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Abstract The problem of dynamic symmetric
branching of a tensile crack propagating in a brittle
material is studied within Linear Elastic Fracture
Mechanics theory. The Griffith energy criterion
and the principle of local symmetry provide nec-
essary conditions for the onset of dynamic branch-
ing instability and for the subsequent paths of the
branches. The theory predicts a critical velocity
for branching and a well defined shape described
by a branching angle and a curvature of the side
branches. The model rests on a scenario of crack
branching based on reasonable assumptions and
on exact dynamic results for the anti-plane branch-
ing problem. Our results reproduce within a simpli-
fied 2D continuum mechanics approach the main
experimental features of the branching instability
of fast cracks in brittle materials.
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1 Introduction

The continuum theory of fracture mechanics is
concerned with the quantitative description of the
mechanisms of crack nucleation, the conditions
under which they propagate and their dynamics
(Freund 1990; Broberg 1999). For brittle materials,
the relationship between internal stress and defor-
mation and the balance laws of physics dealing with
mechanical quantities do not include the possibility
of material separation. Consequently, the equation
of motion of the crack front is based on additional
statements on crack growth. The most frequently
used criterion of crack propagation in two dimen-
sional elastic brittle materials consists of two parts:
Griffith’s hypothesis and the principle of local sym-
metry.

The Griffith’s energy criterion (Griffith 1920;
Freund 1990; Broberg 1999) states that the inten-
sity of the loading necessary to produce propaga-
tion is given by G = �, where G is the energy release
rate and � is the fracture energy of the material
(i.e., the energy needed to create new surfaces).
The principle of local symmetry states that the
crack advances in such a way that in-plane shear
stresses always vanish in the vicinity of the crack
tip. This rule was first proposed for quasi-static
cracks (Gol’dstein and Salganik 1974; Leblond
1989), and generalized to rapidly moving cracks
(Adda-Bedia et al. 1999). It was shown in
(Adda-Bedia et al. 1999) that the two criteria arise
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from the same physical origin. The energy release
rate is the component of the driving force along
the direction of crack motion, F1. Griffith’s energy
criterion may then be reinterpreted as a mate-
rial force balance between F1 and a force that
resists the crack advance, i.e., F1 = �. However,
this equation is not sufficient to determine the tra-
jectory of a crack. If one assumes that material
force balance holds at the crack tip, one should
impose the component of the material force per-
pendicular to the direction of crack propagation
to vanish. This condition is identically satisfied if
the loading in the vicinity of the crack tip is purely
tensile.

The Griffith criterion and the principle of local
symmetry predict adequately the path and the sta-
bility of slowly propagating cracks (Adda-Bedia
and Pomeau 1995; Adda-Bedia and Ben Amar
1996; Bouchbinder et al. 2003; Marder 2004). Con-
trolled experiments on quasi-static cracks confirm
the theoretical results (Yuse and Sano 1993; Ronsin
et al. 1995). In the case of fast crack propagation,
experiments on different brittle materials (Ravi-
Chandar and Knauss 1984; Fineberg et al. 1992;
Gross et al. 1993; Boudet et al. 1996; Sharon et al.
1995; Sharon and Fineberg 1996, 1999; Livne et al.
2005) have identified a dynamic instability related
to a transition from a single crack to a branched
crack configuration. The instability occurs when
the crack speed exceeds a critical velocity vc, which
does not depend on the applied traction and on the
geometry of the plate. Above vc, a single crack is
no longer stable. Instead, a repetitive process of
micro-branching occurs, which changes the crack
dynamics : the acoustic emission from the crack
increases (Boudet et al. 1996; Boudet and Ciliberto
2000; Gross et al. 1993), the crack velocity develops
strong oscillations and a pattern, which is corre-
lated with the velocity oscillations, is observed on
the fracture surface (Fineberg et al. 1992; Sharon
et al. 1995; Sharon and Fineberg 1996, 1999; Livne
et al. 2005).

Some aspects of this dynamic instability were
described in the framework of the theory of brit-
tle fracture mechanics (Adda-Bedia 2004b, 2005;
Bouchbinder et al. 2005). These studies were based
on Eshelby’s approach which states that, as in the
single crack case, a growth criterion for a branched
crack must be based on the equality between the

energy flux into the two propagating tips and the
energy required to open the material and create
new surfaces as a result of this propagation
(Eshelby 1970). The problem of determining the
in-plane dynamic stress intensity factors immedi-
ately after branching was formulated in (Adda-
Bedia 2005). It was shown that the in-plane elastic
fields immediately after branching exhibit self-sim-
ilar properties, and that the corresponding stress
intensity factors do not explicitly depend on the
velocity of the single crack tip before branching.
These properties are similar to the mode III crack
branching problem, which was solved exactly in
(Adda-Bedia and Arias 2003; Adda-Bedia 2004a).
This similarity suggests that under plane loading
configurations, the jump in the energy release rate
due to branching is maximized when the branches
start to propagate very slowly. Under this assump-
tion, the branching of a single propagating crack
under tensile loading was found to be energetically
possible when its speed exceeds a certain critical
value (Adda-Bedia 2005). The theoretical results
for the critical velocity and the branching angle
agree fairly well with the available experimental
results (Fineberg et al. 1992; Sharon and Fineberg
1996, 1999; Livne et al. 2005).

The main purpose of the present study is to
perform a quantitative analysis of the subsequent
paths followed by the branches. Following
(Karihaloo et al. 1981; Leblond 1989; Amestoy and
Leblond 1992), the asymptotic expansion of the
stress field at the tip of a curved extension of a
branched crack is presented. Using these exact res-
ults, the paths selected by the branched cracks are
derived. As a main result, the experimentally obs-
erved shape of the branches (Sharon and Fineberg
1996, 1999; Livne et al. 2005) is recovered without
introducing any additional parameters. The pres-
ent study shows that both the branching instability
threshold, the branching angle and the subsequent
paths of the branches can be predicted within the
continuum 2D theory of brittle fracture mechan-
ics. Note that the present analysis provides a neces-
sary condition for branching and not an instability
mechanism for it. In addition, the branching insta-
bility in real systems is of 3D nature (Livne et al.
2006). Therefore, the present study should be seen
as a step towards a complete understanding of this
phenomenon.
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For the sake of clearness, the second section
of this paper summarizes the results obtained for
the branching problem: the branches shape, their
dynamics as well as the dynamic instability are
determined. In this paper a systematic analysis of
the branching problem is made, and due to rea-
sons of completeness, some of the results already
communicated in (Adda-Bedia 2004b, 2005) are
presented here again. Higher order terms than
those in (Adda-Bedia 2005) are calculated, as well
as numerical corrections of lower order terms are
given. The third section of the paper presents the
detailed study of the branching problem. The
fourth and last section solves an elastostatic prob-
lem related to the experimental setups (Fineberg
et al. 1992; Sharon et al. 1995; Sharon and Fineberg
1996, 1999; Livne et al. 2005), where the interest is
to determine possible outcomes of the non singular
T stress at the original crack tip.

2 Summary of results and future prospects

First, a static analysis of crack branching under
plane loading conditions is done. It is an exact app-
roach that follows that of (Amestoy and Leblond
1992) for the kinking case. Using the principle
of local symmetry as a criterion for determining
crack’s trajectories, as well as asymptotic analysis
of the local stress configurations at the crack tips
of branches of a given longitude and character-
istic shape, the crack’s branching angle and subse-
quent curved paths are determined. This is done by
solving integral equations for the elastic potentials,
with the help of conformal mapping and perturba-
tion techniques.

Secondly, the dynamic crack branching is add-
ressed by arguing that the plane loading case should
not differ very much qualitatively from the exact
solutions of anti-plane branching, where indeed
dynamic branching results can be safely retrieved
from the static ones. Much of this is based on the
argument that it is plausible that the branching
occurs with the new branches starting at vanish-
ing speeds since the elastic energy release rate
at each crack tip is maximal in that case. Under
these assumptions, application of Griffith’s energy
criterion leads to the critical speed for branching

(once all the post-branching elastic quantities are
replaced by their static counterparts).

These results, detailed in the following sections,
support the following scenario for the process of
dynamic branching instability in brittle materials

• The critical velocity at which the crack tip can
branch depends on the material parameters
only through the fracture energy and the elas-
tic constants. This prediction for the critical
velocity agrees with the available experimental
results.

• The paths that the branches take consists of
two universal features: a branching angle of
27◦ followed by a curved extension described
by a single curvature parameter which is calcu-
lated below. The branching angle as well as the
general shape of the extensions coincide with
those seen in the experiments.

• The velocity of the branches is vanishingly
small right after branching, which seems to be a
peculiar characteristic. However, since the pre-
dicted acceleration of the tips after branching
is very high, this may explain the experimental
results.

The above scenario for a single branching event
can now be integrated into a general picture of
the propagation dynamics of the crack, which
can reproduce the fractography of the broken sur-
face, by considering in addition the stability anal-
ysis of the branched configuration reported in
(Bouchbinder et al. 2005). It turns out that the sym-
metric form of branching is unstable, in the sense
that sooner or later one extension continues to
grow while the other one slows down until it stops.
This leads to a pattern of a broken surface com-
posed of a sequence of branching events, where
each time only one extension survives. The surviv-
ing crack tip accelerates between branching events
and then decelerates abruptly in the next branch-
ing event. Although the 3D nature of the instability
is not taken into account here (Livne et al. 2006),
we think that this scenario gives a coherent phys-
ical interpretation of the fractography of broken
samples. In order to describe completely the obs-
erved patterns, our 2D analysis should be coupled
to an instability mechanism of the crack front itself.
However, we expect that features such as the crit-
ical velocity for branching or the branches’ shape
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should be modified by the 3D nature of the prob-
lem as a secondary effect.

In the following section we detail the results that
led to the above mentioned conclusions.

2.1 Stress field ahead of curved extensions
of a branched crack

Consider an elastic body containing a straight crack
with symmetrically branched curved extensions of
length � and a branching angle λπ (see Fig. 1). Let
XOY denote the coordinate system with the OX
axis directed along the initial straight crack, and let
Y1OY2 denote the coordinate system with the OY1
axis directed along the tangent to the upper exten-
sion at the point O. These two coordinate systems
are obviously related by

Y1 = X cos λπ + Y sin λπ , (1)

Y2 = Y cos λπ − X sin λπ . (2)

Following the approach developed in (Karihaloo
et al. 1981; Leblond 1989; Adda-Bedia 2004b), it
can be shown that the asymptotic shape of the
crack extension is necessarily given by

Y2 = aY3/2
1 + O(Y2

1 ), (3)

where a is a curvature parameter whose dimen-
sion is (length)−1/2. Moreover, the expansion of
the static stress intensity factors K′

l(s) (l = 1, 2) at
the crack tip in powers of � obeys the general form
(Leblond 1989)

Fig. 1 Schematic representation of a straight crack with
two symmetrically branched curved extensions

K′
l(�) = K∗

l + K(1/2)
l

√
�+ O(�) =

∑

m=1,2

Flm(λ)Km

+
∑

m=1,2

[
Gm(λ)Tδlm + aHlm(λ)Km

]√
�

+ O(�). (4)

In this expansion, Kl and T are the static stress
intensity factors and the nonsingular stress in the
universal expansion of the stress field at the orig-
inal crack tip O without the branched extensions.
Kl and T are given by

σij(r, θ) =
∑

l=1,2

Kl√
2πr

�
(l)
ij (θ)+ TδiXδjX + O

(√
r
)

,

(5)

where (r, θ) are polar coordinates referred to the
branching point O, and �(l)ij are known functions
describing the angular variations of the stress field
components (Broberg 1999). The functions Flm, Gl
and Hlm are universal in the sense that they do
not depend neither on the geometry of the body
nor on the applied loading. They depend only on
the branching angle and their computation can
be performed following the approach developed
in (Amestoy and Leblond 1992). Note that the
asymptotic expansions given by Eqs. (3)–(4) are
applicable to crack extensions obtained by actual
propagation of the initial crack and not simply by
arbitrary machining of the body (Leblond 1989).
Due to the linearity of the problem, the expressions
(3)–(4) can be predicted from dimensional argu-
ments. Since the Kl’s scale as stress×√length and
T scales as stress, the first order expansion of the
stress intensity factors in (4) must involve an addi-
tional parameter whose dimension is 1/

√
length.

This parameter is provided by the asymptotic
expansion (3) of the branched extension.

In Figs. 2, 3 and 4 we present the results for
the universal functions Flm, Gl and Hlm for the
branched cracks. As a comparison, we also pres-
ent the results obtained for these functions for
the kinked crack problem (Amestoy and Leblond
1992). The functions Flm for a symmetrically bra-
nched configuration have been already computed
in (Adda-Bedia 2005), while the computation of Gl
and Hlm is new. Details of this analysis are given in
the following section. Note that the results for the
functions Flm in Fig. 2 correct numerical inaccura-
cies in the results reported in (Adda-Bedia 2004b).
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Fig. 2 The elements of
the matrix Flm(λ) for the
symmetrically branched
crack (solid lines) and for
the kinked crack (dashed
lines)
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Fig. 3 The elements of
the vector Gl(λ) for the
symmetrically branched
crack (solid lines) and for
the kinked crack (dashed
lines)
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These inaccuracies have of course a quantitative
implication by correcting certain values such as
the critical branching angle. However, more impor-
tantly, it contradicts the statement made in (Adda-
Bedia 2004b) concerning a possible difference
between the predictions of the principle of local
symmetry and the maximal energy release rate
criterion, as will be explained below.

Once a detailed expansion of the stress inten-
sity factors is available, it remains to be combined
with a propagation criterion, in order to get crack
path prediction. Griffith’s energy criterion (Grif-
fith 1920; Freund 1990; Broberg 1999) and the prin-
ciple of local symmetry (Gol’dstein and Salganik
1974; Leblond 1989) imply

G′
1(s) = 1

2µ
K′2

1 (s) = �, (6)

K′
2(s) = 0, (7)

where µ is the Lamé shear coefficient of the mate-
rial. Note that Eq. (7) imposes the symmetry of
the stress field in the vicinity of the crack tip which
in turn affects the crack direction of propagation.
Therefore, the crack path is mainly selected by the
principle of local symmetry, while Eq. (6) controls
the intensity of the loading necessary to advance
the crack. In the following, the stability of a tensile
crack and the path selection of branched cracks
will be discussed in view of these general results.
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Fig. 4 The elements of
the matrix Hlm(λ) for the
symmetrically branched
crack (solid lines) and for
the kinked crack (dashed
lines)
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2.2 The shape of the branched cracks

Consider a straight crack initially under pure
tensile (mode I) loading that branches into two
symmetrical cracks. As shown in (Adda-Bedia
2004b), the paths of the branches can be deter-
mined if each crack tip satisfies the principle of
local symmetry during propagation (Gol’dstein and
Salganik 1974). Imposing this (Eq. 7), the follow-
ing two conditions that determine the branching
angle λ and the curvature parameter a should be
satisfied

F21(λ) = 0, (8)

a = − G2(λ)

H21(λ)

T
K1

. (9)

Using the results presented in Figs. 2, 3 and 4,
Eq. (8) gives λ= λc = 0.15 corresponding to a bran-
ching angle of 27o, in agreement with the results
of (Isida and Noguchi 1992; Adda-Bedia 2005).
Also we find that G2(λc)/H21(λc) = −1.16, and
consequently the sign of a is determined by the
sign of the ratio T/K1. Therefore, the convexity
of the branches’ paths depends on the sign of the
T-stress: If T < 0 the branches will tend to come
back towards the initial direction of the crack prior
to branching (see Fig. 5), while if T> 0 the
branches will diverge away from this direction.
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a
2
X
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0.004
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0.008

a2 Y

Fig. 5 Path followed by the branch when a < 0, and a com-
parison with the functional form Y(X) ∼ X2/3 proposed in
(Sharon and Fineberg 1999)

Before continuing, it is useful to define the mate-
rial parameter κ = (cd/cs)

2, where cd and cs are
the dilatational and shear wave speeds. This quan-
tity will serve to compare theoretical results with
experiments. κ is related to the Poisson ratio ν by
(Broberg 1999)
(

cd

cs

)2

≡ κ =
{

2
1−ν for plane stress
2−2ν
1−2ν for plane strain.

(10)

In order to estimate the T-stress for the real
experimental setups of (Fineberg et al. 1992; Sharon
and Fineberg 1999; Livne et al. 2005), we solved
the elastostatic problem of a semi-infinite straight
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crack in an infinite strip of half-width W, whose top
and bottom edges are fixed at positions ±δ above
their initial positions (see Fig. 13). The analysis has
been performed for both clamped edges and shear
free edges boundary conditions. The details of the
calculations are given in Sect. 4. It turns out that for
typical situations the ratio T/K1 is negative and so
the branches will be stable, i.e., they will not diverge
away from the initial direction of the primary crack
(see Fig. 14 and Fig. 15a). For the typical value of
κ = 3, we get T/K1 = −0.43/

√
W when the edges

of the strip are clamped, which leads to a value
of the curvature parameter a = − 0.5/

√
W. This

theoretical value is consistent with the estimation
of the parameter a from the experimental results
of (Sharon and Fineberg 1996, 1999). However,
a more quantitative comparison with the exper-
iments would require to take into account finite
size effects, the three dimensional geometry of the
sample and dynamical effects.

It is interesting to mention that when the edges
are shear free, the sign of the T-stress can be made
positive by applying an additional loading T∞ by
stretching the strip in the X-direction. This res-
ults in the existence of a critical Tcr(κ) such that
the path of the branches becomes unstable, i.e.,
diverges away from the direction of the primary
crack (see Fig. 15b). Such a situation where differ-
ent boundary conditions can change the stability
of the propagating crack is of interest, and can cer-
tainly be tested experimentally.

2.3 The dynamic branching instability

Until now, only static aspects of the branching
instability have been discussed. In order to add-
ress dynamical aspects of this problem, such as
determining the onset of dynamic branching, let
us consider the following scenario: A semi infi-
nite straight crack that propagates at a speed v(t)
for t< 0 suddenly stops at t → 0−. At t → 0+, the
crack branches locally with a branching angle equal
to λπ . For t> 0, the new branches propagate at
a velocity v′(t) in the new directions ±λπ . It is
well established (Kostrov 1975; Freund 1990) that
the dynamic stress intensity factors, Kl(t, v), of the
straight crack prior to branching are related to the

rest stress intensity factors, Kl(t, 0), of the same
configuration by

Kl(t, v) = kl(v)Kl(t, 0), (11)

where kl(v) (l = 1, 2, 3) are known universal func-
tions of the instantaneous crack tip speed v(t),
whose explicit forms can be found in (Freund 1990;
Broberg 1999).

Since in this problem there is no time scale, and
consequently no length scale, against which the
independent variables can be scaled, the dynamic
stress intensity factors immediately after branch-
ing, K′

l(0
+, v′, v) can always be written in the form

of a universal function of the velocities and branch-
ing angle, multiplied by the static stress intensity
factors immediately before branching,
Kl(0−, v = 0), i.e.,

K′
l(0

+, v′, v) =
∑

m

kl(v
′)Flm(λ, v′, v)Kl(0

−, 0). (12)

As in the quasi-static case (Leblond 1989), the
matrix F is universal in the sense that it depends
neither on loading configuration nor on the geom-
etry of the body. Indeed in the limit that is con-
sidered here, the dynamic branching problem does
not involve radiation effects, so it is always equiva-
lent to a crack propagating in an unbounded body.
Moreover, F should approach the elastostatic solu-
tion for a vanishingly small velocity of the
side-branches, namely

lim
v′→0

Flm(λ, v′, v) = Flm(λ) . (13)

Based on the solution to the anti-plane branch-
ing problem (Adda-Bedia and Arias 2003; Adda-
Bedia 2004a), it was shown in (Adda-Bedia 2005)
that the dependence of the velocity of the single
crack tip before branching is suppressed from the
stress distribution that has to be balanced during
the propagation of the branches. Consequently, the
matrix elements Flm related to plane loading situ-
ations should also be independent of the velocity
prior to branching, namely

Flm(λ, v′, v) = Flm(λ, v′), (14)

In order to proceed, one must come up with a
growth criterion for a branched crack. It is well
established that the dynamic energy release rate
G for a single straight crack is given by (Kostrov
1975; Freund 1990)
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Fig. 6 The universal function g1(v) for κ = 3. Here and
elsewhere, cR denotes the Rayleigh wave speed

G = 1
2µ

3∑

l=1

Al(v)K
2
l (t, v) = 1

2µ

3∑

l=1

gl(v)K
2
l (t, 0),

(15)

where

gl(v) = Al(v)k
2
l (v). (16)

The functions Al(v) and gl(v) do not depend on the
details of the applied loading, nor on the configu-
ration of the body being analyzed. They only dep-
end on the local instantaneous speed of the crack
tip and on the properties of the material (Freund
1990). Figure 6 shows the function g1(v) that will
be used in the following.

A growth criterion for a branched crack must
also be based on the equality between the elastic
energy flux into each propagating tip and the
energy that is used in creating new broken sur-
face during this propagation (Griffith 1920). The
dynamic energy release rate is a quantity associ-
ated to a single moving crack tip, and so it has to
be determined for each crack tip. When the pri-
mary crack before branching is under pure mode I
loading and due to the symmetry of the branching
configuration, the energy release rate immediately
after branching G′ for each crack tip is given by

G′ = 1
2µ

[
g1(v

′)F2
11(λ, v′)+ g2(v′)F2

21(λ, v′)
]

× K2
1(0

−, 0). (17)

According to the generalized Griffith’s criterion
(Griffith 1920), the crack must grow in such a way
that the energy release rate is always equal to

the dynamic fracture energy of the material, �(v),
which is assumed to be a property of the mate-
rial and whose value may depend on the instanta-
neous crack tip speed (Freund 1990; Boudet et al.
1996; Sharon and Fineberg 1999). This growth cri-
terion should hold for the crack tips before and
after branching, and so it introduces a relation bet-
ween the energy release rates immediately before
and after branching, namely

G′ = �(v′)
�(v)

G, (18)

which is a necessary condition for the existence of
a branching configuration. If this condition is not
fulfilled then single crack tip propagation would be
maintained. Let us stress again that this condition
does not provide an instability mechanism to the
branching process. However, whichever instability
mechanism, it should respect Eq. (18).

Under in-plane configuration, the exact depen-
dence of the matrix F on the crack velocity
after branching and on the branching angle is not
available. However, the exact resolution of the
mode III problem (Adda-Bedia 2004a) does give
an indication about its general behavior, since in
many cases, physical aspects of crack propagation
of corresponding anti-plane and in-plane config-
urations are qualitatively similar (Broberg 1999;
Freund 1990). In particular, the results of (Adda-
Bedia 2004a) show that F33(λ, v′) depends only
weakly on v′: the ratio F33(λ, v′)/F33(λ) is very
close to unity (up to ±5%) for all values of λ and
v′. We are then led to assume that this property
will also hold for all the matrix elements Flm(λ, v′).
Therefore, the energy release rate immediately
after branching for in-plane configurations is also
maximal for branches that propagate quasi-
statically (v′ → 0), that is, when G′ = G′

s. Figure 7
shows the dimensionless static energy release rate,
2µG′

s/K
2
1 ≡ (F2

11+F2
21), as a function of the branch-

ing angle λ. Note that this quantity equals 1/2 for
“zero” branching angle and that it displays a max-
imum at a nonzero branching angle.

The Griffith’s criterion together with the princi-
ple of local symmetry (as given by Eq. 8) allow to
determine direct dynamical properties of the
branching instability. To be precise, Eq. (18)
reduces to
�(0)
�(vc)

g1(vc) = F2
11(λc). (19)
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This equation selects a critical velocity for branch-
ing, denoted by vc. When the fracture energy is
velocity independent, Eq. (19) simplifies to
g1(vc)= F2

11(λc)	 0.56. Obviously, the critical vel-
ocity depends on the material properties through
κ and cR only, but as shown in Fig. 8, it has a weak
dependence on κ , and can be reasonably taken to
be vc = 0.46cR - its value for κ 	 3.

When taking into account the velocity depen-
dence of the fracture energy, Eq. (8) which sel-
ects the branching angle λc is not modified, while
Eq. (19) shows that the critical velocity for branch-
ing varies. In general, �(v) is an increasing func-
tion of the velocity (Boudet et al. 1996; Sharon
and Fineberg 1999). Therefore, the left-hand side
of Eq. (19) decreases faster than in the constant
fracture energy case, and the energy balance can
thus be achieved at a lower velocity. Although�(v)

0.0 0.2 0.4 0.6 0.8

Γ(v
c
)/Γ(0)-1

0.0

0.1

0.2

0.3

0.4

0.5

v c/c
R

Fig. 9 The critical branching velocity for the case of veloc-
ity dependent fracture energy and for κ = 3. The experi-
mental values shown are estimates taken from (Sharon and
Fineberg 1999) for Glass and PMMA

can be a nonlinearly dependent function of the
crack tip speed, it is only the amount of�(vc)/�(0)
which is of importance in determining vc. In Fig. 9,
the critical crack tip speed for branching is plotted
for different values of �(vc)/�(0) and compared
with experimental values for Glass and PMMA as
given by (Sharon and Fineberg 1999).

It is interesting to mention here that if instead of
the principle of local symmetry, the maximum ene-
rgy release rate criterion (Erdogan and Sih 1963)
is used, then the equations determining the criti-
cal branching angle λc and the critical branching
velocity vc are changed and so do the resulting
values. In that case, λc is given by the maximum
of F2

11(λ) + F2
21(λ), and vc is just the solution of

g1(vc) = F2
11(λc)+F2

21(λc). Interestingly, in practice
λc and vc derived from these conditions correspond
to almost the same values as those obtained from
the principle of local symmetry. This is consistent
with other examples given in the literature, such
as the case of kinked cracks treated in (Amestoy
and Leblond 1992), where these two criteria yield
almost the same numbers, and in contradiction to
(Adda-Bedia 2005) where somewhat different res-
ults were obtained due to numerical inaccuracies
in the determination of the functions Flm(λ).

2.4 Dynamics of the branches

The branching picture adopted here, i.e., with a fast
moving main crack that stops, branches, and then
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the branches re-accelerate, might be questionable.
Arguments criticizing this scenario rely on the fact
that in experiments such full stops are not obs-
erved. However, this discrepancy can be related
to different effects, such as the three dimensional
nature of the experiments or to the fact that real
materials are not ideally brittle, and so plasticity
could smooth the present picture. Even though
velocity fluctuations can be observed, if the crack
stops completely then one would expect to see the
branches accelerating gradually from zero velocity
to vc where the next branching event could take
place. As we show below, the acceleration of the
new branches can be rather large so that the rapid
variation of the speed can be easily missed due to
lack of temporal experimental resolution.

In order to provide an estimate for the acceler-
ation of the branches’ tips, we use Griffith’s energy
criterion and the principle of local symmetry at
each instant of the propagation of the tip of the
branch. For a velocity independent fracture energy
�, this yields

� 	 1
2µ

g1(v
′)K′2

1 (t, v′ = 0) 	 1
2µ

g1
(
v′)F2

11 (λc)K2
1

×
[
1+2

G1 (λc)H21 (λc)−G2 (λc)H11 (λc)

H21 (λc)F11 (λc)

T
K1

√
�

]
,

(20)

where terms up to order
√
� in the expansion of

the SIFs (4) and the expression for the curvature
a, Eq. (9), were used. In addition, knowing that
immediately after branching, that is when �→ 0,
the crack speed of the branches is vanishingly small,
i.e., v′ → 0, Eq. (20) yields

� = 1
2µ

K′2
1 (0

+, v′ = 0) = 1
2µ

F2
11(λc)K2

1 . (21)

By equating the last two expressions we get

1 − g1(v′)
g1(v′)

	 −0.7
T
K1

√
� , (22)

where the numerical coefficient is computed by
using the values of Flm, Gl and Hlm at λ = λc.
Equation (20) is valid for a small extension of the
branch, thus the velocity v′ is small and one can
safely develop

1 − g1(v′)
g1(v′)

	 C(κ)
v′

cR
, (23)

where C(κ) is a numerical coefficient of order unity
that can be computed from the asymptotic analysis
of g1(v) as given in (Freund 1990). For a typical
material value κ = 3, one has C(3) = 1.15. Putting
all together, one gets

v′ = d�
dt

	 −0.6
T
K1

cR
√
� , (24)

which is a differential equation for �(t) that can
easily be solved. The quantity T/K1 has been com-
puted in Sect. 4 for the experimental setup of
(Fineberg et al. 1992; Sharon and Fineberg 1999;
Livne et al. 2005). Using the result
T/K1 = −0.43/

√
W for κ = 3, the length of the

branch extension is then given by

�(t) 	 0.017
c2

R

W
t2 . (25)

The branch velocity is then just

v′(t) = d�
dt

	 0.034
c2

R

W
t , (26)

and finally the acceleration is

dv′

dt
	 0.034

c2
R

W
. (27)

It is now obvious that the estimated acceleration
of the crack tip after branching is very large (cR ∼
103 − 105m/s and W ∼ 10−2 − 10−1m). This result
might explain why even if the crack speed is vanish-
ingly small immediately after the branching event,
it would be difficult to detect it experimentally.

3 Resolution of the static branching problem

In this section we describe the analytical method
we used for the resolution of the elastostatic prob-
lem of a long crack with two side branches. First
the problem of straight branches is solved, render-
ing the universal functions Flm and Gl. Then, the
problem of curved branches is addressed, resulting
in Hlm. The numerical results of this section were
already summarized above in Figs. 2, 3 and 4.

3.1 Straight branches configuration

Let us start by giving the general solution of the
elastostatic problem depicted in Fig. 10a. An infi-
nite sheet is stretched in the presence of a crack
contour consisting of a main crack of length L and
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Fig. 10 Conformal
mapping of a star shaped
crack in the Z-plane onto
the exterior of the unit
circle in the z-plane

two symmetric side branches of equal lengths �
emerging from a common origin. The angle bet-
ween the two side-branches is denoted by 2λπ with
0 < λ < 1. In particular, the case of a main crack
with two side-branches of infinitely small lengths is
studied. The elastic potentials of the planar prob-
lem are determined for this geometry and load-
ing. A conformal mapping of the exterior of this
star shaped crack into the exterior of a unit circle
allows to obtain integral equations for these poten-
tials. Expressions for the stress intensity factors are
derived. In the following, a detailed resolution of
the mixed mode I-II loading is presented. Actu-
ally, the approach is analogous to the kinked crack
problem which was studied previously in (Amestoy
and Leblond 1992).

3.1.1 Conformal mapping, potentials

According to Muskhelishvili (Muskhelishvili 1953),
the stresses and displacements at a point Z =
X + iY = ω(z) (i.e., a two dimensional region—
see Fig. 10) can be expressed, in the z-plane, in
terms of the elastic potentials �(z) and (z). We
consider here the case where traction free bound-
ary conditions are taken on the crack surfaces and
where the loading is given by external stresses σ∞

11 ,
σ∞

22 and σ∞
12 applied at infinity. The goal in this sec-

tion is to solve for the Mushkelishvili potentials
� and  outside the “star” shaped crack with two
symmetrical straight branches, by using a confor-
mal mapping transformation. The crack is located
in the Z = X+iY space (see Fig. 10), it corresponds
to the curve C, and its tips are located at the points
B3 = −L (tip of the left end of the original straight

crack), B2 = � exp(iλπ) and B1 = � exp(−iλπ) (tips
of the branches). The region exterior to the crack
is named �−. The potentials satisfy the following
equation on the crack line C:

�(Z)+ Z�′(Z)+(Z) = Const, (28)

and the following boundary conditions at infinity:

�(Z) = �Z, (29)

(Z) = �′Z, (30)

with � ≡ (σ∞
11 + σ∞

22 )/4, �′ ≡ (σ∞
22 − σ∞

11 )/2 + iσ∞
12 ,

i.e., given in terms of the stresses at infinity.
The following conformal mapping (Smith 1968):

Z =ω(z)= C
z
(z − z1) (z − z3)

(
z − z2

z − z1

)λ (z − z2

z − z3

)λ

(31)

maps the exterior of the “star” shaped crack des-
cribed by the points A1, B1, A2, B2, A3, B3 in the
Z-plane (see Fig. 10a) to the exterior of a unit
circle in the z-plane, with corresponding points
z1, y1, z2, y2, z3, y3 (see Fig. 10b). These special
points are located at: z1 = e−iα , z2 = 1, z3 = eiα ,
y1 = e−iβ , y2 = eiβ and y3 = −1. The constants
C, α and β are given in terms of the lengths L of
the main crack, and � of each branch through the
following equations:

C = L
4

[cos (α/2)]2(λ−1) (32)

� = L
2
λ (1 − cosα)

{
2 (1 − λ)

λ(1 + cosα)

}1−λ
(33)

sin(β/2) = √
λ sin(α/2) (34)

In the z-plane, Eq. (28) for the elastic potentials
reads:
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φ(z)+ ω(z)

ω′(z)
φ′(z)+ ψ(z) = Const , (35)

(φ(z) = �(Z), ψ(z) = (Z)) and the bound-
ary conditions at infinity become φ(z) = �Cz,
ψ(z) = �′Cz. The quantityω(z)/ω′(z) appearing in
Eq. (35) takes different values in different
sections of the crack line:

ω(z)

ω′(z)
=
{
−1 + (1 − e−i2λπ )I1(z)+ (1 − ei2λπ )I2(z)

}

×Q(z), (36)

with I1,2(z) = 1 if z belongs to C1,2 respectively, and
zero otherwise. C1,2 are the branches of the crack,
i.e., these curves unite the points A1, A2 and A2, A3
respectively (see Fig. 10b); and the function Q(z)
is the following:

Q(z) = (z − e−iα)(z − eiα)(z − 1)
z(z + 1)(z − eiβ)(z − e−iβ)

. (37)

In order to solve Eq. (35), the following Lemma
will be used: if f and g are complex functions def-
ined and continuous in �− ∪ C, analytic on �−,
(including the point at infinity) and such that f (z) =
g(z) for z ∈ C, then f and g are constants and con-
jugate to each other. Thus, Eq. (35) will be written
in the previous form, i.e., as an equality between
an analytic function and the complex conjugate of
another analytic function. This is accomplished by
defining:

χ1,2(z) ≡ (1 − e∓i2λπ )

2π i

∫

C1,2

dη
Q(η)φ′(η)
(η − z)

. (38)

If z+ and z− represent points just inside and out-
side of the unit circle respectively, then by
Plemelj’s formula:

χ1,2(z
+)− χ1,2(z

−) = (1 − e∓i2λπ )Q(z)φ′(z), (39)

if z+, z− are on C1 or C2 respectively, and zero oth-
erwise. From Eqs. (37), (38) one sees that con-
vergence issues at the points eiβ and e−iβ (poles

of Q(z)) can be addressed by understanding these
integrals with these poles slightly displaced into�−
(i.e., β → β ∓ iε in the poles at e±iβ , respectively).
Using these definitions and results in Eq. (35), the
latter becomes:

φ(z)− χ1(z
−)− χ2(z−) = Q∗(z)φ′(z)− χ1∗(z−)− χ2∗(z−)− ψ(z)+ Const, (40)

where f∗(z) ≡ f (1/z) is an analytic function of z
if f (z) is analytic. Thus,

Q∗(z) = −z(z − eiα)(z − e−iα)(z − 1)
(z − eiβ)(z − e−iβ)(z + 1)

. (41)

Notice that if Q(z) has poles at z = eεe±iβ (i.e., in
�−), Q∗(z) has corresponding poles at z = e−εe±iβ

(i.e., in�+). The condition of analyticity at ∞ of the
Lemma has to be examined for Eq. (40). Indeed
the left hand side and the conjugate of the right
hand side of the latter equation behave at infinity
as:

φ(z)− χ1(z)− χ2(z) 	 �Cz, (42)

Q∗(z)φ′(z)− χ1∗(z)− χ2∗(z)− ψ(z)

	 −(� + �′)Cz. (43)

The behaviors at infinity are regularized (linear ter-
ms in z are eliminated there) if one adds the terms

−�Cz + (� + �′)C/z and −�C/z + (� + �′)Cz to
the left hand side and right hand side of Eq. (40)
respectively, which then becomes:

φ(z)− χ1(z
−)− χ2(z−)− �Cz + (� + �′)C/z

= Q∗(z)φ′(z)− χ1∗(z−)− χ2∗(z−)− ψ(z)− �C/z + (� + �′)Cz + Const (44)

Applying the Lemma to Eq. (44) (left hand side),
and using Eq. (39), one gets:

φ(z) = �Cz − (� + �′)C
z

+ (1 − e−2iλπ )

2π i

∫

C1

dη
Q(η)φ′(η)
(η − z)

+ (1 − e2iλπ )

2π i

∫

C2

dη
Q(η)φ′(η)
(η − z)

+ Const , (45)
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i.e., an integral equation for φ′(z) which can be
written in the form:

φ′(z) = φ′
0(z)+ L(φ′(z)) , (46)

with

φ′
0(z) ≡ �C + (� + �′)C

z2 , (47)

and the operator L is defined through:

L(f (z)) = (1 − e−2iλπ )

2π i
∫

C1

dη
(η − e−iα)(η − eiα)(η − 1)f (η)

η(η + 1)(η − eiβ)(η − e−iβ)(η − z)2

+ (1 − e2iλπ )

2π i
∫

C2

dη
(η − e−iα)(η − eiα)(η − 1)f (η)

η(η + 1)(η − eiβ)(η − e−iβ)(η − z)2

+Const. (48)

3.1.2 Expansion in powers of the crack extension
length

In this section we specialize to the case � → 0, i.e.,
a situation with a long macroscopic crack with two
micro-cracks right after branching. First, we write
in the limit � → 0 an asymptotic expression for
the constants C, α and β that follow from Eqs.
(32)–(34):

C = L
4

+ O(�), (49)

α =
√

4
(1 − λ)L

(
1 − λ

λ

)λ/2 √
�, (50)

β = √
λα. (51)

Writing

z = eiαζ and

φ′(z) = e−iαζ
[√

LU(ζ )+ αLV(ζ )+ O(α2)
]

, (52)

Eq. (46) becomes to order α (Notice that �− cor-
responds to the lower half plane in the complex
ζ plane, i.e., the poles at z=e±iβ(1 ∓ iε) are now

located at ζ = ∓√
λ− iε̃):

U(ζ )√
L

+ αV(ζ ) = 1
2

(
� + �′

2

)

− iα
�′
4
ζ + (1 − e−i2λπ )

4π i
∫ 0

−1
dh

h(h2 − 1)
(

U(h)/
√

L + αV(h)
)

(h2 − λ)(h − ζ )2

+ (1 − ei2λπ )

4π i
∫ 1

0
dh

h(h2 − 1)
(

U(h)/
√

L + αV(h)
)

(h2 − λ)(h − ζ )2
, (53)

which yields the following equations for U(ζ ) and
V(ζ ):

U(ζ ) = U(0)(ζ )+ AU(ζ ), (54)

V(ζ ) = V(0)(ζ )+ AV(ζ ), (55)

where the functions U(0) and V(0) and the operator
A are the following:

U(0)(ζ ) ≡
√

L
2

(
� + �′

2

)
= (K1 − iK2)√

8π
, (56)

V(0)(ζ ) ≡ −i
�′
4
ζ =

(
−σ∞

12 + i
T
2

)
ζ

4
, (57)

Af (ζ ) ≡ (1 − e−i2λπ )

4π i

∫ 0

−1
dh

h(h2 − 1)f (h)
(h2 − λ)(h − ζ )2

+ (1 − ei2λπ )

4π i

∫ 1

0
dh

h(h2 − 1)f (h)
(h2 − λ)(h − ζ )2

,

(58)

where

K1 − iK2 = (σ∞
22 − iσ∞

12

)
√
πL
2

, (59)

are the stress intensity factors of the original single
crack of length L under the same loading, and T is
the non-singular stress (σxx) at the original crack
tip.

Andersson’s formula (Andersson 1969) for the
stress intensity factors can be applied at the upper
crack tip (one should get an analogous result at the
lower tip), as follows:

K′
1(�)− iK′

2(�) = 2
√
πφ′(eiβ)e−iδ/2/

√
ω′′(eiβ),

(60)
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where δ is the angle between the X axis and the
tangent to the crack at its tip, i.e., πλ in this case.
To first order in α, we get

ω′′(eiβ) 	 L
(

1 − 2i
√
λα
)( λ

1 − λ

)λ
eiλπ , (61)

Also, writing the stress intensity factors up to order√
� as:

K′
1(�)− iK′

2(�) = K∗
1 − iK∗

2

+
(

K(1/2)
1 − iK(1/2)

2

)√
�, (62)

one obtains:

K∗
1 − iK∗

2 = 2
√
πe−iλπ

(
1 − λ

λ

)λ/2
U
(√
λ
)

, (63)

K(1/2)
1 − iK(1/2)

2 = 4
√

π

1 − λ
e−iλπ

×
(

1 − λ

λ

)λ
V
(√
λ
)

, (64)

Equations (54)–(59), (63) and (64) show that the
K∗

l ’s and K(1/2)
l ’s can be determined independently,

i.e., the K(1/2)
l ’s depend only on the function U

which can be found from Eqs. (54),(56) and (58)
where the function V does not appear. Similarly,
the K(1/2)

l ’s can be found from Eqs. (55),(57) and
(58) where the function U does not appear. This
remarkable property holds only in the limit �→0,
and is easily evidenced thanks to the addition of the
term e−iαζ in the expansion forφ′(z) (Eq. 52). Also,
since the function U(0) depends on the three com-
ponents of the stress tensor at infinity only through
two parameters, namely the SIF’s at the initial
crack tip, the same holds for U and for the K∗

l s, i.e.,
they depend on K1, K2 (this property is again true
only in the limit �→0). In the same spirit, one could
have thought that since V(0) depends on T and on
σ∞

12 the same is true for V, namely that it depends
on both quantities T and σ∞

12 . However, this fact
contradicts a universality prediction presented in
(Amestoy and Leblond 1992) which states that the
K(1/2)

l ’s should only depend on the T-stress. In fact,
the contradiction is only apparent since it can be
shown that the part of V which arises from σ∞

12 (i.e.,
a V that solves Eqs. (55), (57) with T = 0) has the
following closed form

[V (ζ )]T=0 = −σ
∞
12

4
(ζ 2 − λ)

ζ

(
ζ 2

ζ 2 − 1

)λ

(ζ ∈ �−). (65)

Now, it is easily seen that the function [V (ζ )]T=0
is zero at the point ζ=√

λ, so that σ∞
12 does not

contribute to the SIFs K(1/2)
l ’s which are given by

expression (64). This observation shows that the
universality predicted by (Amestoy and Leblond
1992) is respected. The exact result of Eq. (65)
serves as a useful check on the correctness of any
numerical analysis of these equations.

3.1.3 Numerical considerations

Unfortunately, an analytical solution such as (65)
was not found for the function U and for that part
of V which is proportional to T. Therefore, in order
to determine the functions Flm(λ) and Gl(λ) it is
necessary to solve numerically for U and V. Let
us begin with U, where a useful decomposition is
given by

U(ζ ) = 1√
8π
(K1U1(ζ )− iK2U2(ζ )). (66)

Equation (54) is now decomposed into two equa-
tions

U1,2 (ζ ) = 1 ± 1 − e−2iλπ

4iπ

∫

C+
1

η
(
η2 − 1

)

(η2 − λ)

U1,2 (η)dη

(η − ζ )2

± 1 − e2iλπ

4iπ

∫

C+
2

η
(
η2 − 1

)

(η2 − λ)

U1,2 (η)dη

(η − ζ )2
,

(67)

where we deformed the integration paths away
from the poles ±√

λ − iε onto two semi-circles
denoted C+

1 and C+
2 , respectively (i.e., |ζ ± 1

2 | = 1
2 ,

Im ζ > 0, oriented from −1 through 0, and from 0
to 1 (see Fig. 11)).

Notice that the function f (z) ≡ f (z) has been
introduced, which is analytic when f (z) is analytic
(f (z) coincides with f (z) on the real axis, and it is
its analytic continuation into the rest of the com-
plex plane). Equation (67) can be solved numeri-
cally using an iterative method. Beginning with the
non-homogenous term in the equations U(0)

1,2 = 1,
we can iterate using the operator A (given in
Eq. 58) and obtain the following formal solutions

U1 (ζ ) =
∞∑

n=0

AnU(0)
1 (ζ ), (68)
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Fig. 11 The ζ -plane with some useful contours

U2 (ζ ) =
∞∑

n=0

(−1)n AnU(0)
2 (ζ ), (69)

which can be seen to converge, and to yield the
required result. The convergence is due to the fact
that the operator A is contracting in the space of
functions defined and continuous on C−

1,2 with, at
most, weak singularities at 0, ±1 (see Appendix A
for a proof).

The simplest way is to compute the functions
U1(ζ ) and U2(ζ ) on the lower semi-circles C−

1 and
C−

2 , respectively (see Fig. 11) since then U1(ζ ) and
U2(ζ ) which are needed in the integrals (67) are
trivially obtained on C+

1 ∪ C+
2 by conjugation of

U1(ζ ) and U2(ζ ). In practice, we described each of
these two functions by two functions defined on
[0,π ], namely Ua

1,2(γ ) ≡ U1,2(
−1−eiγ

2 ) on C−
1 and

Ub
1,2(γ ) ≡ U1,2(

1−eiγ

2 ) on C−
2 (with γ ∈ [0,π ]). In

order to be more specific we write down explicitly
the four singular integral equations for Ua,b

1,2 that
we solved numerically

Ua
1,2 (γ ) = 1 ± 1 − e−2iλπ

8π

×
∫ π

0

(
− 1+e−iθ

2

) [(
− 1+e−iθ

2

)2 − 1
]

(
− 1+e−iθ

2

)2 − λ

× Ua
1,2 (θ)e

−iθdθ
[(

− 1+e−iθ

2

)
− ζ
]2

± 1 − e2iλπ

8π

∫ π

0

(
1−e−iθ

2

) [(
1−e−iθ

2

)2 − 1
]

(
1−e−iθ

2

)2 − λ

× Ub
1,2 (θ)e

−iθdθ
[(

1−e−iθ

2

)
− ζ
]2 , (70)

Ub
1,2 (γ ) = 1 ± 1 − e−2iλπ

8π

×
∫ π

0

(
− 1+e−iθ

2

) [(
− 1+e−iθ

2

)2 − 1
]

(
− 1+e−iθ

2

)2 − λ

× Ua
1,2 (θ)e

−iθdθ
[
− 1+e−iθ

2 − 1−eiγ

2

]2

± 1 − e2iλπ

8π

∫ π

0

(
1−e−iθ

2

) [(
1−e−iθ

2

)2 − 1
]

(
1−e−iθ

2

)2 − λ

× Ub
1,2 (θ)e

−iθdθ
[

1−e−iθ

2 − 1−eiγ

2

]2 . (71)

Once U1(ζ ) and U2(ζ ) are known on the lower
semi-circles, we use Eq. (67) once again to obtain
U1(

√
λ) and U2(

√
λ). Then, using definition (4)

together with Eqs. (63) and (66) we can extract
the Flm’s, namely the matrix elements relating the
stress intensity factors immediately after branch-
ing at the tip B2 of the infinitely small side-branch
to the stress intensity factors of the main crack of
length L in the absence of the side-branches at the
leading order

F11 (λ) = 1√
2

(
1 − λ

λ

)λ/2


[
e−iλπU1

(√
λ
)]

,

(72)

F21 (λ) = − 1√
2

(
1 − λ

λ

)λ/2

�
[
e−iλπU1

(√
λ
)]

,

(73)

F12 (λ) = 1√
2

(
1 − λ

λ

)λ/2

�
[
e−iλπU2

(√
λ
)]

,

(74)

F22 (λ) = 1√
2

(
1 − λ

λ

)λ/2


[
e−iλπU2

(√
λ
)]

.

(75)

Results following from a numerical calculation of
these functions were presented above in Fig. 2. In
that figure, we superimposed the results obtained
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in (Amestoy and Leblond 1992) for the case of a
kinked crack (with the same angle) for the sake of
comparison.

The next stage is to get the Gl’s. For that we
need to solve Eq. (55). Recall that we can dismiss
the term σ∞

12 since it will not contribute to the Gl’s
(due to the exact result we presented in Eq. (65)),
and so by denoting

V (ζ ) = T
8

V̂ (ζ ) , (76)

we then need to solve the following equation

V̂ (ζ ) = iζ + 1 − e−2iλπ

4iπ

∫

C+
1

η
(
η2 − 1

)

(η2 − λ)

V̂ (η)dη

(η − ζ )2

+1 − e2iλπ

4iπ

∫

C+
2

η
(
η2 − 1

)

(η2 − λ)

V̂ (η)dη

(η − ζ )2
. (77)

This equation can be solved using the same itera-
tive method as above, by taking the nonhomoge-
nous term in the equation V̂(0)(ζ )=iζ and iterating
it using the operator A

V̂ (ζ ) =
∞∑

n=0

AnV̂(0) (ζ ). (78)

In order to solve this we apply exactly the same
procedure as for U1,2(ζ ), namely deforming the
integration contours to C+

1 ∪ C+
2 , and solving for

V̂(ζ ) along the lower semi-circles ζ ∈ C−
1 ∪ C−

2 .
As before, we parameterize V̂(ζ ) using two func-
tions defined on [0,π ], namely V̂a(γ ) ≡ V̂(−1−eiγ

2 )

on C−
1 and V̂b(γ ) ≡ V̂( 1−eiγ

2 ) on C−
2 (with γ ∈

[0,π ]). This results in two singular integral equa-
tions for V̂a,b that can be solved, and finally yield
the required V̂(

√
λ). Then, using definition (4) and

Eqs. (64) and (76) we can extract the following
expressions for the Gl’s

G1 = 1
2

√
π

1 − λ

(
1 − λ

λ

)λ

{

e−iλπ V̂
(√
λ
)}

(79)

G2 = −1
2

√
π

1 − λ

(
1 − λ

λ

)λ
�
{

e−iλπ V̂
(√
λ
)}

.

(80)

Results emanating from a numerical resolution of
V̂ were presented above in Fig. 3. In that figure,
we superimposed the results obtained in (Amestoy
and Leblond 1992) for the case of a kinked crack
(with the same angle) for the sake of comparison.

Fig. 12 Schematic representation of a straight crack with
symmetrically branched curved extensions. The fictitious
straight crack around which the perturbation expansion is
performed is drawn on the lower branch

3.2 Curved branched extensions

We now consider the problem of the curved exten-
sions defined in Fig. 12 with the aim to determine
the Hlm’s (defined by Eq. 4). The curved extension
of one branch is described in terms of the coordi-
nates Y1,2, where Y1 is the axis parallel to the initial
slope of the branch, that forms an angleπλwith the
X axis (Y2 is perpendicular to Y1). In this frame of
reference the shape of the extension can be written
as (Leblond 1989; Amestoy and Leblond 1992)

Y2 = aY3/2
1 + O

(
Y2

1

)
, (81)

where a is a curvature parameter. A fictitious branch
is defined as a straight line joining the beginning
and the end of the branches, it forms an angle πλ̃
with the X axis. The length of the fictitious branch
is denoted �̃, and � is the length of the curved exten-
sion. Expansions of �̃ and λ̃ are:

�̃ = �+ O
(
�2
)

(82)

λ̃ = λ+ a
π

√
�. (83)

We will solve below for the Muskhelishvili
potentials by a first order perturbative procedure,
with the curvature a being a small parameter. This
analysis will yield an expression for the SIFs of
the curved branches as functions of the fictitious
variables �̃ and λ̃. This expression will not yield di-
rectly the required Hlm’s defined in Eq. (4), since
one needs to express the latter SIF’s in terms of
an expansion in

√
� and as functions of λ by simply

changing variables from �̃, λ̃ to �, λ. It is there-
fore necessary to rewrite Eq. (4) in terms of �̃ and
λ̃ using Eqs. (82)–(83). Following (Amestoy and
Leblond 1992) we get
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K′
l(�) =

∑

m=1,2

Flm(λ)Km

+
∑

m=1,2

[Gm(λ)Tδlm + aHlm(λ)Km] × √
�+ O(�)

=
∑

m=1,2

Flm(λ̃)Km

+
∑

m=1,2

[
Gm(λ̃)Tδlm + aHlm(λ̃)Km

− a
π

F ′
lm(λ̃)Km

]√
�̃+ O(�̃), (84)

(where second order terms with respect to a have
been disregarded). This expression is of the form

K′
l(�) =

[
K′

l(�̃)
]πλ̃

a=0
+ a

∑

m

H̃lm(λ̃)Km

√
�̃+ O(�̃),

(85)

where
[
K′

l(�̃)
]πλ̃

a=0
is the l’th SIF at the tip of a

straight extension of length �̃ in the direction λ̃,
and the functions H̃lm are defined by H̃lm = Hlm −
F ′

lm/π , so we can invert it to get

Hlm(λ) = H̃lm(λ)+ F ′
lm(λ)

π
. (86)

The expression (85) for the SIFs, which is exact to
the first order with respect to a, is precisely of the
form which will result from the perturbative analy-
sis. It will therefore be easy to identify the functions
H̃lm, and the Hlm’s will follow using Eq. (86).

3.2.1 Perturbative analysis, integral equations

The equations of the problem with curved exten-
sions in the physical Z-plane take the same form
as in the case of straight extensions, where again�
and  denote the real Muskhelishvili potentials.
We associate some new potentials�S and S with
� and  through analytic continuation by shift-
ing the curved extension into the fictitious straight
one.�S and S have discontinuities across the fic-
titious straight extensions, while� and have dis-
continuities across the actual curved extensions.
The values of �S and S at each side of the ficti-
tious straight extension are analytic continuations
of the values taken by� and on both sides of the
curved extensions. If Z = ZF represents the points
of the straight fictitious extension (Z±

F will repre-
sent points on opposite sides of the extensions),

and if ZF + ηu(ZF) represents the points of the
curved extension of the upper (u) branch, then the
original and shifted potentials are related through:

�
(
Z±

F + ηu(ZF)
) 	 �S(Z±

F )+ ηu(ZF)�
′S(Z±

F )

+ O
(
η2
)

. (87)

Also, �S and S are expanded in powers of η:

�S = �0 +�1 + O(η2) , (88)

S = 0 +1 + O(η2) . (89)

Combining Eqs. (87) and (88):

�
(
Z±

F + ηu(ZF)
) 	 �0(Z

±
F )+�1(Z

±
F )

+�′
0(Z

±
F )ηu(ZF). (90)

Following the perturbative analysis of (Amestoy
and Leblond 1992) one obtains the following forms
for Eq. (28) written in z-space to orders O(1) and
O(η), respectively:

Const = φ0(z)+ ω(z)

ω′(z)
φ′

0(z)+ ψ0(z) , (91)

Const′ = φ1(z)+ ω(z)
φ′

1(z)

ω′(z)
+ ψ1(z)

+
[
φ′

0(z)

ω′(z)
+ φ′

0(z)

ω′(z)

]
η(z)

+
⎡

⎢⎣ω(z)
φ′′

0 (z)(
ω′(z)

)2 − ω(z)
ω′′(z)
(
ω′(z)

)3φ
′
0(z)

+ψ
′
0(z)

ω′(z)

⎤

⎥⎦ η(z) , (92)

for z ∈ C̃, with C̃ the unit circle in z space corre-
sponding to the fictitious star shaped crack (φ0(z) =
�0(Z), etc.). Notice that Eq. (91) is equivalent to
Eq. (35), and that Eq. (44) follows from the lat-
ter. Applying the previously mentioned Lemma
(in Sect. 3.1, right after Eq. 37) to Eq. (44) (to its
right hand side, and considered for the fictitious
crack), one obtains:

ψ0(z) = (� + �′)C′z − �C′/z
+Q∗(z)φ′

0(z)− χ
(0)
1∗ (z)− χ

(0)
2∗ (z) , (93)

where

χ
(0)
1,2∗(z) = (1 − e±2iλ̃π )

2π i
z
∫

C̃1,2

dη
Q∗(η)φ′

0(η)

η(z − η)
, (94)
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and with Q∗(η) given by Eq. (41) (with fictitious
parameters). The poles of Q∗(η) at eiβ̃ and e−iβ̃ are
displaced into �+ (for Q(η) they are at �−).

The problem now is to solve Eq. (92). Analysis
of the potentials close to the singular points follows
closely the one of (Amestoy and Leblond 1992). In
order to apply the Lemma to Eq. (92), one defines
the functions:

χ
(1)
1,2∗(z) = (1 − e∓2iλ̃π )

2π i

∫

C̃1,2

dη
Q(η)φ′

1(η)

(η − z)
, (95)

i.e., by Plemelj’s formula, they do satisfy:

χ
(1)
1,2∗(z

+)− χ
(1)
1,2∗(z

−) = (1 − e∓2iλ̃π )Q(z)φ′
1(z),

(96)

if z belongs to C̃1,2 respectively, and zero otherwise.
Also one defines:

φ
0(1)
1,2 (z) ≡ 1

2π i

∫

C̃1,2

dt
(t − z)

[
φ′

0(t)

ω′(t)
+ φ′

0(t)

ω′(t)

]
η(t)

+
[
ω(t)φ′′

0 (t)

(ω′(t))2
− ω(t)ω′′(t)φ′

0(t)

(ω′(t))3
+ ψ ′

0(t)

ω′(t)

]
η(t).

(97)

Plemelj’s formula can be applied in an analogous
way to this equation. Applying these previous equa-
tions, Eq. (92) can be written as:

φ1(z)− χ
(1)
1 (z−)− χ

(1)
2 (z−)− φ

0(1)
1 (z−)− φ

0(1)
2 (z−)

= Q∗(z)φ′
1(z)− χ

(1)
1∗ (z−)− χ

(1)
2∗ (z−)− φ

0(1)
1∗ (z−)

−φ0(1)
2∗ (z−)+ Const. (98)

for z ∈ C̃. The Lemma implies that:

φ1(z) −χ(1)1 (z−)− χ
(1)
2 (z−)− φ

0(1)
1 (z−)

−φ0(1)
2 (z−) = Const. (99)

Differentiating this previous equation, one obtains:

φ′
1(z) = φ

0(1)′
1 (z)+ φ

0(1)′
2 (z)+ L̃φ′

1(z), (100)

where L̃ is the operator of Eq. (48), with λ → λ̃.
The steps in order to obtain the stress intensity

factors at the tips of the curved extensions are the
following:

• (i) Solve for φ′
0(z) from the following equation:

φ′
0(z) = φ

′(0)
0 (z)+ L̃(φ′

0(z)) , (101)

(that follows from from Eq. (91)) with

φ
′(0)
0 (z) = �C + (� + �′)C/z2. (102)

(This step was practically done in section 3.1
with λ and � instead of λ̃ and �̃.)

• (ii) Evaluate ψ0(z) from Eq. (93).
• (iii) Calculate φ0(1)

1,2 (z) from Eq. (97).
• (iv) Solve the integral equation (100) for φ′

1(z).• (v) Get the stress intensity factors using
Andersson’s formula (60) with φ′ replaced by
φ′S = φ′

0 + φ′
1.

3.2.2 Expansion to order 1/2 in the extension
length

We will now expand the preceding equation up to

order
√
�̃, or equivalently up to order α̃ ( α̃ is given

by Eq. (50) with λ → λ̃ and � → �̃). This will yield
the functions Hlm. For that purpose we perform
a change of variable, z = eiαζ , and the following
expansions of functions:

φ′
0(z) = e−iα̃ζ [√LU0(ζ )+ α̃LV0(ζ )+ O(α̃2)],

(103)

ψ ′
0(z) = e−iα̃ζ [√LX0(ζ )+ O(α̃)], (104)

φ′
1(z) = e−iα̃ζ [√LU1(ζ )+ α̃LV1(ζ )+ O(α̃2)].

(105)

Expansion of the integral Eq. (101) for φ′
0(z) up to

order α̃ leads to the following integral equations
for U0 and V0:

U0(ζ ) = U(0)
0 (ζ )+ ÃU0(ζ ) , (106)

V0(ζ ) = V(0)
0 (ζ )+ ÃV0(ζ ) , (107)

where Ã is the operator A of Eq. (58) with λ → λ̃,
and U(0)

0 (ζ ) = U(0), V(0)
0 (ζ ) = V(0) are equiva-

lent to those of Eqs. (54)–(57) (λ → λ̃). Therefore,
based on the results of Sect. 3.1, we can consider
these as known functions from now on.

The expressions for U′
0 and X0 will also be

needed here. The first one is obtained simply by
differentiating Eq. (106) once with respect to ζ .
In addition, we decompose U0(ζ ) into U0,j(ζ ) (j =
1, 2) as is done in Eq. (66), i.e., U0(ζ ) = (K1U0,1(ζ )−
iK2U0,2(ζ ))/

√
8π , so we get for U′

0,j(ζ )
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U′
0,j(ζ ) = ± (1 − e−2iλ̃π )

2π i

∫

C+
1

dη
η(η2 − 1)U0,j(η)

(η2 − λ̃)(η − ζ )3

± (1 − e2iλ̃π )

2π i

∫

C+
2

dη
η(η2 − 1)U0,j(η)

(η2 − λ̃)(η − ζ )3
,

(108)

where the upper and lower cases on ± correspond
to j = 1, 2 respectively, and C+

1,2 are convenient
deformations of the paths η ∈ [−1, 0] and η ∈
[0, 1] into�+, respectively (in this way the poles at

ζ = ±
√
λ̃ − iε are avoided) as before—see

Fig. 11.
In order to obtain X0(ζ ) we differentiate and

expand the expression for ψ ′
0(z) following from

Eq. (93)

X0(ζ ) = K1 + iK2√
8π

− (ζ 4 + (1 − 3λ̃)ζ 2 + λ̃)

2(ζ 2 − λ̃)2
U0(ζ )

− ζ(ζ 2 − 1)

2(ζ 2 − λ̃)
U′

0(ζ )

− (1 − e−2iλ̃π )

4π i

∫ 0

−1
dh

h(h2 − 1)U0(h)

(h2 − λ̃)(h − ζ )2

− (1 − e2iλ̃π )

4π i

∫ 1

0
dh

h(h2 − 1)U0(h)

(h2 − λ̃)(h − ζ )2
,

(109)

where now the poles are located at ζ = ±
√
λ̃ + iε

(see the comment after Eq. 41). Therefore, in this
expression the integrals over [−1, 0] and [0, 1] are
deformed away from the poles into contours in the
lower half-plane. However, using the lower semi-
circles C−

1 ∪ C−
2 as integration contours is not wise

because then we encounter singularities in the inte-
grand, as we are interested in evaluating X0(ζ ) on
C−

1 ∪ C−
2 . It is wiser to use the two lower semi-

ellipses �−
1,2 defined by η = (∓1 − (cos θ + i sin

θ/2))/2, 0 < θ < π (see Fig. 11). In order to take
advantage of the resolution of U0,j(ζ ) (j = 1, 2)
done in the section 3.1, we decompose X0 as in
Eq. (66)

X0(ζ ) = 1√
8π
(K1X0,1(ζ )− iK2X0,2(ζ )) . (110)

And we get the following two expressions (j = 1, 2)

X0,j (ζ ) = (−1)j+1 −
(ζ 4 +

(
1 − 3λ̃)

)
ζ 2 + λ̃

2
(
ζ 2 − λ̃

)2 U0,j (ζ )

− ζ
(
ζ 2 − 1

)

2
(
ζ 2 − λ̃

)U′
0,j(ζ )

−1 − e−2iλ̃π

4iπ

∫

�−
1

η
(
η2 − 1

)

η2 − λ

U0,j (η)dη

(η − ζ )2

−1 − e2iλπ

4iπ

∫

�−
2

η
(
η2 − 1

)

η2 − λ

U0,j (η) dη

(η − ζ )2
.

(111)

We will now expand the integral equation (100)
for φ′

1 in powers of α̃. The first step is to get an
expansion of ω(z) and its derivatives:

ω(z) = −L
4
α̃2(ζ 2 − 1)

(
ζ

ζ − 1

)λ̃(
ζ

ζ + 1

)λ̃
, (112)

ω′(z) = iα̃L
2ζ

(ζ 2 − λ̃)

(
ζ

ζ − 1

)λ̃ (
ζ

ζ + 1

)λ̃
, (113)

ω′′(z) = L
2

(
ζ

ζ − 1

)λ̃ (
ζ

ζ + 1

)λ̃

× (ζ
4 − (1 + λ̃)ζ 2 + 2λ̃2 − λ̃)

ζ 2(ζ 2 − 1)
. (114)

An expression for the gap ηu(z) between the ficti-
tious and curved upper branch is the following:

ηu(z) = −iaeiπλ̃|Z|(
√
�̃−√|Z|) . (115)

Since

|ω(z)| = |Z| 	 L
4
α̃2
∣∣∣ζ 2 − 1

∣∣∣
∣∣∣∣
ζ

ζ + 1

∣∣∣∣
λ̃ ∣∣∣∣

ζ

ζ − 1

∣∣∣∣
λ̃

,

(116)

√
�̃ 	

√
(1 − λ̃)L

4

(
λ̃

1 − λ̃

)λ̃/2
α̃ , (117)

it follows that

ηu(z) = iaeiπλ̃
(

L
4

)3/2

α̃3
∣∣∣ζ 2 − 1

∣∣∣

×
∣∣∣∣
ζ

ζ + 1

∣∣∣∣
λ̃ ∣∣∣∣

ζ

ζ − 1

∣∣∣∣
λ̃

G(ζ ), (118)
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with

G(ζ ) ≡
√∣∣ζ 2 − 1

∣∣
∣∣∣∣
ζ

ζ + 1

∣∣∣∣
λ̃/2 ∣∣∣∣

ζ

ζ − 1

∣∣∣∣
λ̃/2

−
√

1 − λ̃

(
λ̃

1 − λ̃

)λ̃/2
. (119)

All the necessary ingredients for expandingφ0(1)′
2 (z)

and the integral Eq. (100) are now available. Start-
ing from Eq. (97), one gets the following expansion

φ
0(1)′
2 (z) = −aLα̃

8π

∫ 1

0
dh

h|h2 − 1|G(h)
(h2 − λ̃)(h − ζ )2

×
{

U0(h)+ X0(h)+ ei2λ̃π

2(h2 − λ̃)

[
h(h2 − 1)U′

0(h)

− (3h4 − (1 + 5λ̃)h2 + 4λ̃2 − λ̃)

(h2 − λ̃)
U0(h)

]}
,

(120)

with a pole at ζ =
√
λ̃ − iε. Similarly, at the lower

branch

ηl(z) = −iae−iπλ̃
(

L
4

)3/2

α̃3
∣∣∣ζ 2 − 1

∣∣∣
∣∣∣∣
ζ

ζ + 1

∣∣∣∣
λ̃

×
∣∣∣∣
ζ

ζ − 1

∣∣∣∣
λ̃

G(ζ ), (121)

and then

φ
0(1)′
1 (z) = aLα̃

8π

∫ 0

−1
dh

h|h2 − 1|G(h)
(h2 − λ̃)(h − ζ )2

×
{

U0(h)+ X0(h)+ e−i2λ̃π

2(h2 − λ̃)

×
[

h(h2 − 1)U′
0(h)

− (3h4 − (1 + 5λ̃)h2 + 4λ̃2 − λ̃)

(h2 − λ̃)

× U0(h)

]}
, (122)

with a pole at ζ = −
√
λ̃− iε. In order to calculate

more efficiently the integrals in Eqs. (120), (122),
we would need to deform the contours (as done
many times before) into C+

1,2. For that purpose the
function G(ζ ) may be continued analytically into
disks that encircle the segments ζ ∈ [−1, 0] and

ζ ∈ [0, 1]. These continuations are respectively:

G(ζ ) = e−iπ(1+λ̃)/2ζ λ̃(ζ + 1)(1−λ̃)/2(ζ − 1)(1−λ̃)/2

−
√

1 − λ̃

(
λ̃

1 − λ̃

)λ̃/2
, (123)

G(ζ ) = e−iπ(1−λ̃)/2ζ λ̃(ζ + 1)(1−λ̃)/2(ζ − 1)(1−λ̃)/2

−
√

1 − λ̃

(
λ̃

1 − λ̃

)λ̃/2
. (124)

The following step is to solve Eq. (100) for φ′
1(z).

Replacing the expansion for φ′
1(z) in Eq. (105)

into Eq. (100), one gets that φ0(1)′
1,2 (z) are of or-

der α̃. As a result the equation for U1 (analo-
gous to Eqs. (106)–(107) for U0 and V0) becomes
U1(ζ ) = ÃU1(ζ ) (where here too Ã is the same
operator as in Eq. (58), but with λ → λ̃). Due
to the contracting nature of Ã (see Appendix A)
this implies that U1 = 0. Expanding Eq. (100) to
order α̃, using the previous expressions for φ0(1)′

1,2 (z)
(Eqs. 122, 120), we get

V1(ζ ) = V(0)
1 (ζ )+ ÃV1(ζ ) , (125)

with

V(0)
1 (ζ )= a

8π

{∫ 0

−1
dh

h|h2 − 1|G(h)
(h2 − λ̃)(h − ζ )2

×
{

U0(h)+ X0(h)+ e−i2λ̃π

2(h2 − λ̃)

×
[

h(h2 − 1)U′
0(h)

− (3h4− (1 + 5λ̃)h2 + 4λ̃2− λ̃)

(h2 − λ̃)
U0(h)

]}

−
∫ 1

0
dh

h|h2 − 1|G(h)
(h2 − λ̃)(h − ζ )2

{
U0(h)+ X0(h)

+ ei2λ̃π

2(h2 − λ̃)

[
h(h2 − 1)U′

0(h)

− (3h4 − (1 + 5λ̃)h2 + 4λ̃2 − λ̃)
(h2 − λ̃)

U0(h)

]}}
.

(126)

By further decomposing V1(ζ ) into

V1(ζ ) = a
(8π)3/2

(
K1V1,1 − iK2V1,2

)
, (127)
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we get:

V(0)
1,j (ζ )=

∫ 0

−1
dh

h|h2 − 1|G(h)
(h2 − λ̃)(h − ζ )2

{
U0,j(h)± X0,j(h)

± e−i2λ̃π

2(h2 − λ̃)

[
h(h2 − 1)U′

0,j(h)

− (3h4 − (1 + 5λ̃)h2 + 4λ̃2 − λ̃)

(h2 − λ̃)
U0,j(h)

]}

−
∫ 1

0
dh

h|h2 − 1|G(h)
(h2 − λ̃)(h − ζ )2

×
{

U0,j(h)± X0,j(h)± ei2λ̃π

2(h2 − λ̃)

×
[

h(h2 − 1)U′
0,j(h)

− (3h4 − (1 + 5λ̃)h2 + 4λ̃2 − λ̃)

(h2 − λ̃)

× U0,j(h)

]}
, (128)

(the upper and lower cases of ± correspond to j =
1, 2 respectively) where previous decompositions
for U0(ζ ) and X0(ζ ) (given by Eqs. (66),(110))
have been used. Then, Eq. (125) leads to the fol-
lowing equations to be solved:

V1,1(ζ ) = V(0)
1,1(ζ )+ ÃV1,1(ζ ) , (129)

V1,2(ζ ) = V(0)
1,2(ζ )− ÃV1,2(ζ ),

which are solved as in the previous section by iter-
ations as follows:

V1,1(ζ ) =
∞∑

n=0

ÃnV(0)
1,1(ζ ) , (130)

V1,2(ζ ) =
∞∑

n=0

(−1)nÃnV(0)
1,2(ζ ) . (131)

In order to apply Andersson’s formula (60) at the
upper branch tip, one uses

δ 	 πλ+ 3
2

a
√
�̃ , (132)

ω′′(eiβ̃ ) = ω(eiβ̃ )(eiβ̃ + 1)(eiβ̃ − e−iβ̃ )

eiβ̃ (eiβ̃ − eiα̃)(eiβ̃ − e−iα̃)(eiβ̃ − 1)

	 Leiλ̃π
(

1 − 2i
√
λ̃α̃
)( λ̃

1 − λ̃

)λ̃
. (133)

Also, since β̃ 	
√
λ̃α̃, and λ̃ = λ+ a

√
�/π we get

K′
1(�̃)− iK′

2(�̃) = 2
√
π
[
U
(√
λ̃
)

+ √
Lα̃V

(√
λ̃
)]

×
(

1 − λ̃

λ̃

)λ̃/2
e−iπλ̃e−ia

√
�̃/4.

(134)

Then, for the curved crack case one can write (Eq. 50):

K′
1(�̃)− iK′

2(�̃) =
[
K′

1(�̃)− iK′
2(�̃)
]πλ̃

a=0

+2
√
πe−iλ̃π

(
1 − λ̃

λ̃

)λ̃/2

×
⎡

⎣− i
a
4

U0

(√
λ̃
)

+ 2√
1 − λ̃

(
1 − λ̃

λ̃

)λ̃/2
V1

(√
λ̃
)
⎤

⎦

×
√
�̃ . (135)

Using the decompositions given by Eqs. (66), (110)
and (127), the last expression for the stress inten-
sity factors becomes:

K′
1(�̃)− iK′

2(�̃) =
[
K′

1(�̃)− iK′
2(�̃)
]πλ̃

a=0

+ a

4
√

2

(
1 − λ̃

λ̃

)λ̃/2

×e−iλ̃π

⎧
⎨

⎩K1

⎡

⎣− iU0,1

(√
λ̃
)

+ 1
π

√
1

1 − λ̃

×
(

1 − λ̃

λ̃

)λ̃/2
V1,1

(√
λ̃
)
⎤

⎦

− K2

⎡

⎣U0,2

(√
λ̃
)

+ i
π

√
1

1 − λ̃

×
(

1 − λ̃

λ̃

)λ̃/2
V1,2

(√
λ̃
)
⎤

⎦

⎫
⎬

⎭

√
�̃.

(136)

The H̃lm’s are extracted from the defining expres-
sion Eq. (85) together with the previous result.
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Notice that extracting the H̃lm’s from the last equa-

tion involves evaluating the functions V1,j(ζ ) at
√
λ̃

(on the real axis). This involves, as explained in
(Amestoy and Leblond 1992), crossing of the pole

at η =
√
λ̃ for V(0)

1,j (ζ ). Appropriate account of this

difficulty results in that if one just replaces ζ =
√
λ̃

in expression (128) the contribution from the U’s
should be doubled. Thus, we get:

H̃11(λ̃) = −1

4
√

2

(
1 − λ̃

λ̃

)λ̃/2

×
⎧
⎨

⎩e−iλ̃π

⎡

⎣2iU0,1

(√
λ̃
)

− 1
π

√
1

1 − λ̃

×
(

1 − λ̃

λ̃

)λ̃/2
V1,1

(√
λ̃
)
⎤

⎦

⎫
⎬

⎭ , (137)

H̃12(λ̃) = −1

4
√

2

(
1 − λ̃

λ̃

)λ̃/2

⎧
⎨

⎩e−iλ̃π

⎡

⎣2U0,2

(√
λ̃
)

+ i
π

√
1

1 − λ̃

(
1 − λ̃

λ̃

)λ̃/2
V1,2

(√
λ̃
)
⎤

⎦

⎫
⎬

⎭ ,

(138)

H̃21(λ̃) = 1

4
√

2

(
1 − λ̃

λ̃

)λ̃/2

×�
⎧
⎨

⎩e−iλ̃π

⎡

⎣2iU0,1

(√
λ̃
)

− 1
π

√
1

1 − λ̃

×
(

1 − λ̃

λ̃

)λ̃/2
V1,1

(√
λ̃
)
⎤

⎦

⎫
⎬

⎭ , (139)

H̃22(λ̃) = 1

4
√

2

(
1 − λ̃

λ̃

)λ̃/2

×�
⎧
⎨

⎩e−iλ̃π

⎡

⎣2U0,2

(√
λ̃
)

+ i
π

√
1

1 − λ̃

×
(

1 − λ̃

λ̃

)λ̃/2
V1,2

(√
λ̃
)
⎤

⎦

⎫
⎬

⎭ . (140)

Finally, Eq. (86) is used in order to extract the Hlm’s
from the H̃lm’s. Results following from a numerical

y=0

y=1

σ
yy

=0 u
y
=0

(u
x
=0 or σ

xy
=0) and u

y
=δ

σ
xy

=0

Fig. 13 A semi-infinite crack in a strip of unit half-width.
The top and bottom edges of the strip are fixed at height
±δ above their initial positions, and either these edges are
clamped (first problem) or free to slide (second problem)

resolution of the problem were presented above in
Fig. 4. In that figure, we superimposed the results
obtained in (Amestoy and Leblond 1992) for the
case of a kinked crack (with the same angle) for
the sake of comparison (actually in (Amestoy and
Leblond 1992) only results up to λ = 80◦ are pre-
sented, so we extended the results obtained there
to the whole range λ ∈ [0, 1] in order to allow for
a comparison between the two cases).

4 Elastostatic analysis of a crack in a strip
geometry

In this section we calculate the ratio T/K1 for a
static semi-infinite crack in a strip of unit half-width
in an isotropic elastic medium described by Lamé
coefficientes λ,µ (see Fig. 13). The system is loaded
by imposing normal displacements ±δ to the top
and bottom edges of the strip. We will consider
both clamped (ux = 0, first problem) and shear
free (σxy = 0, second problem) boundary condi-
tions. In both cases, the symmetry of the problem
allows to focus on the upper half plane only. Also,
subtract the solution of the unbroken strip, which
corresponds to a state of uniform stress. This con-
tribution will be added when needed. The bound-
ary conditions corresponding to the first problem
are

ux(x, 1) = uy(x, 1) = σxy(x, 0) = 0 , (141)

σyy(x, 0) = −σ∞ |x| < 0 , (142)

uy(x, 0) = 0, |x| > 0, (143)
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while the second problem has the following bound-
ary conditions

σxy(x, 1) = uy(x, 1) = σxy(x, 0) = 0 , (144)

σyy(x, 0) = −σ∞ , |x| < 0 , (145)

uy(x, 0) = 0 , |x| > 0 . (146)

Here σ∞ can be determined from the solution of
the unbroken strip and its value is different for
each problem. Notice that for the second problem,
any addition of a constant stress σxx(x → ±∞, y) ≡
T∞ is consistent with the boundary conditions, and
thus with the formulation of this problem. In both
cases we have

uy(x → −∞, y → 0+) = δ , (147)

Introducing Fourier transforms in the x-coordi-
nates as y(x) = 1

2π

∫∞
−∞ Y(k)e−ıkxdk, the elasto-

static equilibrium equations can be solved without
difficulties. Moreover, applying the boundary
conditions (141) and (144) of the first and second
problem respectively, allows to reduce the deter-
mination of the stress field to the problem of solv-
ing the following equation with the appropriate
boundary conditions:

(λ+ 2µ)F(k) ≡ −�yy(k)

Uy(k)
, (148)

where

�yy(k) ≡ �yy(k, 0) =
∫ ∞

−∞
σyy(x, 0)eıkxdk , (149)

Uy(k) ≡ Uy(k, 0) =
∫ ∞

−∞
uyy(x, 0)eıkxdk, (150)

and F(k) is a known function that is obtained in a
closed form for each problem. As will be explic-
itly shown below, the behavior of F(k) at large and
small k’s is given by

F(k) 	 f0, |k| � 1 , (151)

F(k) 	 f∞|k|, |k| � 1 . (152)

The piecewise boundary conditions (142), (143)
and (145), (146) suggest the use of the Wiener–
Hopf decomposition method. Let us introduce

�+
yy(k) =

∫ ∞

0
σyy(x, 0)eıkxdx , (153)

�−
yy(k) =

∫ 0

−∞
σyy(x, 0)eıkxdx , (154)

with U+
y (k) and U−

y (k) defined similarly. Notice
that�−

yy(k) (U−
y (k)) is analytic for �k<0 and�+

yy(k)

(U+
y (k)) is analytic for �k > 0. Using (142), (143)

and (145), (146) together with Eq. (148) one thus
obtains

− (λ+ 2µ)F(k)U−
y (k) = �+

yy(k)− σ∞
ık

. (155)

Let us suppose that one can write

F(k) = F−(k)
F+(k)

, (156)

where F−(k) has neither zeros nor poles for �k < 0
and F+(k) has neither zeros nor poles for �k > 0.
Then Eq. (155) is rewritten as

−(λ+ 2µ)kF−(k)U−
y (k)

= k�+
yy(k)F

+(k)+ ıσ∞F+(k). (157)

The left-hand side of Eq. (157) is analytic in the
lower half plane, while its right-hand side is ana-
lytic in the upper half plane, and both sides coincide
on the real axis. By the theorem of analytic con-
tinuation, and in order to retrieve the square root
behavior of the stress field at the crack tip, both
sides must equal a constant. This constant can be
fixed by examining the behavior of the expression
for k → 0. In fact Eq. (147) implies that

U−
y (k) 	 δ

ık
, k → 0 . (158)

Equations (157) and (158) then imply

�yy(k) ≡ �+
yy − σ∞

ık
= −σ0

ık
F−(0)
F+(k)

, (159)

where

σ0 = (λ+ 2µ)δ . (160)

Now, since we are interested in the T-stress we
look at the difference

σxx(x, 0+)− σyy(x, 0+)

= 1
2π

∫ ∞

−∞
G(k)�yy(k)e−ıkxdk , (161)

where G(k) = −1+�xx(k)/�yy(k)will be simply a
given function for each problem. We will also need
the stress intensity factor ( SIF) K1 in each case,
for which the expression is given by

K1 = lim
|k|→∞

[√
−2ıkσyy(k)

]
= σ0

√
2f0f∞ . (162)

Before examining each problem separately, the
method of decomposition of F(k) as F−(k)/F+(k)
which is necessary for the Wiener–Hopf method
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will be presented. To do this, let us define the func-
tion

H(k) = F(k)√
k2f 2∞ + f 2

0

. (163)

where f0 and f∞ are chosen to get the two limits
|k| → 0, ±∞ right for real k. The function H(k)
is a bounded, even function, which tends to 1 for
|k| → 0, ±∞. Therefore, we can approximate this
function using the method of Pad’e (Baker 1975).
This method was first used in the context of frac-
ture by (Bouchbinder et al. 2003).

A Padé approximant, is that rational function
of a specified order whose power series expansion
agrees with a given power series to the highest pos-
sible order. In the present case, the Padé approxi-
mation of H(k) will be of the form

H(k) 	 P2N(k)
Q2N(k)

, (164)

where P2N(k) and Q2N(k) are polynomials, which
mustbeeven,and2Nistheorderoftheapproximation
(in practice we use 2N = 30 which gives accuracy
better than 10−5 for the desired quantities). Then,
we find all the complex roots �1, . . . , �2N and
λ1, . . . , λ2N of P2N(k) and Q2N(k), respectively
(actually it is even a simpler problem to find the N
roots of the polynomials P2N(

√
x) and Q2N(

√
x),

denoted by r1, . . . , rN and ρ1, . . . , ρN , respectively,
from which we recover �2n−1, �2n = ±√

rn and
λ2n−1, λ2n = ±√

ρn), and so we get the factorization

H(k) 	
(

1 − k2

r1

)
· · ·
(

1 − k2

rN

)

(
1 − k2

ρ1

)
· · ·
(

1 − k2

ρN

) . (165)

The Wiener– Hopf decomposition of a function of
this form may be carried out by inspection:

F+(k) = 1√
f0 − ıkf∞

N∏

n=1

⎛

⎝
1 − ık√

rn

1 − ık√
ρn

⎞

⎠ . (166)

This approximation schemes converges when tak-
ing larger and larger N’s, and so the choice of N is
a matter of the desired accuracy. The advantage of
this approach over expanding in Chebyshev poly-
nomials, as done for example in (Liu and Marder
1991), is twofold. First, by using the same num-
ber of series coefficients a better approximation
for H(k) is obtained. Second, when factorizing the
expansion in Chebyshev polynomials to order 2N
one has to find roots of a polynomial of order 2N
while for the comparable Padé approximation one
has to factorize two polynomials of order N which
is simpler.

4.1 Solution of the first problem

For the problem defined by the boundary condi-
tions (141)–(143), the function F(k) is defined by

F(k) = 2
κ2

k
[
(κ2 + 1)+ 2(κ − 1)2k2 + (κ2 − 1) cosh(2k)

]

(κ + 1) sinh(2k)− 2k(κ − 1)
, (167)

so that f0 = 1 and f∞ = 2(κ − 1)/κ2. Also, the
function G(k) is given by

G(k) = −4
(κ − 1)2k2 + κ

(κ2 + 1)+ 2(κ − 1)2k2 + (κ2 − 1) cosh(2k)
, (168)

By solving the problem of an unbroken strip
with the same boundary conditions one gets

σ∞ = σ0 = (λ+ 2µ)δ . (169)

Now, using the decomposition given by Eqs. (159)
and (166), one has

�yy(k) = −σ0

ık

√
1 − ıkf∞

N∏

n=1

⎛

⎝
1 − ık√

ρn

1 − ık√
rn

⎞

⎠ . (170)

The stress intensity factor given by Eq. (162) yields

K1 = 2σ0

√
κ − 1/κ . (171)

The T-stress is related to the asymptotic value of
(σxx − σyy) at y = 0 for x → 0 with adding the
solution of the unbroken strip

T = lim
x→0

[
σxx(x, 0+)− σyy(x, 0+)

]− 2µ
λ+ 2µ

σ0

= 1
2π

∫ ∞

−∞
G(k)�yy(k)dk − 2

κ
σ0 . (172)

In Fig. 14, the ratio T/K1 is given as a function of κ .
Notice that T is always negative for this problem.
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Fig. 15 (a) The
dimensionless ratio T/K1
as a function of κ for the
shear free boundary
condition. The different
curves correspond to
different values of T∞/σ0.
(b) Tcr/σ0 for various
values of κ
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Fig. 14 The dimensionless ratio T/K1 as a function of
κ for the clamped boundary condition. Notice that for
κ = 3, T/K1 = −0.43, or in dimensioned quantities
T/K1 = −0.43/

√
W, where W is the width of the sample

4.2 Solution of the second problem

For the problem defined by the boundary condi-
tions (144)–(146), the function F(k) is

F(k) = (κ − 1)
κ2

k(2k + sinh(2k))

sinh2(k)
, (173)

so that f0 = 4(κ − 1)/κ2 and f∞ = 2(κ − 1)/κ2.
Moreover, one has

G(k) = −4k
2k + sinh(2k)

, (174)

and

σ∞ = σ0

[
1 + κ − 2

κ

(
T∞
σ0

− κ − 2
κ

)]
, (175)

where T∞ ≡ σxx(∞). Now, using again the decom-
position given by Eqs. (159) and (166), one gets

�yy(k) = − f0σ0

ık

√
1 − ık/2

N∏

n=1

⎛

⎝
1 − ık√

ρn

1 − ık√
rn

⎞

⎠ . (176)

In this case, the stress intensity factor is given by

K1 = 4(κ − 1)
κ2 σ0 , (177)

and

T = 1
2π

∫ ∞

−∞
G(k)�yy(k)dk

− 2
κ
σ0

[
2(κ − 1)

κ
− T∞
σ0

]
. (178)

Figure 15a shows the behavior of T/K1 as a func-
tion of κ for various values of T∞. For every value
of κ there exists a critical value of T∞, denoted
by Tcr, at which the value of T changes sign (see
Fig. 15b).

Since a change in the sign of T implies a transi-
tion from a stable crack growth (T<0) to an unsta-
ble one (T>0), a destabilization/stabilization of the
growth process may be induced by tuning the value
of T∞. Interestingly, this feature is not shared by
the first problem (clamped edges) and is a particu-
lar property of the shear free boundary conditions.
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Appendix A: Proof that A is contracting

Take the space of functions which are defined and
continuous on C−

1,2, such that the norm defined by

‖f‖ = Max
ζ∈C−

1,2

∣∣∣
(
ζ 2 − 1

)
ζ f (ζ )

∣∣∣ , (179)

is finite. Here, we intend to prove that the operator
A (given by Eq. 58) is contracting in this space, i.e.,
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that there exists a constant c smaller than 1 such
that

‖Af‖ ≤ c ‖f‖ (180)

for every function in that space. Rewriting A by
shifting the contours to C−

1,2 we get

Af (ζ ) = 1 − e−2iλπ

8π

∫ π

0

(
− 1+e−iθ

2

)[(
− 1+e−iθ

2

)2 − 1
]

(
− 1+e−iθ

2

)2 − λ

×
f
(
− 1+e−iθ

2

)
e−iθdθ

[(
− 1+e−iθ

2

)
− ζ
]2 +

+1 − e2iλπ

8π

∫ π

0

(
1−e−iθ

2

) [(
1−e−iθ

2

)2 − 1
]

(
1−e−iθ

2

)2 − λ

×
f
(
− 1+e−iθ

2

)
e−iθdθ

[(
1−e−iθ

2

)
− ζ
]2 .

Now using
∣∣∣ 1−e±2iλπ

8π

∣∣∣ = sin πλ
4π ,

∣∣∣ 1−e−iθ

2

∣∣∣ = sin θ
2 ,

∣∣∣−1−e−iθ

2

∣∣∣ = cos θ2 ,
∣∣∣∣
(

1−e−iθ

2

)2 − 1
∣∣∣∣ =

√
5−3 cos θ

2 cos θ2

and
∣∣∣∣
(−1−e−iθ

2

)2 − 1
∣∣∣∣ =

√
5+3 cos θ

2 sin θ
2 , we get the

following estimate

‖Af‖ ≤ ‖f‖ · Max
ζ∈C−

1,2

{
sin πλ

4π

∣∣∣
(
ζ 2 − 1

)
ζ

∣∣∣

·
∫ π

0
dθ

∣∣∣∣∣∣∣∣

1[(
− 1+e−iθ

2

)
−ζ
]2
[(

− 1+e−iθ

2

)2
−λ
]

+ 1[(
1−e−iθ

2

)
−ζ
]2
[(

1−e−iθ

2

)2
−λ
]

∣∣∣∣∣∣∣∣

⎫
⎪⎪⎬

⎪⎪⎭
. (181)

We focus on the left branch C−
1 , where ζ = − 1+eiγ

2

(γ ∈ [0,π ]). There we get
∣∣(ζ 2 − 1)ζ

∣∣ =
√

5+3 cos γ
8

sin γ . As for the integral in the last inequality,
we are not able to bound it analytically, but it is
not difficult to show numerically that it obtains its
maximum at λ → 1 and γ→π where it behaves
like sin(πλ)

π(1−λ) . And so for every λ < 1 we get that

Max
ζ∈C−

1

{· · · }<1. Similarly, for the right branch C−
2 ,

where ζ = 1−eiγ

2 (γ ∈ [0,π ]) we get exactly the
same bound, since the only difference with respect
to C−

1 is γ → π − γ . Therefore we get what we
need, i.e., there exists a constant c<1 such that
Eq. (180) is obeyed.
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