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The motion of an axisymmetric column of Navier-Stokes fluid with a free surface is considered. 
Due to surface tension, the thickness of the fluid neck goes to zero in finite time. After the 
singularity, the fluid consists of two halves, which constitute a unique continuation of the Navier- 
Stokes equation through the singular point. The asymptotic solutions of the Navier-Stokes equation 
are calculated, both before and after the singularity. The solutions have scaling form, characterized 
by universal exponents as well as universal scaling functions, which are computed without 
adjustable parameters. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

The breakup of free-surface flows has been an object of 
intense research from the advent of hydrodynamic theory, 
and in particular the discovery of surface tension.‘-3 Namely, 
surface tension is the driving force behind this phenomenon, 
as it tends to reduce the surface area by decreasing the radius 
of a column of fluid. This indeed leads to the formation of 
drops, as is seen most clearly from Rayleigh’s stability 
analysis of an infmite cylinder of fluid with radius rQ. 

He considered perturbations of different wavelengths 
and calculated their growth rates. While long wavelength 
perturbations result in the smallest surface area, they require 
large mass transport between maxima and minima. Both ef- 
fects strike a balance at the wavelength X = 9ra, correspond- 
ing to ‘the fastest growing mode. This type of analysis sub- 
sequently has been greatly refined, for example including 

viscosity,’ surface chargesP or higher order nonlinear 

effects.’ 
However, even higher order perturbation theory rapidly 

becomes inadequate as the thickness of the fluid neck goes to 
zero at a point, and fluid is expelled from this region with 
increasingly high speed. Near the singularity, characterized 
by a blow-up of local curvature, and of the velocity at the 
pinch point, nonlinear effects will soon dominate the dynam- 
ics. An asymptotic scaling theory of this singularity, where 
surface tension, viscous, and inertial forces are balanced, has 
been presented very recently.* 

But eventually the size of the neck or the time scale on 
which it is moving will reach microscopic scales, and a hy- 
drodynamic description breaks down altogether. For ex- 
ample, the neck will evaporate somewhere close to the pinch 
point, where it has minimum thickness. Shortly after that, 
new surfaces will have formed on either side, and this time 
the dynamics is described by two separate Navier-Stokes 
problems. The physical question we address here is whether 
the new initial conditions depend on the microscopic mecha- 
nisms behind the breakup. In other words, taking two differ- 
ent kinds of fluids with the same surface tension, density, and 
viscosity, will the breakup look the same on scales larger 
than the microscopic ones? 

We will indeed show that drop formation is a hydrody- 
namic phenomenon in the above sense. Namely, we construct 
asymptotic solutions to the Navier-Stokes equation after 

breakup, which describe two separate surfaces and which are 
unique continuations of the solutions before breakup. The 
physical origin of this uniqueness lies in the properties of the 
solution before breakup.s The diameter of the fluid neck does 
not go to zero uniformly, but only inside a “hot” region 
around the pinch point. Outside, the solution is static on the 
time scale of the central region. As one approaches the sin- 
gularity, the size of the hot region goes to zero. Hence by the 
time microscopic mechanisms become important, their ac- 
tion is confined to an extremely small region in space. The 
continuation is achieved by matching the outer parts of the 
solution before breakup onto the corresponding regions after 
breakup. S.ince the outer parts are virtually unaffected by the 
microscopic dynamics, this procedure yields universal con- 
tinuations. 

This seems to be the first example of a partial differential 
equation uniquely describing a “topological transition”.’ 
The result is also important for numerical simulations, which 
usually rely on some ad-hoc prescription for the formation of 
a new surface,l’,lr or for breakup in related physical 
situati0ns.l” 

Our paper is organized as follows: In Sec. II we derive a 
one-dimensional approximation of the Navier-Stokes 
equation,‘3T14 valid as the ratio E of the radial to the longitu- 
dinal scale of the flow is small. They have self-similar pinch- 
ing solutions, which are described by a pair of scaling func- 
tions Cp(Q and $(Q for the radius of the fluid neck and the 
velocity, respectively. As the time distance from the singu- 
larity goes to zero, the slenderness parameter E for this so- 
lution vanishes, making it an exact solution asymptotically. 

The scaling functions I$ and + obey two pairs of ordi- 
nary differential equations, one for the time before breakup, 
the other for the time after breakup. For most of the rest of 
this paper, we will be constructing unique solutions to those 
equations. In the third section we consider the similarity 
equations before breakup. Shortly before the singularity, the 
fluid far outside the pinch region is no longer able to follow 
the motion near the pinch point. This leads to boundary con- 
ditions for the similarity functions at infinity, and together 
with a regularity condition in the interior, a unique solution 
of the equations is selected. We compute this solution nu- 
merically. 

The same procedure is adopted in the fourth section for 
the similarity equations after breakup. Here the solution is 
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FIG. 1. A sketch of the tlow geometry investigated in the present paper. The 
radius or “height” of the free surface at a point z on the axis of symmetry is 
H(z). The velocity field inside the fluid is ~(z,r)=u~(z,r)e,+u,(z,r)e, . 

matched onto the profiles before breakup. This solution has 
two halves, each of which is fixed uniquely by the matching. 

The concluding discussion gives an example for the 
breakup of a real fluid, which could be measured experimen- 
tally. We also supply numerical evidence for the uniqueness 
and stability of our theoretical predictions, and discuss re- 
lated work. 

II. SIMILARITY EQUATIONS 

Let us begin by formulating the Navier-Stokes problem 
for an axisymmetric column of fluid, where we assume the 
azimuthal velocity to be zero. A sketch of the geometry of 
the problem can be found in Fig. 1. For a fluid with .kine- 
matic viscosity v, surface tension y, and density p the 
Navier-Stokes equation reads in cylindrical coordihates:15 

= -d,plp+ v(d~v,+&,+d,vr/r-vr/r2), 

d&I,-+v,d,v,+v,d,v, 

(1) 

=-aglp+v(d~v,+d~v,+d,v,lr)-g, (21 

with the continuity equation 

d,v,+d,v,+v,lr=O. (3) 

The acceleration of gravity points in negative z-direction. 
Here u, is the velocity along the axis, v, the velocity in the 
radial direction, and p the pressure. There are two boundary 
conditions, coming from the balance of normal forces, 

u u v= - y( l/R1 -I- 1/R2), (4) 

and tangential forces 

n u t=o. (5) 

In (4),(5) we denoted the outward normal and tangent 
vector to the surface by h and t,’ u is the stress tensor, and 
(l/R I + l/R,)/2 the mean curvature. A standard formula for 
bodies of revolution gives 

J-+-L, 
1 d,2H 

RI Rz H(~+(~$IT)~)*‘~ - (lt-(~?‘,H)~)~~ 63 

where H(z,t) is the radius of the fluid neck, as seen in Fig. 1. 
The equation of motion for li(z,t) is 

dtH+~~d~H=v~~~=~, (7) 

which says that the surface moves with the fluid at the 
boundary. 

Equations (lj-(7) constitute a complex moving bound- 
ary value problem, which we want to mvestigate near a sin- 
gularity, where nonlinear effects are bound to become domi- 
nant. The reason exact solutions, valid arbitrarily close to the 
singularity, can nevertheless be found, is that only very few 
terms in the equations contribute to the leading order force 
balance. Thus to proceed, we first have to identify those lead- 
ing order terms. We will then construct explicit solutions to 
the leading order- equations and demonstrate their consis- 
tency with both the internal structure of the Navier-Stokes 
equation and with boundary conditions. 

The relevant terms are identified using two properties of 
the singularity to be validated later: 

(i) The singularity is line-like, i.e. its axial extension is 
much greater than its radial extension. 

($ Surface tension,. viscous, and inertial forces are 
equally important near the singularity. 

Conditions (i) and (ii) are now incorporated into a per- 
turbation theory. According to (i) we will assume that the 
motion of the fluid at a given- time is characterized by an 
axial length scale I, and a radial length scale I,, for which 

I,= El, ) (8) 

where E is some small parameter. The physical meaning of 
E will come out later from the description of the singularity. 
Also introducing a time scale t, of the singularity, we can 
nondimensionalize all quantities according to 

r = l,F, z=l& t=t,t, 

f+@, 
p 12- 

v= > v, . ..e~ mm& 

I p fzp 
(9) 

The scales I,, I,, and t, are defined to be constants, so their 
derivative with respect to time is zero. However, one must 
bear in mind that the characteristic scales of the singularity 
change, so I,, I,, and t, will be different in different stages 
of the singularity formation. Since there are two length 
scales 1, and I,, there is a certain freedom in the nondimen- 
sionalization of the material parameters v, y/p, and g. This 
freedom is completely specified by the exponents n, m, and 
1 in (9). We will see below that the exponents are fixed by the 
requirement (ii). 

Since the radial extension of the fluid is small, we can 
expand all fields in the dimensionless radial variable i: : 

co 

V,(Z,r’,Z)=C vq(i,t)(Er)2~, 00) 
j=O 

- 7&(Z,i) 
d,(i,?,i) = - G - 

j=. 2.i+2 
( E?)2j+1, 
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and 

(12) 
j=o 

The definition of 5, automatically ensures incompressibility. 
We now insert (9)-(12) into the equations of motion (l)-(7), 
and compare powers in E. The lowest order expressions re- 
sult in a closed set of equations for V. and s, 

a;v,+v,a;v,= 
0 

a,[ ( a&)ti2] 
--Lf%~ +l +3ikn p 

P 

-gel, 03) 

&ii+ 73Of?&= -( d;SO)H/2. (14) 
To obtain closure at higher orders in E, one needs to 

expand each of the coefficients ~2j and P~j, as well as g 
into a separate power series in E. There then exists a consis- 
tent representation of (l)-(7) to all orders in e.16 We will not 
be concerned with the explicit form of the higher order equa- 
tions here, so for simplicity we use the notation u. and H (or 
its nondimensional counterpart) for the lowest order terms in 
the expansion in E. 

It is evident from (13) that the exponents m, IZ, and 1 
det_ermine the balance of forces at leading order. Since the 
l/H term, which comes from the radius of curvature perpen- 
dicular to the axis, is driving the instability, it must clearly be 
present and in fact becomes infinite at the singularity. At the 
small scales involved in singularity formation, viscosity will 
also be important. Finally, velocities are expected to blow up 
as ever smaller amounts of liquid are driven by increasingly 
large pressure gradients. Hence we also expect inertial ef- 
fects to be involved asymptotically. Since the acceleration of 
the fluid diverges at the pinch point, the constant acceleration 
of gravity will drop out of the problem. This is precisely the 
assumption (ii), incorporated by choosing m = 1, n = 0, and 
1>0 in (9), which leads to an equation where surface ten- 
sion, viscous, and inertial forces are balanced, while gravity 
is irrelevant. These assumptions will be tested for consis- 
tency later. 

We now identify the scales involved in the formation of 
the singularity. It is crucial to notice that all external length 
and time scales, which are imposed by boundary and initial 
conditions, do not enter the description of the singularity. In 
a jet experiment, for example, external scales would be the 
radius of the nozzle and the period of the driving frequency. 

Near the singularity, the length scales characterizing the 
solution become arbitrarily small, while time scales become 
shorter and shorter as one approaches the singularity. Hence 
the singularity moves on scales widely separated from the 
external scales. It is for this reason that for the mathematical 
analysis of the singularity we do not have to make the 
boundary or initial conditions explicit. Boundary and initial 
conditions will become important when we describe numeri- 
cal simulations of real experiments, which confirm the con- 
sistency of our approach. 

The proper units in which to represent the motion near 
the singularity can thus involve only internal. parameters of 
the fluid. This leaves us with the units of length and time 

Z,=(pv2)ly, t,=(p2v3)ly2. (15) 

Assuming that the singularity occurs at a point zo, and at a 
time to, the space and time distance from the singularity is 
properly measured as 

z’=(2-20)/zv, t’=(t-t&t,. (16) 

The units I, and t, are a measure of the width of the critical 
region, and are fixed for a given fluid. Singular behavior is 
expected for lz’le 1 and It’] 4 1. Note the conceptual differ- 
ence to the characteristic scales l,, I,., and tZ of the singu- 
larity, which change in time. 

In the variables z’ and t’, the fluid velocity and the neck 
radius are: 

u(z’,t’)= ; u&t), h(z’,t’)+H(z,t). (17) 
v 

Keeping the same terms as in (13),(14) with m = 1, II = 0, and 
I>O, we find in the limit e--+0 

&d(+Jv21 
dtlU+UdZIU=-dZI f +3 p ) 

0 

+h+u+h=-(+u)h/2. (19) 

All material parameters have dropped out of the equations, 
since everything has been expressed in units of 1, and t,. 

At this point it is worthwhile to pause and notice that we 
have already succeeded in reducing the original Navier- 
Stokes problem in two spatial dimensions and in time with a 
moving boundary to just a coupled set of equations in one 
space dimension and time, at least for small E. Approxima- 
tions for thin liquid threads of the type described here have 
in fact a long history, see Ref. 13 for a (by no means com- 
plete) list of earlier references. However it seems that 
(18),(19), which contain the correct surface tension, inertial, 
and viscous terms, were fist derived in Ref. 13. Another 
related approach goes by the name of Cosserat equations, see 
for example Ref. 17. In all previous work except Ref. 8 
though, the resulting one-dimensional equations are treated 
as model equations, whose quality of approximation depends 
on the particular physical situation for which they are used. 
In the present paper, we will show that (18),(19) become 
exact close to pinch-off. 

To this end we have to identify the parameter E. From 
the definitions (15) we find 

P - 
t,lt,= e2 -3-3, 1,/l,= E-&. 

P-v p2 
cm 

Thus up to constants E’ is the characteristic time scale of the 
singularity, written in units of t,. But the only such time 
scale is the nondimensional time distance from the singular- 
ity It ’ I itself. Hence It ’ I serves as the desired smallness pa- 
rameter. We introduced the modulus of t ’ here, since we 
need a measure of the time distance before and after the 
singularity. As It’ I -+O, all higher order terms vanish and 
only the leading order equations (18),(19) remain. By the 
same token, the axial and radial length scales behave like 
Zz-lylt’11’2 and 1,- I,/ t’ 1.) Thus close to the singularity, all 
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length scales become arbitrarily small compared to any ex- 
ternal length scale, just as we asserted above. 

As a corollary to this absence of any fixed length scale in 
the problem, we expect singular solutions to have the simi- 
larity form 

h=lt’1”W.t), u=It’I’W8, (21) 

where the similarity variable 6 is defined as ,$=z’/lt’lfi. A 
similar ansatz has been used in Ref. 18 for a study of inviscid 
flow, but in a different geometry. 

The values of the exponents aI, a2, and /? are inferred 
immediately from dimensional analysis. Namely l,-Z,lt’ I 
implies al=l, Z,ltZ-(Z,ltv)lt’l-*n is a typical velocity 
scale, giving a2= - l/2, and p= l/2 follows from 

h--l& I . ’ Ii2 The appearance of fractional powers forces us 
to use the modulus oft’ in the scaling laws (21). The type of 
similarity solutions we are going to investigate is thus 

h=lt’lqq~), u=+lt’l-l”@(‘f), ~=+z’/lt’l? (22) 

The two different signs take care of identical solutions with 
different parity. The acceleration of the fluid diverges like 
lt’l-3’2, and surface tension, viscous, and inertial forces are 
balanced. Since It’] - E’ we conclude that the exponent 1 in 
(9) is 1=3, which is consistent with our previous assump- 
tions. 

Inserting (22) into (18) and (19) we find that the asymp- 
totic equations of motion indeed have scaling solutions, 
where the scaling functions 4 and fi obey the equations 

~(~/2+5~‘/2)+~~‘=~‘/~~$-3~+6~‘~‘l~, (23) 

s~-~+~~‘/2)+*~‘=-*‘~/2. (24) 

The prime refers to differentiation with respect to 5. The 
terms in brackets come from the time derivative, s = 1 refers 
to the tune before the singularity (t-C to), s= - 1 to the time 
after the singularity (t > to). 

Hence close to the singularity, I t’l+l and Iz’I 4 1, we 
have further reduced the problem to a set of two ordinary 

differential equations. To find unique solutions of (23) and 
(24) we still need to formulate appropriate boundary condi- 
tions. This and the numerical integration of (23),(24) will be 
the subject of the next two sections, first for t< to, and then 
for t>to. 

III. BEFORE BREAKUP 

In this section we consider the similarity equations 
(23),(24) for s= 1, i.e. before breakup. Some of the calcula- 
tions relevant for the next section will be done for general s. 
We show that the similarity equations have precisely one 
physically allowed solution, and compute it. Therefore sin- 
gular solutions are completely universal: once the origins of 
the space and time axes are fixed by specifying z. and to, 
there are no more free parameters. The relevant units of 
length and time are set by the fluid parameters. 

As the similarity equations are of first order in 4 and of 
second order in 9, solutions are specified by three initial 
conditions c$( &), @(&), and +!t’( &) at a reference point 
ti. Universality implies that we need to find three conditions 
which uniquely fix the physically allowed solution. 

For the first condition, suppose we choose a small region 
of width 1,s around the singularity, such that 
S~min(l,L/Z,), where L characterizes some outer length 
scale. For /z’ I =G S and It ’ I < 1 we are well within the critical 
region of the singularity, and effects of the boundaries are 
negligible. Thus the similarity equations (23),(24) apply for 
Iz’I=SandwehaveIt’l+(rf:S/t’l-rD)wh(+S,t’). Firstwe 
observe that the point Iz’ I = S goes to infinity in similarity 
variables as It ’ I + 0. Second, in this limit h at Iz’ I = S will 
not be able to follow the motion of the singularity, whose 
width decreases like It’ ln2, and whose time scale goes to 
zero with It ’ I. Hence h( + S, t ’ ) must approach a finite value 
as It’1 -+O. To be consistent with this physical requirement, 
4(c) must grow quadratically as I El goes to infinity. 

Hence we have two conditions on the solutions of 

(W,W: 
(4 +(c% G/(E) need to be regular on the real axis 

x$ El- m,+q. 
(b) For &+ t ~0, +(6)/g should approach a finite lim- 

iting value. 
Conditions similar to (b) have also been employed in 

Ref. 19. Note that the physical concept behind our argument 
is inertia, which prohibits the large amount of fluid far away 
from the singularity to move with the fluid in the skinny 
pinch region. 

We will now show that the requirements (a) and (b) 
completely determine the solution of the similarity equa- 
tions. In particular, we do not have to specify the limiting 
values of +(E)lE2, they rather come out of the solution of 
the problem. This is consistent because in our analysis we 
deal exclusively with the equations of motion valid close to 
the singularity. No input from regions where the expansion is 
not valid is needed. Thus boundary or initial conditions can 
enter the problem only implicitly, as they determine the po- 
sition of the singularity zo,to. 

Let us begin by examining the behavior of solutions for 
E- +m. It is advantageous to fI.rst eliminate 4 from the 
problem, leaving us with a third-order equation for +.20 To 
this end (24) is written as 

05) 

On one hand this equation can be used to express C$ in terms 

of $6 

+=[(I’-3$“)/K-6$‘]-‘, (26) 

where we have introduced the notation 

K=(s-$V/2)/($fs&2), r=(sE$+3)/2. (27) 

On the other hand, writing + as an integral over the kernel K 

we have 

4= dOexp( lijlK(5)dS]. 
Inserting this into (26), taking the logarithm, and differenti- 
ating, we find 

v=; {(~‘,K)‘+I’+3(V’(K’,K2-3)-6~rK), (28) 
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which is a single equation just in terms of JI. 
Plugging the ansatz +=BE” into (28), one finds the 

leading order behavior on the right hand side to be 

Thus + must decay like l/t or l/t3 at infinity for the terms to 
cancel. In particular, growth of (I/ at infinity is prohibited, 
since the “inertial” term I’ is quadratic in $, and would 
grow faster than any other term in (28). 

Thus one is led to an asymptotic expansion of the form 

+ ;g b&-2’. 

i-0 

i29) 

Only odd powers appear, since (28) is invariant under the 
transformation &+ - 5 and I,&+ - @. Using (26) we can cal- 
culate the leading behavior of C$ corresponding to (29): 

4=a0~2[l+Wt-2~1, ao=2/[6bo-sbI--bi]. (30) 

This means (29) represents precisely the physically relevant 
solutions we are interested in. To further investigate the ex- 
pansion (29), we derive recursion relations for the coeffi- 
cients bi to arbitrarily high order. The lowest order expres- 
sions are 

b2= - ~3b;+7sbobI], 

(31) 

b,=;[ -3Ob;+9b;- 148sbobI-9sb;bI-- lObI 

-8b2(10+3bo)]. 

All bL are thus determined by just two free coefficients, b. 

and bI, or by virtue of (30), a0 and bo. However, the ex- 
pansion (29) is only asymptotic, as for large i the bi grow 

like 

bi-(-12)‘i!. 

This means for large 6 all solutions of (28) are up to 

exponentially small corrections given by a two-parameter 
family of functions $~ObO(~),P1 which behave like l/t as- 

ymptotically. The expansion (29) is asymptotic to $+&~) 

and for sufficiently large 6 can be used to compute 
$~a(6) to any desired accuracy. To understand the signifi- 

cance of this observation, we have to investigate the stability 
of the functions ccl,ab,(Q. 

Doing so turns out to be slightly more convenient in the 
original_ space of initial conditions ( $( $) , (/I(z), +’ (8))) 
where &l is kept fixed. Denoting by c$,&C) the function 
C$ corresponding to e&c)?, we are interested in particular in 
perturbations which carry us out of the two-dimensional 
manifold of initial conditions (4&i), +&a), eanb’(,$)). 
Differentiating with respect to a and b, we find that to lead- 
ing order in $, (O,O,l) is a vector normal to this manifold. 

We now consider small perturbations relative to the so- 
lutions $ab, Ijl,b : 

$(a = Azdml+ E2(8), (32) 

V(O)= (6:b(5)(1+ E3(5)). 

The correction ~j(f) describes the behavior of perturbations 
perpendicular to the plane of asymptotic solutions 4-p, 
$-E-l. Inserting (32) into (23),(24) and linearizing in the 
ci reveals that to leading order Ed behaves like 

~3(6)=~3(E)exp z(&--b . i- I 
Hence for s= 1 an arbitrarily small perturbation intro- 

duced at { will carry the solution away from the physically 
relevant manifold as 151 --+m. Only a two-dimensional mani- 
fold of solutions is consistent with (P(Q/,$2-const as 6 
tends to + ~0 or - 00. This means the requirement (b) corre- 
sponds to two constraints on physically relevant solutions. 
Since the equations are of third order, we need to find one 
additional constraint to uniquely fix the allowed solutions. It 
is worth remarking that the unstable growth (33) comes from 
the presence of the viscous term r/Y’ in (23). Hence in a 
strictly inviscid theory no selection would take place. 

To find the third constraint we look at condition (a), 
saying that 4, r@ be regular. Considering (25) this is a non- 
trivial condition, as + must be bounded and hence there is a 
point to with 

(34) 

Therefore, since s= 1, the denominator in (25) will vanish at 
to, leading to a singularity unless the condition 

$‘(600)=2 (35) 

is also met. To explore the corresponding regular solutions, 
we expand # around to: 

$lt)=Ii di(5-tOo)i- (36) 
i=O 

The function 4 can again be recovered from (26). We 
find 

550 
do=-Eo/2, dl=2, dz=-8(3-l/+o)’ 

d =(104- 165640)d$/75+6#o 
3 2-36+. 

7 

(37) 

where the first two equations follow from (34) and (35). Just 
as in the expansion around [= +m, all coefficients di are 
determined by only two coefficients, to and +o= r$(Eo). We 
verified this statement by deriving recursion relations for the 
di to arbitrarily high order. This time the expansion has a 
finite radius of convergence, whose value depends on the 
initial conditions to, +. . 

It is worthwhile to comment on the physical significance 
of to. The equation of motion for the position .z’~ of a 
marker on the surface h is 

apz~(t)=u(zj(t),t). (38) 
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TABLE I. Some characteristics of the similarity functions I$‘, I$’ before breakup. The symboIs ca and q& stand 

for the position of the stagnation point, where the fluid is at rest in the frame of reference of the interface, and 

the radius of the interface at that point. The minimum value of 4’ is q5&, and .& is its position. The function 
+k’ reaches a maximum value of I&%. The numbers u: and b,f stand for the limits limtir~@+(&@ and 
lim~&‘(~& respectively. All numbers are accurate to the decimal places shown. 

60 4 5 mh A,h A,, d 6 ao 6 

-1.5699 0.030432 -1.6024 0.030426 -3.066 4.635 0.0723 6.047X 1O-4 57.043 

Rewriting z: in similarity variables, & = 1 t ’ I- ?zi , and mea- 
suring time on a logarithmic scale, s = - InIt’], we find 

&~s(~) = t-s/2+ $(&‘,), (39) 

which is the convection equation in similarity variables. 
Hence at the point coo, as defined by (34), a surface marker 
on 4 is at rest. Regularity properties on such “stagnation” or 
“soni~“~ points often play a similar role in selection. 

of the neck decreases linearly in time, and the velocity di- 
verges like It’]- . In Outside this region, both the thickness of 
the fluid neck and the velocity field are constant. Hence as 
[ t’ I --+O, at any given point z # z. the solution will become 
static, and the singularity only occurs at a point z. in space. 

1 

0.6 

0.6 

f/J+ 
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To explicitly compute the unique solution of the similar- 
ity equations before breakup, consistent with (a) and (b), we 
proceed as follows: we choose a pair (& , &) and compute 
the Taylor coefficients di to sufficiently high -order. This 
leaves us with a series representation of tc, in a disk around 
&,. From there onwards, (28) has to be integrated numeri- 
cally. Since as 1i.j -+CQ solutions must be exponentially close 
t0 a two-parameter family Of fUnCtiOnS Ijl,b which are “re- 
pellent,” solutions will generically not extend to infinity, but 
rather end up in a singularity at finite 6. Dominant balanceal 
in (28) reveals that those singularities have the leading be- 
havior +( 5) - (r- 5) -‘. Only a one-dimensional submani- 
fold in (&, c$,,> is consistent with the solution extending to 
either + 00 or - ~0. The point (&, 4,) where both cross cor- 
responds to the unique solution we are interested in. 

h = t’ I$+@,) 

Our numerical procedure was to introduce 5’ and [- as 
the values of ] 51 where I $( 0 I exceeded a certain bound as 
@co or c--+ -a, respectively. We then optimized ,$a and 
& to give maximum values of ef and t-. As solutions 
devia!e exponentially from $a’ab, the “window” around 
([a, &,), which allows for solutions extending up to a given 
151 gets small very rapidly with 161. Thus this method allows 
for a very accurate determination of &, and C& . The numeri- 
cal values we found are quoted, together with other charac- 
teristics of the solution, in Table I. These results, with the 
inclusion of the asymptotic expansion (29), now allows us to 
plot the scaling functions before breakup, ++ and @‘, in 
Fig. 2. 

-20 -15 -10 -5 0 

(4 

2 

4 

As seen in Table I, the stagnation point ,$a is extremely 
close to the point tti where $+ is minimum. This means 
that in the frame of reference of the surface, fluid is expelled 
on either side of the minimum. From Z6in= It’ [*nc,,,i, one 
sees that the minimum moves with velocity 
Umin=(&&2)lt’I-? 

To make contact with the qualitative description of the 
singularity given in the Introduction, we schematically di- 
vide the similarity solution into three regions: A central re- 
gion around the minimum of size ecentral, say, where Q, is 
almost constant, and outer regions on either side, where 4 is 
quadratic. In this simplified picture, in physical space there is 
a region of size ~~ntiallt’l*n around zo, where the diameter 

1 

0 

If+ 

-1 

-2 

-3 

04 

FIG. 2. A plot of the similarity functions ++, (a), and @, (b), before 
breakup. Note the strong asymmetry. 
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In terms of some microscopic length Zmicro , one can estimate 
(molecular) mechanisms to be important in a region of size 

&entral(~m*cro~v~ l/2. 
But perhaps the most striking feature is the extreme 

asymmetry of c$’ and $‘. Indeed, the values of a:, de- 
scribing the amplitude of 4’ as &+ + 03, differ by almost 
four orders of magnitude. intuitively, an asymmetric solution 
is to be expected.t4 Namely, pressure will be higher in the 
slender part of the solution, pushing fluid over to the right. 
This will cause the right side of the solution to fill up with 
even more fluid and get steeper. Eventually, this mechanism 
is only checked by viscosity. But this argument does not 
even give an order-of-magnitude estimate of aoflu~. So 
clearly there is the need for a fully analytical theory of the 
selection problem, which gives at least reasonable estimates 
for the numbers in Table 1. 

Another, perhaps related problem pertains to the unique- 
ness of the above solution. In principle, the one-dimensional 
submanifolds corresponding to the correct asymptotic behav- 
ior as &+ +m and &+--CO could have several crossings, 
giving a. discrete family of solutions. The most reasonable 
guess for a different form of solution would be,a symmetric 
one, which would then be highly unstable, since small asym- 
metries would amplify according to the above mechanism. 
Since to=0 for such a solution, +. would be the only free 
parameter, which needs to be consistent with the behavior at 
ifinity. We carefully looked for solutions of this type, but 
found none. Therefore, to the best of our knowledge, there is 
precisely’one possible solution, but for a fmal word we must 
await a rigorous mathematical theory. 

IV. AFTER BREAKUP 

We now turn to times t> to, i.e. after breakup. In terms 
of the similarity equations (23),(24) this means we have to 
put s= - 1. But apart from the difference in the equations, 
there is a completely new type of problem occurring now, 
related to the mathematical description of a receding tib. 

To understand this, let us consider the asym$otic equa- 
tions (18),(19), which contain the leading order terms of the 
Navier-Stokes equation as the sienderness parameter E goes 
to zero. But this description breaks down as one reaches the 
tip, which is assumed to be at z&(t), see Fig. 3. Namely, the 
slenderness assumption means that d,,h is of order E, while 
&,Jz actually diverges as Z’ --+z&, . Indeed; both the asymb- 
totic form of the pressure gradient (d,,h)/h’ and of the vis- 
cous term dz~[(~,~u)h2]/h2 diverge as h-+0 and d,,h--+a. 

On the other hand, the complete Navier-Stokes problem 
has no singularities as long as I t’l >O. Surface tension will 
ensure that the gradient of the curvature remains finite. 
Hence there is a small region around the tip, whose width 
goes to zero as E+O, where higher order terms in the 
Navier-Stokes equation will be important. Itssize ltip can be 
estimated by saying that the asymptotic equations become 
valid ‘as d,,h becomes of order unity at the edge of this 
region. Thus, since a,, h FJ I, /Itip , we have 1tid.w 1 .I t ’ 1, using 
the known scaling of the radial length scale I, with It’l. 

Now we transform to similarity variables E=z’// t ’ I l/2, 
where &,=z&, /It ’ I In is the position of the tip. Since the 

FIG. 3. A cartoon of a receding tip after breakup. The position of the tip is 

4*pw 

width of the tip region shrinks as It’ I, it will go to zero like 
lt’l’~ even in [-variables. In the neighborhood of any 

5 f 1 6lip 9 a[ the similarity equations will be valid as 
It’ 140. Thus to capture the leading self-similar behavior of 
the Navier-Stokes equation after breakup, one just has to 
find the correct boundary conditions for 4 and + at Eli,. 
This situation is reminiscent of the boundary condition at 
[= + w before breakup: .For It ’ I + 0 the range of validity of 
the similarity equations extends to infinity, so supplying 
boundary conditions at c= + h suffices to uniquely solve the 
problem. 

.,. . 

To derive the correct boundary’ condition, we proceed as 
follows: We supplement (18),(19) with higher order terms in 
E, which regularize the equations at the tip. The correspond- 
ing similarity equations in 4 ‘and (I, now still contain t’ as a 
parameter, but are finite as &+ 5ti, . This means ‘solutions of 
those equations can be supplemented with the natural bound- 
ary condition c$( &,j = 0:’ ” 

Then we derive a simplified version of the equations 
valid at the tip, which we’ can integrate explicitly, using 
4( $+,j = 0 as a boundary condition. Now we can take the 
limit It ’ I -+O . or ~--to, which leaves us with’ the correct 
boundary conditions. for 4 and I$, valid for t’ =O. We also 
show that this result is independent of the particular regular- 
ization we have been using, so the result is unique, as ex- 
pected from the above argument. Once ‘the boundary condi- 
tion has been found, we can solve the similarity equations to 
find a unique solution after breakup. 

No knowledge of the fluid motion in the tip region of 
size 1,] t’l is needed to’ calculate the self-similar part of the 
solution. It remains an interesting open problem to devise a 
method’to compute an approximate solution in,@!) tip region. 
However, since this region becomes arbitrarily small as 
1 t’ l--+0, .we will not be concerned with this ‘question in’ the 
present paper. 

To construct a regularized version of (18), we observe 
that it can be generalized m the form? ’ b 
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d,,h+ud,,h=-(d,,ujh/2, 

with 

(41) 

1 dE 

[ 

d aE 

p= 2h dh - dz’ a(a,rh) * 1 
Here E=E(h,d,th) is a surface energy and 

D=D(h,d,,h) a dissipation kernel. This nomenclature is 
motivated by the fact that J,lp may be written as 

dE 
h2p+ C&h) a(a,,h) -E 1 7 

and hence we have the conservation equation 

-$[h2u2/2+E(h,a,thj] 

=-(&ujDj2 

1 . 

(42) 

So apart from a surface term this equation says that the 
sum of kinetic and potential energy decreases with a negative 
definite dissipation rate s= -((~?,tu)D)~. In the present 
context, (40),(41) are phenomenological equations. There are 
certainly other higher order correction terms present in the 
Navier-Stokes equation, which have not been included. 
However, the only important point here is that E and D can 

be chosen such as to make the equations finite at the tip. In 
Ref. 14 we already introduced a variant of (40),(41) with 

E(h,d,~h)=2h(l+(d,~h)2)1’2. (43) 

This energy is proportional to the surface area and arises 
naturally when keeping the complete curvature term in the 
boundary condition (4). 

If the surface at the tip is nondegenerate and the velocity 
field is regular, we simply have h(z,t)=h,(t) 

X(Z’-Z;,,)~~ + O(Z’-Z&,)~‘~ and u(.z,t)=~~(t)+~~(t) 

X(z’ -z&J + O(z’ -.z&J2. As is verified by inspection, the 
particular form (43) of E succeeds in keeping dzlp finite as 

I z +z&, . Introducing 

D(h d th) =h(3/( 1 + (dz,h)2))1’2 Y z (44) 

for the dissipation kernel, the same is true for 
d,,[(Jztu)D2]lh2, hence all terms in (40) .are now finite at 
the tip. At the same time, the asymptotic equations (18),(19) 
are recovered for E+O, as this corresponds to 

E asymp=2k D,,,,=~3h. (45) 

By construction, all allowed functions E and D must 
have the same limit (45). We now insert (22) into the regu- 
larized equations (40),(41). For t>tu, denoting lt’11’2 by I, 
we obtain: 

-~~2-~~‘12+~~‘=-G’l~2+(~‘D2jrl~2 (46) 

and 

6 @‘/2+- $4’ = - @’ 412, (47) 

where 

(48) 
0~4 

Here for simplicity we have used the special forms (43) and 
(44) for E and D. For I= 0 we recover the asymptotic equa- 
tions (23),(24), while for finite 1 all terms are regular at the 
tip as 4 and I/J behave like 

4-C5-t*ip)1’22 1cI-(E-ttip)* (49) 

To focus on the tip region, we introduce the resealed 
fields 4 and $Z 

(50) 

L=z-1!15-5tip>- 

In resealed variables, the equations are 

~2~[-~/2-t~‘/2+(Gl~‘]-l~2~tip/4={-~+11/1~2}r, 

(51) 

and 

&~~‘/2+lj++&2, $~ (52) 

with 

G=- 4 6”P 
/l+g5’2)“2-(1+~‘2)3/2’ 

(53) 

In (51)-(53) and (54) below, primes refer to differentiation 
with respect to the resealed variable 5. 

The only place where 1 ‘still appears is in front of the 
“inertial” terms on the left hand side of (51). This is because 
any fixed region 5 E [O,lr] near the tip shrinks to zero in 
&variables as l--+0. But the’fluid at the tip should move with 
the boundary, so it is at rest in the frame of reference of the 
tip. Indeed, since the left hand side of (51) only contains 
lower order derivatives, the limit 140 is regular at fixed 
initial conditions for 4, I,% at 0. 

Hence by putting Z= 0 in (51) we obtain a simplified 
description of the tip region, which is uniformly valid in any 
fixed interval [OJr]. Note that implicitly I is still present by 
virtue of (50). Solutions of the resulting equations corre- 
spond to ,a very much blown-up version of the tip. Since the 
solutions are regular at c=O, we can employ the natural 
boundary condition 4(O) =O, and from (53) we have 
G(O)=D(O)=O. This means (51) can be integrated to give 

G = ,‘,2* ‘(54) 

We now supply appropriate matching conditions, which 
express the consistency of (52) and (54), valid at the tip, with 
the solutions outside the tip. At fixed c, $J(Q and (/lc,$) are 
finite in the limit Z-+0. Since the tip region gets arbitrarily 

948 Phys. Fluids, Vol. 7, ho. 5, May 1995 Jens Eggers 

Downloaded 25 Aug 2004 to 129.171.178.62. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



small in [-variables this is physically reasonable, but has 
also been checked numerically by integrating (46),(47). 
Fence we have to require 4, (/I to behave like J(l) w or and 

$(f)/5- K2 for large J+. In view of the scaling (50) this 
makes them consistent with 4(t), G(l) finite. Inserting 
4(l) = ~~ and 9(l)= ~2[ into (52) and (54), one confirms 
this ansatz to solve the equations, and finds K~= - 2 and 
~~ = l/6. So, again considering (SO), the lowest order terms 
of 4 and (/I as (e- t,ip) tends to zero are c$= l/6 and 
$= ttiJ2-2(5- .&,). In other words, at Etip we have the 
boundary conditions 

(PC 5tiJ = V6, 

~&pP) = &p/2. 
(55) 

This boundary condition implies that the asymptotic shape of 
h is a step function of height It’ll6 at the point z&t). 

It is important to notice that this result is independent of 
the particular form of regularization (43),(44) we have been 
using. For example any other term involving h leads to a 
term 12$ and drops out as l-+0. Another contribution +h 
gives 4’ and also does not contribute as we finally set 
$=Kl. 

It only remains to formulate boundary conditions for 
64~. At large distances from the singular point z. both the 
interface and the velocity field should look the same as be- 
fore breakup. This is the same reasoning that made us con- 
struct solutions which far away from z. are static on the time 
scale of the singularity. As the width of the singular region 
shrinks to zero like [t I ’ In, the large body of fluid outside is 
not able to follow. Here it provides us with the mechanism 
for unique continuation: For the two solutions to coincide we 
must require that 

lim $(E)152=ao’, 
(h+m 

lim g(t)t=@. 
(56) 

‘$+frn 

We will see that (55),(56) are all the boundary conditions 
needed to uniquely solve (23),(24) after breakup. Since the 
constants a0 and b. are different for the left and right hand 
side of the problem, the solutions will also differ. In particu- 
lar, the value of &, consistent with (56) depends on a0 and 
bo. The requirement (56) thus represents the way the prop- 
erties of the solution before breakup are communicated to the 
solution after breakup. Inserting the ansatz 

~=1/6+~,(E-5,i,)n~e..,, 

~=51,/2-2(5-5ti,)+eo(E-~~i,)P+... 
(57) 

into the similarity equations and balancing leading powers 
we find LX= 2/5 and p= 715. We therefore try the general 
expansion 

t~=~trpi2+(&-~tipj 
[ 

-2+g ei(-$-ftjp)(2+i)‘5 . 
i=O I 

(58) 

Again, by (26) it is sufficient to consider the expansion 
of $. The first few coefficients are 

e0=%&, e,=O1 e2 = - y&p;, e3 = - &&Q . 

(59) 

We confirmed, by deriving recursion relations for the 
ei to arbitrarily high order, that all coefficients are deter- 
mined by the two free parameters cfip and ~$r. Since the 
power series (58) has again a finite radius of convergence, all 
solutions starting from ttip are classified by just two param- 
eters. But for t> to the behavior for IEl400 is very different 
from the situation before breakup. We now have s= - 1, and 
according to (33) the asymptotic behavior $-E”, I,& 5-r is 
stable. So integrating the similarity equations to infinity, for 
every value of 5tj, and C#Q we will find a unique value of 
lim+&( aIt2 and lim*,, $( E) 6. Hence the boundary con- 
ditions (56) are precisely what is needed to uniquely fix 
ttrp and +t, and thereby uniquely determining the similarity 
solution +- and I++- after break@. 

Obviously, this has to be done for the left and right hand 
sides separately. The left hand side corresponds to a receding 
neck, the other is the main drop. We denote the values of 
&, and C#Q by &;teck and &eck for the left hand side, and 

5 dip and +drop for the right hand side. The result of a nu- 
merical calculation of c$- and $- can be found in Fig. 4, 
some of the characteristics of the solution are listed in 
Table II. Specifically, the neck recedes with the velocity 

uneck 

where &&/2=8.7. Unfortunately, on the scale of Fig. 4 it is 
hard to see any deviations from a flat interface for the drop. 
Figure 5 below will give a better idea of how the drop is left 
distorted after breakup. 

It should be appreciated that the unique continuation 
does not follow from the asymptotic equations (23),(24) 
alone. Rather, we needed to invoke regularity for 1 t’ I # 0 to 
derive the boundary condition +-(&,) = 116. Indeed, (23) 
and (24) with s = - 1 would allow for an infinity of solu- 
tions, one for each value of #(trip). 

V. DISCUSSION 

We have shown that the tnotion of a Navier-Stokes fluid 
close to the time of breakup is described by self-similar so- 
lutions. The corresponding scaling functions, before and af- 
ter the breakup, are solutions to a set of ordinary differential 
equations. For the solutions to be consistent, both away from 
the singular point and at the receding tip after breakup, 
boundary conditions have to be imposed. They lead to 
unique solutions of the similarity equations. This means so- 
lutions to the Navier-Stokes equation close to the singularity 
are predicted without adjustable parameters, and independent 
of boundary or initial conditions, It is quite instructive to plot 
the predicted interface of a real fluid at constant time inter- 
vals before and after the singularity. Since I, and t, are al- 
most on molecular scales for water,14 we take a mixture of 
glycerol and ethanol as a reference fluid, for which I, 
=72 ,um and t,= 114 w. This is large enough for experi- 
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FIG. 4. The similarity functions q5’:: (a), and $-, (b), which are u&ue 
continuations of q5’ and @ to times greater than tn. The asymptotic behav- 
ior for .$-too is by definition the same as before breakup. On the left is the 
rapidly receding “neck” part of the solution, on the other side is the drop. 

The points at 5ncck and &drop, from where the interface is plane, are marked 
by diamonds. 

. 

ments by optical means to be feasible. Measurements of the 
velocity field are also possible.” Figure 5 shows three pro- 
files, each 46 ,!,&s apart, before the singularity (a), and after 
the singularity (b). This corresponds to It’ ] =l, 0.55, and 

TABLE II. Characteristics of the similarity functions 4-, $- after breakup. 

The tip position of the left, hand, or neck side is tnecr, and the expansion 
coefficient 4, cf. (57), iS +neek. Correspondingly, ldrop and +d,, unicptely 
dete%ne the “drop” side of q5- and 1,5-. The values of co’ and b$ are the 
same as before breakup, cf. Table I. 

6 neck 4”iCk 6dr.o p 4 drop 

,c 17.452 0.06183 0.4476 0.6180 
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72 pm 

t-t,=-114ys,-63ps,-11 /s 

Before Breakup 

72 pm 

t-t,=11 ps,63ps, 114~s 

(b) 
After Breakup 

FIG. 5. The breakup of a mixture of 5 parts of glycerol in 4 parts of ethanol, 
as calculated from the similarity solutions. Part (a) shows three prohles 
before breakup, in time distances of 46 jis, corresponding to lt’l=1,0.55, 
and 0.1. In part (b) the same is shown after breakup. 

0.1. 1~ Rarticuiar, there is no freedom in the spatial scale of 
this 3igure. The same graph should apply regardless of 
boundary conditions. 

Before breakup, one can clearly distinguish a very slen- 
der neck, and the steep front of the adjoining drop. As the 
neck becomes thinner, the minimum moves towards the 

drop, making the interface even steeper. The greatest relative 
changes in the diameter occur near the minimum, far away 
the interface is practically static. As one comes closer to the 
singularity, the size of the “active” region, which is still 
changing, becomes smaller and smaller. 

After breakup, the neck snaps back very rapidly, forming 
a sharp front at the end. For I t’l = 1, higher order corrections 
in. 1 t’ I wiil Rrobably be already important, and the end will 
look morerounded. As seen in Fig. 4, there is also some fluid 
accumulating at the end in the asymptotic solutions, but this 
cannot beseen on the scale of Fig. 5. The small protrusion on 
the drop, left by the breakup, quickly relaxes to an almost flat 
interface. 

.The asymmetry of the breakup was already noticed in 
experiments.Z’X However, one must be careful not to apply 
our results to those experiments directly, since they are on 
length and time scales r’?+l,lt’I~+l, far away from the as- 
ymptotic behavior. Still our similarity solutions could piay a 
crucial role for the shape selection even in this “inviscid” 
regime, since all solution must ultimately match onto the 
asymptotic behavior. Clearly, an extension of our theory to 
the almost inviscid regime seems highly desirable. 

Recently, an experimental study of drop formation in a 
highly viscous fluid has been reported.” Quabtatively, the 
shape of the interface adjoining the primary drop agrees well 
with Fig. 5. Also, the length and time scales of the similarity 
solution, as given by the present theory, have been used to 
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analyze the data and are found to be consistent with experi- 
ment. Unfortunately, at the times shown in Figs. 2A and 2B 
of Ref. 27 the straining due to the falling drop is still appre- 
ciable compared with the scales of the similarity solution. 
Also, there is no independent measurement of t’ available, 
which makes a meaningful comparison with theory difficult 
at present. We will discuss the process of repeated necking, 
reported in Ref. 27 below. 

Extensive experiments with high-speed jets, where grav- 
ity is irrelevant, are also in progress.28 The stroboscopical 
method employed for example in Ref. 29 allows to deter- 
mine t’ independently, so comparison with theory can be 
made without adjustable parameters. Preliminary results 
show nice agreement with theory before breakup. After 
breakup a quantitative comparison with theory is not yet pos- 
sible, due to air drag on the rapidly receding neck, whose 
effect is not yet included in the equations. 

Therefore, we will use numerical simulations for a de- 
tailed comparison with theory. In particular, we would like to 
verify the prediction of the theory that the same similarity 
solutions are always approached, independent of boundary or 
initial conditions. Indeed, some simulations have already 
been performed on the breakup of a Navier-Stokes fluid,30 
but they are not sufficiently close enough to the singularity to 
allow for a meaningful comparison. This is because in the 
asymptotic region Navier-Stokes computations become pro- 
hibitively expensive. To make simulations feasible, one has 
to resort to approximations. 

As model equations, we take the generalized form of the 
asymptotic equations (40) and (41). Extensive simulations of 
this system before breakup were already reported in Refs. 14, 
3, and 27. The equations read 

d,r~a+~~d~~~= - ; dg+3v dzt”;;)H21 -g, (61) 

a,H+uoa,H=-(d,uo)H/2, (62) 

where 

1 d,2H 

‘= H(l+(dZH)n)ln - (l+(aZH)2)= 
(63) 

So apart from the asymptotic terms already contained in (18) 
and (19), (63) contains the exact expression for the mean 
curvature of a body of revolution. The system (61)-(63) was 
supplemented with two types of boundary conditions14. 

Iu the “jet geometry” we fix the values of H and u. at 
two fixed points z+ and z- : 

H(z, ,t)=H,(t>, (64) 

u& ,t)=u*(t). (65) 

Hence here we envision a jet of length z+ -z- with nozzle 
radius H+ = H- = r. and speed u + = u - = V. At some point 
in time a small perturbation is applied to the speed u - at the 
nozzle and the jet breaks up according to the Rayleigh insta- 
bility. The jet speed is so high that gravitational effects can 
be neglected, and thus g = 0. 

In the “drop geometry” fluid is released slowly from a 
tap. Thus at the opening of the tap, t- say, boundary condi- 

tions (64) and (65) hold, while at the lower end of the drop 
the boundary moves with the fluid. This means we have 

Wz+(tM =O 

and 

056) 

uo(z+(t>,t)=4z+(t). (67) 

In this experimental situation gravity is of course important, 
as initially gravitational and surface tension forces are bal- 
anced, and the drop assumes an equilibrium shape.31 These 
shapes are reproduced exactly by the stationary solutions of 
(61)-(63). Eventually, gravity overcomes surfaces tension 
and the drop falls and subsequently pinches off. 

The implementation of boundary conditions as well as 
the numerical procedure is explained in detail in Ref. 14. In 
Refs. 14 and 2’7 simulations of (61)-(63) have been used to 
reproduce experimental interface shapes both for high and 
low viscosity fluids in different geometries. In particular in 
the case of a slowly dripping tap,26 both boundary and initial 
conditions are known and comparison with experiment can 
be done without adjustable parameters. Thus the excellent 
agreement between simulation and the experimental shape of 
a falling drop at the pinch pointi seems highly significant. 
Therefore we are confident that (61)-(63) represents a good 
approximation to the Navier-Stokes equation not only close 
to the pinch point, but also for earlier times and including the 
crossover to the boundary. 

We have performed systematic tests of the predictions of 
the present theory, in particular investigating the indepen- 
dence of the singular behavior near break-off from boundary 
conditions. For all runs, both in the jet and the drop geom- 
etry, and independent of the nozzle or tap diameter and of the 
viscosity, we always found the flow to converge onto the 
similarity solution predicted by the present theory. 

Figure 6 shows this convergence for a typical run in the 
jet geometry. The nozzle diameter is 100 in units of I,, . The 
solution near the singularity has been converted to similarity 
variables, thus giving 4(E) and (//(E) using the transforma- 
tion (22). Shown is the predicted similarity solution as a 
solid line, and the computed solution at times [ t’l=O.39, 
0.13, 0.043, and 0.014, represented by dashed, chain-dashed, 
dot-dashed, and dotted lines. It can clearly be seen that the 
range of validity of the similarity solution expands like 
p~-1/2 in the similarity variable 5. This means there is a 
fixed region in Z’ where the similarity theory applies, in 
agreement with the statements of Sec. III. At the boundary of 
this region, the slope a,lh becomes of order unity, and the 
expansion in orders of E breaks down. 

The motion shown in Fig. 6 occurs on scales widely 
separated from those imposed by the boundary conditions. 
The time distance from the onset of the linear instability to 
the singularity is to lt ,,= 32284, much larger than the relevant 
t’ . Similarly, the nozzle diameter, converted to the similarity 
variable t, is 5= 157, 272, 473, and 829, for the times 
shown. Clearly the motion near the singularity has become 
independent of these imposed length and time scales. The 
same will happen for any boundary condition, as both the 
typical time and length scale shrinks to zero near the singu- 
larity. 
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FIG. 6. Simulation of (61)-(63) in the jet geometry. The profiles close to 
pinch-off were converted to similarity variables. The full line is the predic- 
tion of the present theory; the dashed, chain-dashed, dot-dashed, and dotted 
lines represent the simulation at ]t’l=O.39, 0.13, 0.043, and 0.014. The inset 
contains a blowup of the central region with only the latest time, lt’l=0.014. 

Next we test the convergence onto the similarity solution 
after breakup. Since there is a moving tip, we modify the 
viscous term in (61) to regularize the tip. The force balance 
now reads 

Y =-- 
P 

dg+3v a,[(a,uo)H2/(1+a(d,H)*)1 
H2 

-g, 033) 

where a is a free constant. By varying a we can test our 
prediction that the shape of the interface after breakup does 
not depend on the regularization employed. 

To produce an initial condition after breakup, we take a 
simulation before breakup, which has progressed to a time 
distance of 1 t’ I= 10m4 from the singularity. Then we cut the 
solution at the minimum and interpolate H to zero with a 
polynomial, so as to keep the highest derivatives smooth. 
This we take as the new initial condition after breakup and 
let the solution evolve under (68), (62), and (63). For a wide 
range of values of a in (68), we always find the solution to 
converge onto the similarity form found in Sec. IV. Figure 7 
illustrates this convergence for a run which has the same 
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FIG. 7. The approach of the similarity function d- by the solution of (68), 
(62) and (63) in the jet geometry, transformed to similarity variables. The 
fluid neck is severed at lt’l=lO-’ before breakup. The full line is 4-, the 
dotted line the solution before breakup. The dot-dashed and the dashed lines 
show the simulation at lt’l=0.006 and lt’l=0.06, respectively. 

boundary conditions and material parameters as the one 
shown in Fig. 6 before breakup. The constant a was chosen 
to be 1. Again, solutions were converted to similarity vari- 
ables. The full line represents the predicted similarity solu- 
tion, the dot-dashed and the dashed lines show the numerical 
simulations for 1 t’ I = 0.006 and It’ I = 0.06 after the singular- 
ity. The dotted line is the similarity solution before breakup, 
shown for comparison. It can clearly be seen that after the 
solution has been cut in two halves it rapidly converges onto 
the predicted similarity form. This is independent of both the 
regularizing term in (68) and the procedure by which the 
solution is cut. 

Hence both before and after the singularity, we have al- 
ways observed convergence onto the similarity solutions if 
It’ j is small. Still it would be very useful to have a better 
mathematical understanding of the approach of the similarity 
solution for the full Navier-Stokes dynamics. Even for the 
simplified model equations (61)~(63) the convergence we 
found numerically is far from being a trivial result, as there 
are higher order derivative terms like @H coming from the 
pressure. In principle, although these terms are multiplied by 
a small number t’ close to the singularity, they could make a 
singular perturbation, which changes the asymptotics. How- 
ever, it is well beyond the scope of this paper to explore 
these questions in detail, so at present we have to rely on the 
ample numerical evidence. 

Another important question is the stability of the simi- 
larity solution to small perturbations. This has been studied 
in the framework of the asymptotic equations (18),(19) in 
Ref. 32, both numerically and analytically. The result is that 
the similarity solutions are linearly stable as expected, since 
there are observed numerically. On the other hand, they are 
unstable to finite amplitude perturbations of wavelength 
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comparable to the minimum radius of the fluid neck. 
As soon as a perturbation is large enough, it will start to 

grow and eventually forms a new similarity solution with its 
own z. and to. For any finite number of such perturbations, 
the singularities are separated in space and the present theory 
strictly applies. However, if one explicitly adds an external 
white noise source to the Navier-Stokes equation, perturba- 
tions are introduced on all time scales arbitrarily close to the 
singularity. This allows for the appearance of a “rough” in- 
terface as described in Refs. 27 and 32 consisting of an in- 
finity of interacting similarity solutions. Locally, the form of 
each of those solutions, seen as “necks” in experiment, is 
consistent with the present theory. 

In Ref. 32 a threshold length scale 

1 
IT m 

th=s-L j- ( 1 Y (69) 

was identified, below which thermal fluctuations become im- 
portant. The relevant thermal length scale for surface pertur- 
bations is IT= &J/y) 1’2. For a mixture of 85% glycerol and 
15% water lrhres is 1 ,um. Thus, in the presence of thermal 
fluctuations, the microscopic length scale Zmicro introduced in 
Sec. III may be replaced by Zihres: for Hmin larger than 
1 *Itres the Navier-Stokes equation is applicable, on smaller 
scales the equations are inherently stochastic. 

An obvious benefit one expects from the universality 
found in the present paper is the unique continuation of 
Navier-Stokes simulations through the singularity. One 
slight problem lies in the nonanalyticity of c$- and tc/- if one 
wants to use similarity solutions as new initial conditions 
after breakup. Although the pressure itself would be finite, 
pressure gradients and the viscous term would be infinite at 
the tip. Thus it is better to use regularized similarity func- 
tions, where a small but finite cutoff parameter I has been 
introduced. The resulting initial conditions for the new 
Navier-Stokes problem after the singularity would be arbi- 
trarily close to the similarity form, but still finite at the tip. 

In conclusion, we have shown that the Navier-Stokes 
equation carries us through the bifurcation point where at 
first it seems meaningless. As usual, classical hydrodynamic 
theory has a much wider range of applicability than purely 
microscopic considerations would tell us. 
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