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Theory of Electrical Breakdown in Tonic Crystals
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1—INTRODUCTION

If an electrical field higher than a certain critical strength F is applied to
an ionic crystal, the insulation breaks down. If the temperature is above
a certain critical value 7'; (usually of the order 100° C.), F' decreases very
rapidly with temperature, and the breakdown takes place some seconds
after the application of the field. Wagner (cf. Semenoff and Walther 1928)
has shown that in this case the breakdown is due to the Joule heat generated
by ionic conduction, which causes local melting.

For temperatures less than 7j, on the other hand, the breakdown takes
place in a time of the order 10~® sec. (Rogowsky 1928) and the variation
of F' with temperature is very much smaller than in the case of heat break-
down.* The phenomenon in this case is referred to as electrical breakdown,
any melting of the crystal being ruled out by the short times involved.

To explain the electrical breakdown, various theories have been proposed.
The mechanical theory (cf. Semenoff and Walther 1928) assumes that the
breakdown is due to mechanical rupture of the crystal, caused by the
forces which the electrical field exerts on the ions. According to this theory
the electrical strength, like the mechanical strength, should depend very
strongly on cracks and other crystal imperfections. Experiments by
v. Hippel (1932) have shown, however, that the breakdown field is almost
the same for different specimens and does not depend on their source or
method of preparation.

On the other hand, Joffe has assumed (cf. Semenoff and Walther 1928)
that the breakdown is due to an ionization of the ions by the moving ions,
carrying the current. This theory does not allow, however, for the short
time in which the breakdown occurs. v. Hippel and others (v. Hippel 1935)
have therefore suggested the following mechanism: At any temperature
a few electrons will be in the “conduction level”, i.e. free to move through
the lattice. If these can gain enough energy from the field to ionize the

* Exact measurements of F in a homogeneous field have been made only at room
temperature (v. Hippel 1935).
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(negative) ions of the lattice, the number of free electrons will increase
very rapidly. This will then lead to the breakdown similarly as in gases.
v. Hippel (1935) supports these ideas by showing that the breakdown
always occurs in such directions in the lattice, along which an electron has
to surmount the lowest potential walls. (For a NaCl lattice, for example,
this is the case in the 110 direction.)

In order to calculate the energy gained by the electron from the field,
we need to know the mean free path of the electron in the lattice. In this
paper, therefore, we make a quantitative calculation of the mean free path,

Sand hence the breakdown field, on the assumption that the phenomenon .
is due to electrons.*

2—TaE CONDITION FOR BREAKDOWN
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In an ionic crystal a very few electrons will always be in the conduc-
wtlon level. Their number increases with increasing field strengths but
Ofor small field strengths an equilibrium number is reached (cf. below).
ﬁWe shall assume these electrons to behave as though free (i.e. we
Wneglect the effect of the lattice field). We denote the kinetic energy
Sof such an electron by E, and assume that K is of the same order of
&magnitude but less than the energy .7 required to excite or ionize the
oxons of the crystal (~5 e-volts). When such an electron is deflected by
wa collision with the lattice vibrations the gain or loss of energy is of the

order hv (~0-02 e-volt), so that the collision is nearly elastic as in the theory
3 of metals. Under these conditions the current density per electron is given

&.by the usual formula
erF

=T (1)

where F is the field strength, 7 is the time of relaxation{ and V is the volume
of the crystal. Therefore, the energy A, transferred per second from the
field to the electron, is given by

A = IFV = e¢F27/m. (2)
The calculation of 7 in § 4 gives
A = const. F2E?,
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* v. Hippel (1935) has already proposed some ideas for the interaction of an
electron with an ionic crystal. The following calculations, however, lead to another
conception of this interaction.

T 7 is defined as the time in which the component of the momentum of the
electron in a certain direction is reduced to the eth part (cf. § 4).
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The electron also transfers a certain energy B per second to the lattice,
In § 5 we shall find B = oongt. B

The rate of loss of energy is thus
B— A = const. E—*— const. F2E?,

We see, therefore, that for low energies (£ < E’) the electron loses energy
and for high energies (K> E') it gains energy. The critical energy E’,
where* A = B depends on the field strength F':

E oc1/F.

Now the condition for breakdown is that no stationary state for the
electron distribution can be reached, i.e. that an electron, with energy less
than .7 (the ionization potential), is capable of gaining energy from the
field but that no reverse process exists. Hence the condition for break-

down is B<T.

If this is not the case, the field cannot cause any instability because it
cannot produce any more electrons capable of ionization. Thus, the critical
field strength F' where the breakdown begins can be calculated from the
condition B =T

ie. ' A(E,F)=B(E), E=7. (3)

From the above considerations it follows that in a field, higher than the
breakdown field F, the electron has in general to suffer quite a number of
collisions before reaching the energy 7. We should notice, however, that
even in a field weaker than the breakdown field it might happen that an
electron having by chance an energy nearly equal to.7, and moving in the
direction of the field, is accelerated in the field in such a way that it reaches
between two collisions the energy 7. Processes of this sort do not lead,
however, to any instability. They have only the effect that the number of
electrons in the conductive levels increases with increasing field strength
(but there exists a stationary state) and that therefore also the con-
ductivity increases. For field strengths near to the breakdown field this
increase of the conductivity has been observed. But as v. Hippel (1935)
has shown, at the breakdown field the current density increases almost
discontinuously. Thus the breakdown cannot be considered as a con-
tinuous increase of the ordinary current.

* g . e e
An electron with the energy E’ is in an unstable equilibrium.
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3—INTERACTION BETWEEN THE LATTICE VIBRATIONS
AND THE ELECTRON

The investigations of Born and v. Karman (Born and Goppert-Mayer
1933) on the elastic vibrations of a diatomic polar lattice show that the
normal modes can be divided up into two branches, the acoustic and the
optical branch. The number of normal modes in each branch is 3N (i.e. the
total number is 6N), where 2N is the number of ions.

Each elastic deformation of the lattice is connected with a certain

olarization. Each elastic wave, therefore, corresponds to a certain
“polarization wave’’. The oscillations of the optical branch are those in

which two neighbouring ions of opposite sign vibrate in opposite directions.
= These waves correspond therefore to long polarization waves. On the other
o hand, in the acoustic branch, neighbouring ions of opposite sign have
g almost the same displacement. These waves correspond, therefore, to
wpol&nzatlon wave-length, nearly equal to the lattice constant. ¥

A g ust 2022

8 According to Born and v. Karman (Born and Géppert-Mayer 1933) the
%Doscxllatlons of the optical branch have all nearly the same frequency »
=

@ (the Reststrahlen frequency). Since the optical branch gives much the
greater polarization of the lattice, it gives a much stronger interaction with
>the electron. Thusit willinvolve only a small error if we give the Reststrahlen
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For a long polarization wave (wave number w) the polarization P,, per
unit volume may be obtained as follows: Let ., u_ denote the displace-
. ments of the ions of the two signs in the neighbourhood of a given point,

2 and let Uy = Uy +U_,
Then clearly B, = eu,, /243, (4)
where 24? is the volume of the unit cell, i.e. @ the distance between neigh-

bouring ions.

For those waves in which the polarization varies very rapidly from
point to point (short polarization waves, long elastic waves) we shall adopt
the same device as that used by Debye in his theory of specific heats and
treat the crystal as a continuous medium. We shall treat the elastic waves
as giving rise to a polarization wave
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u,(z,y,2) = (’N)* {b,, €10 4 b g—i(w.0}, (4a)

where b,, = const. e*"™,

t The wave number of an elastic wave differs from that of a polarization wave
by a vector in the reciprocal lattice.
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Since for each wave number w there are two transverse waves and one
longitudinal one, w will have all values between 0 and w,, given by

2a®N 4
6N= 3‘—(2”)83‘ 03
67r2)} T
. wo= L ™, (5)

The value w = 0 corresponds to an infinite wave length, i.e. to a constant
polarization.

For our further considerations it will be necessary to know the total
energy of a polarization wave. Let M+ and M~ denote the masses of the
ions of the two signs. In our continuum theory, we shall have to assume
the masses and charges of each sort of ion to be uniformly distributed.
If there is no displacement the density of positive and negative charges is
the same all over the continuum. Since the force acting on positive charges
is opposite to that acting on negative charges, and since both »,_ and u_
have the same dependence on time, it follows that

Mru, = M-u._.
Using this relation, it is possible to calculate the total energy in the same
way as has been done for the vibrations of a monatomic lattice.f One thus

finds that the total energy is represented by the energy of an harmonic
oscillator with a frequency », amplitude

Xw 7= bw+b:w (6)
momentum Y, =—2mivM(b,—bE), (7)
1 1 1
and mass M, where U= - U= (8)

In order to consider the interaction of an electron with the dielectric,
it is convenient to express the total energy in a Hamiltonian form. The
Hamiltonian is composed of three terms

H=Hy, +H,+W.

H . is the sum of the Hamiltonians of all the oscillatorsy

Yy

o ‘ >

HOEC. = 2 (W -+ 27T2V2M‘\ 2w) .
w -

T (.Cf. Peierls 1929.) In our case the kinetic energy is the sum of the kinetic
energies of the positive and negative ions. The total energy is twice the kinetic energy
as for any kind of harmoniec oscillation,

i The interaction energy between the waves is zero, if they are assumed to be
exactly harmonic (cf. Peierls 1929).
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H,, is the Hamiltonian of the electron, moving in the field of the lattice
if all ions are exactly in their equilibrium positions. Since we have assumed
the electron to behave like a free electron, H, is given by

Hg = p*2m,

where p is the momentum of the electron.
W is the interaction energy between the electron and the polarization

waves., Thus
W =eXd,,

022

cwhere ¢, is the potential of a single wave with wave number w at the
‘g;osmon of the electron. ¢, is determined by

Vg, = 4ndiv P, (9)

09 Aug

c\From this equation it follows that only longitudinal waves have an inter-
cactaon with the electron. Using equation (4), we find for the solution of (9)
Eﬁccordmg to (4a), (6) and (7)

)
OD

% b, = 2a3‘:7:)eN)i{ eiw.x) _ p¥* g—i(w, 1)}

I >

g £0% A sin (W r)+ cos (W, r)] (10)
2 ~ adw@N)E | 1 M >

§ From the Hamiltonian H, we may, for instance, calculate the classical
§)olarizatiou P of the dielectric due to an electron. We find P cce/r for
%hstances r>a. For r—0, P tends to a certain finite value in contrast

o the classical picture where et is considered a constant and P — o0 as r— 0.

ps:

4—TiME oF RELAXATION

According to the quantum theory, the momenta p and Y, have to be
eplaced in the usual way by operators. The energy of each polarization
ave consists then of a number of quanta Av.

For the calculation of the time of relaxation, we may treat W as a per-
turbation. Then, the zero order approximation of the wave function of
the total system is given by a product

Yl ],_I 4\ 10’ (r’ k)’
and the total energy by
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U=73n,+}Hhv+E,.

w

1 € is the dielectric constant.

Val. CLX—A. R
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Here, k is the wave number and 1/ the wave function of the electron
Y = eilen) Vi,

E,, is its energy: E, = %2k?[2m,

n,, is the number of quanta Av of the oscillator w, and y(X,, n,) is its wave
function.

We now calculate the probability @, per second that the electron makes
a transition to the state k', coupled with a transition of the oscillator w
from n,, to n,,.. By Dirac’s perturbation theory, @, is given by

0 qm-gt
Qan=h3|MMuu’ at g 3
where hE = Ey— B+ (n),—n,) w

and i,"Ikl.:’uv = :;fx*(xuvs n’l’l‘) gy e¢u-X(Xw= "’w) il de d'.

Introducing ¢,, from equation (10) and using the well-known matrix
elements for an oscillator, we find that the electron may either absorb
(oc @4,) or emit (oc @F,) a quantum Av (as in the theory of metals). The matrix
elements can easily be worked out. In the case of emission, M, is different
from zero only if k' is determined by

k' =k—w. (11)
The matrix element is then

M n <. 2me® l +'Il,,)
kk'w = aaw(gN)é 4#1‘11’

(Drre2\ 2 2
and hence e = &g ) 1+, 0 sin*fs (11a)
oMhvot £
In the case of absorption, we find similarly
k' =k+w (12)
and @t — 2_"52)2 7{'9_28“]_2@. (12a)
X a*w) 2Mhvot &2

k’, therefore, is completely determined by conservation of momentum
[(11) and (12)]. @, is big only if £ = 0 (conservation of energy). From the

T By taking the average over a small energy interval, it can easily be seen that
@, is independent of the time.
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conservation of energy and momentum, it followst that the angle « between
k and w is given by

w 2m hy
ZL 12 2kw

For most oscillators w, the second term in (13), is small.

We can now calculate the time of relaxation 7. Let the field F be in
the x direction, so that the change of the x component £, of the wave number
of the electron by the field is

(Zikx) _eF
ot Jpera B

Fet Ak, (w) be the mean change of &, by one collision with the oscillator w.

Yhen, 7 is defined as (Frohlich 1936. § 14)

be Sk ()@ 1 %), (14)
w

T

cos o = (+ for absorption, — for emission).  (13)

ust 2022

his definition leads immediately to equation (1), since the right-hand side
the mean change of k, per second, due to collisions, i.e.

k()
T 0t / contston
quation (1) then follows from the condition for a stationary state,

ok ) (akx)
i ) s =0.
( ot [fela ot collision

2 Let us introduce polar co-ordinates (w,,¢) in w space, with the axes
Parallel to k, i.e. with # = «. Since the @,’s do not depend on ¢, we may
Ea.ke the average of Ak, (w) in equation (14) over the azimuth ¢. The result
u‘ﬂs (Frohlich 1936, § 13)

//royalsoqiptypublisl"mg.@rg/ on 09

w2
(W) = — 2—k—2k_r S

eplacing the sum in (14) by an integral, we find for 7 (cf. equation (5))

Ak

T

Dow;gloade

1 2a3N (2 o w2 -
- (zﬂ)af d¢f~"sm0d0f0 @+ D) wrd,

The integration over ¢ gives 277. The simplest way to carry out the integration
over 0 is (cf. Bloch 1928, p. 589) to introduce £ as variable instead of 6.
1 Cf., for example, Fréhlich (1936, § 13), considering that all oscillators have the
same energy.
{ In fact, the state is not stationary, but quasi-stationary, because of the exchange

of energy of the electron with lattice and field (cf. § 2).

R2
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Using the fact that n, is the same for all oscillators, namely,

1

Mo = GRT ] ? 1
: | 2
we finally obtain* o (l +WT1) ’ (15)
1 242 e o 2% B3
where T—0=8—ﬁ e if E>—8_M2’ (16)
4, g2 g2
and 'rl;=27ﬁjl+;uE*’ if E'<:2T:T—nf—az (16a)

The time of relaxation 7, at the absolute zero of temperature is entirely
due to the zero-point oscillations. In Bloch’s electron theory of metals
(Bloch 1928), owing to the Pauli principle, an electron cannot loose energy,
and so there are no collisions of the conductive electrons with the zero
point oscillations. This is not the case here. An electron, with an energy
higher than the energy of the conduction electrons, suffers collisions with
the lattice vibrationst even at 7' = 0.

5—TRANSFER OF ENERGY TO THE LATTICE

At each collision, the energy Av is transferred to the lattice with a
probability @7, or absorbed by the electron with a probability @g. The

w*
energy B, transferred per second to the lattice, therefore, is given by

B = w3 (@, — ).

w

Since (cf. equations (11a) and (12a))
(DZ/Q::' = (1+ nur)/"‘ur!

B is independent of the temperature.

B can be evaluated by a method similar to that used in the calculation

of 7. We thus find
B hvﬂcf (&J

= .
Towd ) w
* For Ob<an :
For 7”:-'?“0- wy has to be replaced by 2k because of momentum and energy
theorem. This leads to equation (16a).
T If, however, E <hyp, the electron cannot emit the energy hv, and (15) has to be
replaced by
LW N
T TeeMFT_1°

In this case, therefore, 1/r vanishes for 7' = 0.
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As this integral diverges for w = 0, we must find the lower limit »’ of w.
This can be obtained from equation (13), using the fact that always
|cosa|<1.

Since for small w the first term in equation (13) is small, »’ is given by*

. 2mmy
A
hv 4k 2bredmt
N : LN e Lot
§ We then obtain B = 1 logy VT logy, (17)
e _wy Ak (2B)
%owhere V=W T e 2mbva’
<
N
S
g 6—BreEAKDOWN FIELD
%0 We calculate now the breakdown field F from equation (3). Using
%bequations (2), (15), (16), (17) and (5), we obtain
= 2tr et (mhlogy\} 2 :
Z i e R e 8
£ o4 aw'M( > ) ( + GRT 1) (s
e
gAs 7 is proportional to the mean free path [/ (I, = mean free path for 7' = 0),
‘8we notice that
1
Foc—-. 19
A @ i

7T—DiscussionN

Equation (18) contains no arbitrary constants so that we may calculate
theoretically the absolute value of F. The energy .7 will be taken from
the first maximum of the ultra-violet absorption band. For the alkali
halides, the latter has been measured by Hilsch and Pohl (1930). If A is
the wave-length of this first maximum, .7 is given by

T = he/A.
We shall insert this expression into equation (18). Finally we shall express

Fin V/em., A and @ in Angstrﬁms, hv in 1072V and M (cf. equation (8)) in
units of the hydrogen mass. We then obtain

Downloaded from https://royals

92 4
F = 1-6(log y)! x 105 > ) V/em.

Ma4(}“,)& (l Fi elw/kT =k

* As w' <wy, it was correct to put w’=0 in the integral for 1/7.
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Here, A is the wave-length of the ultra-violet absorption, » is the Rest-
strahlen frequency, @ is the distance between two neighbouring ions of 1
opposite sign, and M is given by equation (8) in terms of the atomic weight;

. M+ and M- of the ions. For K = .7, (logy)!* has nearly the same value for

all alkali halides, namely, 2-6. I
We shall now compare for the alkali halides the theoretical value of F
at 300° K. with the experiments of v. Hippel (1935) carried out at room
temperature. v. Hippel’s values differ considerably from former measure-
ments. For NaCl, for example, his value is 15 x 105V /em., whereas Semenoff
and Walther (1928) give 5x 105V/em. As mentioned in the introduction,
v. Hippel has shown that the breakdown occurs always in the 110 direction
whatever direction the field may have and that, therefore, the projection
of the breakdown field on the 110 direction is always the same. In our
model which does not account for any anisotropic effects, the breakdown
occurs in the direction of the field. Our formula for F, therefore, corresponds
to the experimental value of the field in the 110 direction. To obtain the
value in the 100 direction (F),,), for which experimental values usually are
given, we have to multiply F by /2, as already mentioned by v. Hippel:

thus Fyo, = F./2.

TABLE I—F,,, Ix 103 V/cMm.
NaCl NaBr Nal KCI KBr KI RbCl RbBr RbI

Theory :
=07, 6-9 6-1 4-9 3-8 3-0 2:5 2-7 2-0 1-4
T =300° K. 10:7 -~ 10-6 9-3 66 56 5-1 4-8 4-2 31
Experimental :
T o 300° K. 15 10 8 8 iz 6 7 6 5
m*m 2:0) 09 07 1:5 1-6 1-4 2.1 2.0 2.6

Considering the simplifications made in the theory, the agreement is
satisfactory. The difference between theoretical and experimental values
may be due to the “effective mass’’ m* for an electron in the lattice field
being generally greater than the mass of a free electron.

An important consequence of the theory is the dependence of F on
temperature. For sufficiently high temperatures (k7' >hv), F should be
proportional to /7', provided that the temperature 7,, where the heat
breakdown begins, is not vet reached. (For 7'>1T), cf. §1.) As we have
already stated, experiments in a homogeneous field have at present been
carried out at room temperature only.

The increase of F' with temperature is due to the decrease of the mean
free path with temperature (cf. equations (19) and (15)). Apart from an
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increase of temperature, there are two other means of decreasing the mean
free path I. The first is to introduce foreign ions into the lattice,* the second
is to take very thin layers of thickness smaller than I. An increase of F
in the first case has been found by v. Hippel (1935). Experiments on thin
layers have been carried out by Joffe and co-workers (Joffe and Alexandrow
1933). They did not find anincrease in F for thicknesses down to 0-7 x 10~*cm.
The mean free path, however, is only of the order 10-3—10-%cm., so that
an increase of F is not yet to be expected.

I should like to express my thanks to Professors Tyndall and Mott for
their kind hospitality in their laboratory, and to Professor Mott for help
in the preparation of the manuscript.

SUMMARY

The time of relaxation of an electron in an ionic lattice has been calculated.

S Hence the critical field F for electrical breakdown has been calculated
_%unantitatively. Satisfactory agreement with the experiments of v. Hippel
is obtained.

F increases: (1) with increasing temperature (for high temperature
%F o /T, if T<T, T, is the temperature where heat breakdown begins);
-8 (2) if foreign ions are introduced into the lattice (experiments by v. Hippel);
§ (3) for layers of about 10-% ¢m. thickness.
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* Asin the theory of conductivity, the presence of foreign ions always diminishes [
(Nordheim 1931) and not only in the case where the ionic radius of the foreign ion
15 smaller than that of the original ion, as it was assumed by v. Hippel.




