ) sin( )

r k

I
n n n n

r k n n n n

I n a a j a a j

I n I a a j a a j


   

    

   

   
                       (18) 

where , ,n r k r kn    , and  , / 2
0 / 4r kj

g cI jv e Z
  with  

 

, ,

, ,

2 2
0 1

, ,

2 2
2 3

, ,

cos( ) cos( )
, ,

cos( ) cosh( )

sin( ) sin( )
,

sin( ) sinh( )

r k r k

r k r k

r k r k

r k r k

a a

a j a j

 

 

 

 

  

  

 (19) 

The transfer function of such circuit at any of the resonance 

frequencies ,r k  near the DBE is then obtained as  

 

Fig. 5.  (a) Transfer function for a finite double ladder with N =17 unit cells 

shown in Fig. 4, with and RL=Zc, defined as 1 1( ) ( ) / (0)FT V N V   and we 

also superimpose the quantity  1( ) / / 2gV N v . (b) Zoomed version of (a) 

around the DBE. The sharpest peak of  1( ) / / 2gV N v  is the one occurring 

at ,r d  , at which  1 1( ) (0)V N V . Symbols are relevant to ADS circuit 

simulations. 

 
 

Fig. 6.   Normalized loop currents nI   and nI  at the resonance frequency 

closest to the DBE, for a T / double ladder of N =17 unit cells. Two cases 

are considered: / 0.1L cR Z   (blue solid lines) and / 10L cR Z   (red 

dashed-dotted lines). Symbols are based on the asymptotic analysis, whereas 

lines are based on the exact calculations using the transfer matrix method, in 

very good agreement. For the case with /L cR Z = 0.1 (=10) the resonance 

normalized frequency , /r d d   is equal to 0.99995 (0.9998) respectively. 

The current is sampled only at the beginning of each unit cell. 
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

 

which implies that ,( ) 1F r kT   . As indicated earlier, the 

most prominent feature of the circuit is the transmission 
resonance closest to the DBE whose resonance frequency is 

denoted by ,r d , and is also found from solving (16) and by 

taking the angular frequency ,r k  that is closest to d . For 

illustration, in Fig. 6 we show the magnitude of the current in 
the double ladder made of N = 17 unit cells at the DBE-related 

resonance whose angular frequency is ,r d ,  for two cases of 

load resistance RL= 0.1Zc and RL =10Zc. Results in Fig. 6 show 
good agreement with the asymptotic analysis (symbols) in (18) 
and (19), and the exact one (lines) calculated using the transfer 
matrix method in Section II. Note that exactly at the DBE a 
general solution is represented as a composition of generalized 

eigenvectors discussed in Section II, therefore for resonances 
very close to the DBE, even if we have four independent 
eigenvectors, the solution still grows since it shows the DBE 
feature. Furthermore, the weights of those excited eigenstates 
depend on the load impedance as will be shown next. Such 
analysis provides insight into the behavior of the circuit, and 
importantly to analytically show what happens when loads 
change. Note that one can draw analogous conclusions for 
higher order ladder circuits operated at the points of 
degeneracy. 

C. Load resistance effect on transmission phase and 

resonance frequency 

The current distribution at the DBE resonance whose angular 

frequency is ,r d , in Fig. 6 for T /  double ladder, shows 

that most of the energy is concentrated in the lower ladder near 
the central cells. While nI  is not significantly changed by the 

load value, nI   is affected by the large or small load resistance 

compared to the characteristic impedance Zc. This is related to 
the weight of the excited state eigenvectors, namely cm in (14), 
required to match the BCs at the two terminations at n = 0 and 
n = N. It can be inferred that when the load resistance is low 
compared to the characteristic impedance, i.e., L cR Z , the 

coefficients cm’s of the two eigenstates vector with complex 
phase shift    are negligible in magnitude, compared to the 

same for the two eigenstates vectors with purely real phase shift 
near the DBE. On the contrary, for L cR Z , all the 

eigenstates are excited with comparable weights cm. This is 

observed from the numerical solution of (17) for the T /  
double ladder in Fig. 1. The opposite trend is observed for the 

/ T  double ladder, not shown here for brevity.  Moreover, 
the terminal impedance has an impact on the transmission phase 
as indicated in (16) and (17). To demonstrate that effect, we 

show in Figs. 7(a) and (b) the normalized DBE resonance 
frequency ωr,d /ωd and the total phase shift r,k/, respectively, 
varying as function of the normalized load resistance   /L cR Z  

for a double ladder of N = 16 and N = 17 unit cells calculated 
using the transfer matrix method developed in Section II. As 
seen in Fig. 7(a), the resonance frequency slightly changes 
(scale is zoomed to show the insignificant variation) whereas 
the change in phase shift in Fig. 7(b) is significant when the 
load varies from low to high, though it varies slowly. This can 
be also inferred from solving (16) and (17). The total phase shift 

at resonance r,k  varies from ~ 0 rad  for low impedance  loads 

to ~   for high impedance loads, for odd number of cells (vice 
versa for even number of cells). However, the resonance 
frequency always shifts slightly to lower frequencies than the 
DBE frequency as load impedance increases. We also use 
Keysight ADS for simulating the circuit behavior and the 
results in Fig. 7 show identical match between the transfer 
matrix analysis and ADS simulations. 

D. Load impedance effect on total Quality factor 

The loaded or total quality factor, denoted by Qtot, of a 
reactive circuit [pp. 302, 37] such as the one in Fig. 4 is defined 
as 

 
 

tot
r e m

l

W W
Q

P

 
   (21) 

where , , ande m lW W P  are the total time-average stored electric 

energy, stored magnetic energy, and power loss, respectively, 
given by  

  
2 42 2

1 1

1 1
,

2 4

N N

e Cp m Lq

p q

W C V W L I

 
     (22)  

and  2 21
1 12

| (0) | | ( ) |l LP R I I N  , all at ωr,k. For simplicity 

here we consider only circuits with no internal losses, and losses 
occur only at the termination load. Here  CpV   and  LqI   are the 

voltage across the pth capacitor and the current in the qth 
inductors in the double ladder circuit, respectively, that are 

 
Fig. 7.  (a) Small variation of the resonance frequency of the T/π double 
ladder circuit closest to DBE varying as a function of the load impedance. 
(b) The corresponding transmission phase 

,r d .  Cases with for N = 16 and 

17 cells are shown. Identical results are obtained using transfer matrix as 
well as ADS. 
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excited by the generator, and are easily related to the node 
voltages and currents. For the symmetric T/ double ladder 
circuit we calculate the loaded Qtot factor of the resonance at 

,r d  and show it in Fig. 8 versus load impedance. Here we use 

the transfer matrix method to obtain the state vector voltage and 
current at any node in the circuit, thereupon we use (21) to 
numerically calculate the loaded Qtot factor.   Indeed, the loaded 
Qtot has a minimum at the same value of RL where the total 

phase shift ,r d , in Fig. 7(b), has the steepest slope. In the 

Appendix we provide an analytic expression for the loaded Qtot 
factor using the asymptotic analysis developed in this paper for 

large N. It can be inferred that tot tot,min coshQ Q 2

( / )L cR Z   where   is a fitting constant (see the Appendix). 

Indeed, the loaded Qtot varying as a function of RL has a 

minimum value denoted by tot,minQ  that occurs at a certain load 

impedance RL,min, for a fixed ladder size. Therefore, we notice 
the important property that Qtot of the resonant state of the 
circuit close to the DBE exhibits slight dependence on the load 
value RL, since the variations in r,d with loading are smooth as 
seen in Fig. 7(b), contrary to what happens in single ladders 
which is discussed in the next section. It is worth mentioning 
that it is important to study the behavior of  Qtot,min occurring at 
RL,min, because such load RL,min corresponds to the maximum 

 
power delivered to the load in oscillators [36]; which also 
would be the preferable load for minimizing phase noise [the 
reader is referred to [36] for preliminary investigation of the 
double ladder oscillators].  Note that such unusual behavior of 
the Q factor is often referred to as giant resonance [4], [5], [10], 
[37]. Here we demonstrate rigorously the unusual behavior of 

the DBE resonance of double ladders in terms of stability of 
resonance frequency against loading and the scaling of the 
loaded Q factor. 

 We also report how Qtot changes with a reactive load, in 
which the load impedance is given as L L LZ R jX  . The 

reactive component of the load contributes to increasing Qtot for 
a lossless double ladder, as can be seen in Figs. 9(a) and (b), for 
both capacitive and inductive loads. Remarkably, the Qtot is 
stable (independent of the reactance value) within the range 

1 / 1L cX Z    especially for / 1L cR Z  .  

V. SINGLE LADDER VERSUS DOUBLE LADDER CIRCUIT 

COMPARISON 

We compare transmission phase characteristics across 
ladders of finite size as a function of the load resistance RL for 
the two cases of single and double ladders, supporting an RBE 
and a DBE, respectively. A single ladder is constructed by 
cascading unit cells and terminating both ends by ZL, with both 
conventional T and   topologies, in which the inductors and 
capacitors L and C have the same values as in their double 
ladder counterpart (Fig. 1). Accordingly, these periodic single 
ladder circuits develop an RBE, occurring at an angular 
frequency that coincides with the DBE angular frequency 

1/d LC   of the double ladder. For the sake of assessment, 

we compare single and double ladder of the same size, i.e., same 
number N of unit cells, in addition to having the same 
termination impedances for the double and single ladders. We 
compare four topologies, two pertaining to double ladders (
T /  and / T  topologies as in Fig. 1) and two pertaining to 

single ladders ( T and   topologies as in Fig. 1). The total 

phase shifts across the single/double ladders, namely r,d, are 
defined as the phase of the transfer function 

, 1 1( ) ( ) / (0)F r dT V N V   calculated at their respective 

transmission resonance angular frequencies that are the closest 

to 1/d LC   in each of the four cases (recall that some 

properties of band edge resonance in RBE periodic structures  
are discussed in details in [4], [38]). In Fig. 10 we show the 
transition of the total phase shift r,d varying as a function of the 
load resistance RL for four topologies for the resonance closest 

 
Fig. 8. Loaded Quality factor versus load resistance at the DBE resonance 

,r d  of a circuit with a finite number of unit cells (N =4, 8, 16). The quality 

factor never decreases to low values for any loading. The minimum quality 
factor for each given N-length, tot,minQ , slightly shifts to lower load 

resistances when increasing the double ladder size N. 
 

 
Fig. 9.  Quality factor versus normalized load reactance (capacitive loads 
with X L <  0 on the left, inductive loads with X L > 0 on the right) at the 

DBE resonance ,r d  for various values of load resistance /L cR Z , and N 

= 16. 
 

 
Fig. 10.  Total transmission phase shift 

,r d across the circuit in Fig. 4 made 

of N=8 unit cells versus load resistance for double and single ladder 
topologies. Notice the abrupt phase transition in single ladder’s phase shift 
versus load impedance, compared to the double ladder. 
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to ωd. It is important to observe that the phase shift as a function 
of load is qualitatively different for the single ladder and double 
ladder, which is a non-intuitive feature for these circuits.  

The single ladder T-topology’s phase transitions abruptly 
from zero phase shift at low load resistance to   at some high 
load resistance. The transition is abrupt because the single 
ladder has a high Q transmission resonance at the RBE 
frequency for low-impedance terminations, that appears 
(disappears) for high impedance loads in the   (T) 
configuration [23]. In other words, in an N cell single ladder, 
the number of transmission resonances at very low and high 
load impedance is N+1 and N respectively for the T topology 
and vice versa for the   topology. This may render the single 
ladder circuit’s resonance unstable near this transition (a known 
phenomenon related to mode jumping [23] in single ladder  
multimode oscillators).  In contrast, the T /  double ladder 
topology (with the unit cell shown in Fig. 1(c)) transitions 
smoothly from   at low load resistance to 2 at high load 
resistance. The transition is smooth because the DBE resonance 
makes the transition by maintaining the resonant mode at a 
frequency lower than the DBE frequency and therefore it is 
stable. Thus the number of resonance modes close to the DBE 
is conserved; and the DBE resonance has a stable resonance 
frequency not prone to load variation contrary to what occurs 
for single ladders. This indicates that the total Qtot factor of the 
single ladder circuit can be quite different for some specific 
variations of load impedances and its resonance frequency is 
not stable. Obviously, for extremely high/low load impedances, 
loading effects on the Qtot  are insignificant.  

Now we compare in Fig. 11 the performance of a finite 
double ladder circuit to that of a finite single ladder in terms of 
Qtot when the load resistance varies. Note that despite the total 
inductance and capacitance of the single ladder unit cell is half 
that of the double ladder unit cell (Fig. 1), only the lower ladder 
in the DBE configuration stores most of the energy, in the sense 
that the upper ladder nodes are essentially shorted (RF ground) 
as well as the middle node in T/π lower ladder unit cell (see the 
current distribution in Fig. 6). Therefore, the total number of 
elements that store energy is effectively the same in both 
configurations. The Qtot factor of both circuits has a minimum 
when varying the load value, denoted as Qtot,min corresponding 
to a transition of the transmission phase shift as discussed 
earlier.  Note that the value of the load resistance at which  Qtot 
= Qtot,min differs from Zc as N increases, as discussed in Section 
IV. Observe also that the double ladder has higher Qtot,min for 
larger N (e.g., N = 8, 16) than the single ladder. Such load 
impedance at which  Qtot = Qtot,min diverges from Zc more rapidly 
in the single ladder compared to the same in the double ladder, 
indicating that double ladders tend to maintain its resonance 
frequency and quality factor regardless of the load.  

As shown in Fig. 12 the minimum quality factor Qtot,min 
increases with increasing number of cells for both single and 
double ladders. However, for long ladders (i.e., for N > 5) the 
double ladder has significantly higher Qtot,min than single ladders 
Remarkably, the loaded quality factor for a double ladder scales 
as Qtot,min N 5 while the same for the single ladder scales as 
Qtot,min N 3. For small sized ladders (N < 5) the single ladder 
may have comparable loaded quality factor since the DBE 
feature rises for sufficiently large N.  

For these reasons, double ladder oscillators are the immediate 
application of such resonance circuit that provides for low 

 
threshold as well as stable oscillator frequency to drive a 50 Ω 
impedance load, without the need of external current mode 
logic (CML) buffers to drive such load.  

VI. CONCLUSION 

We have presented for the first time a comprehensive 
theoretical formulation that explains the physical behavior and 
the loading properties of double ladder periodic circuits with a 
fourth order degeneracy. We have demonstrated that a periodic 
circuit whose unit cell is made of only five lumped elements 
exhibits a degenerate band edge in the phase-frequency 
dispersion relation; and we have shown analytically the 
eigenstates (voltage/current) behavior of such periodic circuit 
near the DBE. We have also analytically derived the transfer 
function, resonance frequency and the total quality factor near 
the DBE in such double ladders. The analytical theory 
developed here can be utilized to analyze and design other DBE 
structures.  

The double ladder circuit has several advantages over an 
equivalent single ladder of the same size, in terms of stability 
of the resonance frequency and quality factor against loading 

 
Fig. 11. Quality factor versus normalized load resistance RL/Zc for both 
single and double ladders.  Notice how it never reaches very low values, for 
any loading, especially for circuits with larger number of unit cells. Double 
ladders show smaller variation of quality factor. 
 

 
 

Fig. 12.  Minimum quality factor tot.minQ  vs number of unit cells N (in log-

log scale) for double ladders (squares) and for single ladders (circles). 
Curves are fitted with N5 and N3 trends respectively (lines). For circuits 
having more than 5 unit cells, the double ladder has always larger loaded 
quality factor and has the special growing trend as N5. 
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effects. A double ladder exhibits unusual scaling of the loaded 
Qtot  as N5, where N is the number of unit cells, versus that of the 
single ladder that scales as N3. The finite double ladder is less 
sensitive in several respects to variation in the load resistance 
and has a higher Qtot than the single ladder for somewhat large 
N. Moreover, a double ladder may provide for a low-threshold 
resonance conditions for oscillators, with the property that the 
threshold as well as oscillation frequency is weakly dependent 
on the load as it will be shown in future. In particular, a double 
ladder would operate with a single frequency because the 
resonance near the DBE has the highest quality factor Qtot for a 
certain load, therefore, due to nonlinearity and saturation effects 
discussed in [36], the oscillation frequency will more or less 
coincide with the resonance at the DBE. In addition, the 
oscillation frequency is independent of loading contrary to 
conventional LC tank oscillator or even single ladder 
counterpart. Other applications of such circuit may include 
pulse forming delay lines, pulse compressors, filter, and 
distributed amplifiers.  

APPENDIX: ANALYTICAL EXPRESSIONS FOR THE 

TRANSFER MATRIX AND THE QUALITY FACTOR 

Although the results and conclusions reported in this paper 
are independent of the values of L, and C, yet we have used L = 
45 µH and C = 65 pF that provide for a DBE condition at 100.23 
MHz throughout this paper. These values of L and C can be 
obtained with commercially available discrete off-the-shelf 
components. We stress that the main circuit parameters are the 
DBE frequency and the characteristic impedance; not the 
precise value of L and C. Yet, values and frequency can be 
properly scaled, and other circuit topologies can be devised as 
well. The transfer matrix of the unit cell in Fig. 1 is calculated 
by multiplying the 4×4 matrices of each individual element. The 
calculation is cumbersome, but after simplification the transfer 
matrix reads,  

2

1 (1 / 2) (2 )

1 2 / 2 (2 )
( 1)

2 (2 ) 1

2 (1 ) (4 )(1 / 2) (1 / 2) 1 (2 / 2)

j L j L

j L j L
A

j C j C

j C j C

 
 

 
 

      
       
    
         

T

 

where 22( / )d    . Analytic expressions for the state-

vector solution at resonances ωr,k is given in  [39].  

To calculate the quality factor of the double ladder resonator 
with N unit cells at the resonance frequency ωr,d, we 
conveniently assume that all the energy is stored in the lower 
ladder branch therefore the capacitor and inductors in the upper 
ladder and coupling branches store negligible energy. That is 
compliant with the characteristics of the voltage distribution 
seen in Fig. 6 and with having proven that 0nI    exactly at the 

DBE. Using the currents of the nodes as analytically expressed 
in (21), we write the loaded Qtot factor of the DBE resonant 

mode whose frequency is ,r d  as 

 

  
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2 2
,
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r d d
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 
        

  

where 0 /d cQ L Z . Note the term ((ωr,d/ωd)2 1)   in the 

denominator that is responsible for the large enhancement of 

totQ  near the DBE, since the resonance ,r d  very rapidly 

approaches d  as N increases. This term ((ωr,d/ωd)2 1)  is also 

strongly dependent on the load RL as discussed next. The second 
term in (A2) simply represents a sum of the magnitude of the 
normalized current in the circuit. We analyze two cases: 

 i) Variation of totQ  as a function of N for constant load 

resistance LR . In that case, the term ((ωr,d/ωd)2  1) is 

proportional to 41/ N  [4], [29]. The contribution of the current 

summation term 
2 2

2 2 2 21 2 (1) / (0) ( / 2) / (0)I I I N I    to 

totQ  depends on the load, but for the specific circuit in Fig. 4 it 

is numerically shown that it is proportional to N, hence the Qtot  

of the circuit in Fig. 4 is proportional to 5
N , regardless of the  

specific value of the load LR .   

ii) Variation of totQ  as a function of load resistance LR  for 

constant N. The load resistance also affects the term ((ωr,d/ωd)2 
 1)  in the way described earlier in (19). It can be seen in Fig. 
7(a) that the resonance frequency is varying as a function of the 

load, in an asymptotic fashion as , tanh( / )r d L cR Z    

where   is a fitting constant, as also deduced from (19) and 

(20), and in Fig. 8 we have 0.3   for the specific circuit under 

analysis. Therefore ((ωr,d/ωd)2
  1) 2sech ( / )L cR Z   . 

Finally, the behavior of Qtot versus load resistance RL can be 

expressed as 2
tot cosh ( / )L cQ R Z    which confirms that 

the loaded Qtot factor has a minimum versus load impedance RL, 
at the location where the total phase shift changes, which 
happens close to the condition L cR Z .   
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