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A theory applicable over the whole range of ql is presented for electron-phonon int,eraction 

responsible for the current saturation phenomena in semiconductors. Transport equations 

are set up by the nonequilibrium Green's function technique. The equations show clearly 

that phonons play two different physical roles in the description of transport phenomena; one 

is to act on electrons as waves and the other is to interact with them as quasiparticles. As 

for amplification of phonons as quasi particles, calculation shows that the radical reduction of 

amplification factor is not expected even when ql<1. In the case of high-mobility semicon

ductors, the quasiparticle aspect is applicable in the initial stage of amplification, but the wave 

aspect is expected to appear in the final stage. The amplification of waves is discussed in 

. the nonlinear regime. To the second order approximation, it is shown that the amplification 

factor is decreased with increase of the wave amplitude. The domain problem is studied by 

using an electronic computer. It is certain that the domain formation is irrelevant to the 

. Ridley mechanism. 

§ 1. Introduction 

It is well established experimentally that the current saturation phenomenon 

in piezoelectric semiconductors arises from the electron-phonon interaction as a 

result of amplification of acoustic phonons through the piezoelectric coupling. 

Theoretical explanations have been attempted along two distinct lines originally 

accepted in the theory of ultrasonic amplification. The firse) is the classical 

approach based on the macroscopic equations. The rate of amplification of sound 

waves is evaluated in the linear approximation. The current saturation pheno

menon, however, lies outside the scope of the linear theory. The second2
) is 

. the quantum approach, in which the conventional perturbation theory is applied 

to the electron-phonon interaction. The Boltzmann equations are set up both for 

the electron system and the phonon system. They have been solved to give 
v . 

phonon amplification in the narrow Cerenkov cone, and subsequent decrease of 

the electric current, although nonlinear effects in electron-phonon interaction and 

III phonon-phonon interaction are not systematically taken into account. 

As is well known, the classical approach is a pplica ble when the' wa ve n um-
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1124 J. Yamashita and K. Nal?amura 

ber, q, of the amplified phonons satisfies the condition ql<l, where lis the mean 

I free path of electrons. On the other hand, the quantum approach is valid when 

ql> L Recently, Spector3
) presented a semiclassical treatment of the ultrasonic 

amplification applicable to all values of ql in the linear regime. It is a charac

teristic feature of his theory that phonons are not explicitly considered at all 

even when q l> 1. 

On the other hand, we have presented a unified approach of the current 

saturation phenomena from the quantum theoretical standpoint. 4
) Hereafter, it 

will be referred to as 1. We started with the Frohlich Hamiltonian of the ele

ctron-phonon system in a piezoelectric semiconductor. The transport equations for 

electrons and phonons are derived from a hierarchy of equations for the Wigner 

distribution functions and their correlation functions. By dividing the phonon 

spectrum rather artificially into two parts at the critical phonon wave number 

qe, (qe l = 1), we find phonons playing two different physical roles. One is to 

act on electrons as waves and the other is to interact with them as quasiparticles. 

The first role leads to the macroscopic re:mlts (ql< 1); for example, the well

known, Hutson-White relation. 5
) The second role leads to the phonon emission 

in the Cerenkov cone (ql> 1). 

The purpose of the present paper is to present a theory to unify the approaches 

mentioned before from the quantum theoretical standpoint. In § 2, transport 

equations for the electron-phonon system are set up by the nonequilibrium Green's 

function technique introduced by Kadanoff and Baym.G
) The results are essen

tially the same as those obtained in I, but there is no need to introduce the ar

tificial cutoff in phonon spectrum, as was done in 1. Thus, we see that the elec

tron-phonon interaction is systematically tractable in all ranges of ql without 

any intuitive or artificial models. On the other hand, the expression for the col

lision terms due to the electron-phonon interaction becomes much more complicated 

than in I, because the damping effects are automatically introduced in the Green's 

function formalism. 

Section 3 is concerned with the amplification of phonons as quasiparticles. 

If the value of {))qf is much larger than one, and the damping effect is small, 

then the simple perturbation theory is well applicable to the electron-phonon 

interaction. Here, f is the relaxation time of electrons and {))q is the frequency 

of phonons. On the other hand, when ql<.l, we find that the amplification factor 

is smaller by (ql) than the one predicted by the simple perturbation theory. 

Therefore, the radical reduction of amplification factor is not expected even when 

ql<l, although it is smaller by '(ql? than the amplification factor of waves. 

When qnl>l, where qn is the Debye wave number, the phonon amplification may 

be described in terms of the quasiparticle aspect in the initial stage of amplifi

cation. When phonons have been heavily amplified in the narrow Cerenkov cone 

by theeiectron-phonon interaction, the damping effect becomes applicable for 

electrons in the special range in the mome'ntum spa'ce, so that such a damping 
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Theory of Electron-Phonon Interaction 1125 

effect causes supression of the amplification factor of phono?s and reduction of 

the mean free path of electrons. This is the typical nonlinear problem in the 

electron-phonon interaction. Therefore, the situation is modified in the final stage 

of amplification, and the wave aspect is expected. to appear there. 

In § 4, we treat the amplification of waves in the nonlinear regime. To the 

second order approximation, we shall show that the initial rate of amplification, 

which is predicted by the Hutson-White relation, is decreased with increase of 

the wave amplitude. In many cases, a propagating acoustic domain is observed, 

accompanied by the current saturation phenomena. 7
) 'At the present time, there 

is no any nonlinear theory applicable to the domain problem. We shall study 

this problem by using a computer: An important qualitative conclusion is that 

the domain formation is a consequence of the transient generation of the acoustic 

flux packet at the boundary and of the subsequent amplification of it, and is ir

relevant to the Ridley mechanism. 

§ 2. Transport equations 

We start with the Frohlich Hamiltonian: 

H=~ CKaK+aK+·~ hwqbq+bq + ~ Cq(a-;~+qaKbq+aK+aK+qbq+), 
K q Kq 

(2 ·1) 

where the notation has the usual meaning. If we introduce the displacement 

operator CPq and the conjugate operator lrq .by 

(2·2a) 

(2·2b) 

we can write Eq. (2·1) as 

H= L; CKaK+aK+t ~(lrq+lrq+w/CPq+CPq) + L; vqaIt~+qaKcpq, 
K q Ii,q 

where 

V
q

= (_ 2~!l) 1/2C
q 

. (2·4) 

To set up the transport equations, we introduce the electron Green's func

tion defined in the imaginary time interval (to, to - i(3), where to is real and (3 

=l/kBT, by the equation (h=l) 

G (Kt· let') = - i sTI§~~~(~)~k~i~2J2 . 
, <T[S]> 

(2·5) 

The notation < ... > is defined by 

<; .. > = Tr {e-f3CH-fLN) •.. } /Tr {e-f3CH-fLN)} 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

1
/5

/1
1
2
3
/1

8
1
8
6
5
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



1126 J. Yamashita and K. Nakamura 

and any operator is written in the interaction representation: for instance aK (t) 

= eiHtaKe-iI-It, where f1 is the chemical potential and N the operator for the total 

number of electrons. Also, S is the time ordered operator 

to-iS 

S=exp{-i ) dtH'(t)} , (2·6) 

to 

and 

(2·7) 

where Vk is the potential of an external field and J q is an external source of 

phonons which we will use in generating the Green's function equation and then 

set equal to zero. The phonon Green's function is defined by 

where 

D(qt; q't') = iJ(pq(t)/oJq:(t') 

= - i <T[S~~{Sq/t)J! + i?!5q(t)?!5;, (t'), 

~ <T[SY?q (t) J) 
(() q (t) =--(rTsl>---

(A) Equation of motion for G (Kt; K't') 

(2·8) 

(2·9) 

The equation of motion of the electron Green's function is written as 

( i~-cK)G(I(t; let') - ~ vk(t)G(K-k, t; K't') 
8t k 

- ~ vqR(K-q, t; K't'; qt) =OKK,O(t-t'), 
q 

(2 ·10) 

where R (Kt; K't'; K" til) is a mixed electron-phonon Green's function of the 

form 

R(Kt· K't'· K"t") = _i<T[SY?K,,(t")aK(t)aje(t')J). 
" , <T[SJ) 

We use the following identitl l to rewrite Eq. (2.·10): 

R (Kt· K't'· [(" til) = mK" (til) G (I(t· let') + i~gJ~!i !f'(1. 
" Y ,. ~J (") 

. U -K" t 

, Substitution of Eq. (2 ·12) into Eq. (2·10) yields 

(i-~-cK)G(I(t; K't') - 6, UK_K,,(t)G(J(lI t ; [et') 
\ 8t /(" 

. -, oG([(lI t ; K't') _ _, 
- z L.:; V K-K"------------------- - 0 KK'O (t - t ), 

K" oJ K"-K (t) -

(2 ·11) 

(2·12) 

(2·13) 
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Theory of Electron-Phonon Interaction 1127 

where 

(2·14) 

We apply the method of functional derivative to the last term on the left 

side of Eq. (2·13): 

oG (K" t; K' t) = _ ~ tot# dt
l
dt

2
G (K" t; Klt

l
) oG-

l 

(Klt1; K 2t2) 

OJK"-K(t) KIK2 J OJK"_K(t) 
to 

Substituting Eq. (2 ·15) into Eq. (2,13), we obtain 

(iJL--CK\G(Kt; K't')-:E UK_K,,(t)G(K"t; K't') at ) . J(" 

to-i# 

- ~ \ dt2}; (l(t; K 2t2) G (K2t2; K't') = 0 KK'O (t - t'), 

to 

where the electron self-energy };(Kt; K't') is given by 

to-i# 

};(Kt; K't') =i"E \ dtldt2))K-K,,))K2G(K"t; l(ltl) 
K"K 1 K 2 J . 

to 

and the vertex function r is defined by 

r (Kltl ; 1(2t2; Kata) = _ ~1_ oG-
l 

(Kltl ; K 2t2) 

))Ka O(PKJt3 ) 

By defining the Fourier transform 

G (rt; r't') = ~ ~ eiKrG (Kt; K' t') e-iK'T', 
V KIC' 

Eq. (2 ·16) can be expressed in the configuration space as 

[ i~+_I_V12- U(rlt1)]G(r1tl; r2 t2) 
at l 2m* 

to-i# 

- \ drs \ dts}; (rlt l ; rsta) G (rsta; r2t2) = 0 (Xl - X2), 

v to 

where o(x-x') =o(r-r')o(t-t') and };(rt; r't') is defined as 

};(rt; r't') =~ .~ eiK~'};(Kt; K't')e-:iK'r'. 
V Toe 

Also, U(rt) IS given by 

U(rt) = z= Vk (t) eiKr + ~ ))q(Pq (t) eiqr~ 
k q 

(2· 15) 

(2 ·16) 

(2,17) 

(2,18) 

(2 ·19) 

(2·20a) 

(2·21) 

(2·22) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

1
/5

/1
1
2
3
/1

8
1
8
6
5
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



1128 J. Yamashita and K. Nakamura 

Similarly we have 

[ --i~-+} V22 __ - U(r2t 2)]C(r1t1; "2t2) 
- ot2 2m* 

to-if3 

- ~ drs ~ dtsC (r1t1; r3tS) l' (r3tS; r2t2) = () (Xl - X2) . (2·20b) 

v to 

From Eqs. (2· 20a) and (2·22), we find that 9q (t) has a very clear physical 

meaning: it determines the potential produced by the phonon field. The equa

tion of motion of 9'1 (t) is written .easily from Eq. (2·9) as 

( ~- + LUq
2) 9q (t) = - Vq ( drn (rt) e- iqr, (2·23) o t 2 j 

v 

where n (rt) is the density of conduction electrons. 

(B) Equation of motion for D(qt; q't') 

Applying the same method as in (A), we get 

(--:;2 -LUq
2
)D(qt; q't') 

to-if3 

- ~ ~ dt"Jl(qt; q"t")D(q"t"; q't') ='oqq,o(t-t'), (2·24) 

to 

where the phonon self-energy Jl(qt; q't') is given by 

to-if3 

Jl(qt; q'f;') = - i ~" ( dt" dt"!))_q))q,G (I(t; K" til) 
• T(1("IC" j 

to 

x T(K" til; IC" til'; q't') C (KIll til'; K - q, t). 

Introducing the Fourier' transform 

. D(rt; rlt') =!-- L: eiqrD(qt; qlt')e-iq'r', 
17 '1,'1' . 

we can write Eq. (2·24) in the configuration space as 

( -'~ + S2V12) D (r1tl; r2t2) 
8t1

2 

- } dr:I'dt,II (r,t,; r,t,) D (r,t,; r,t,) = if (x, -' x,). 

v to 

Similarly we have 

(2·25) 

(2·26a) 
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Theory of Electron-Phonon Interaction 1129 

f;o-i{3 i 

- ~ dr3 ) dt3D (r1t1; rst3) II (r3t3; r2t2) = 0 (Xl - X2) . (2·26b) 

v to 

Equations (2·20) and (2·26) are the basic equations, with which we start to 

derive the transport equations. 

(C) Calculation of the self-energies}; and II 

First of all, we calculate Eq. (2 ·17). We define 

Then, Eq. (2· 20a) can be written as 

,G- l (l(ltl ; K 2t2) = Go -1 (Klt l ; 1(2t2) - };(K1t l ; K2t2). 

Substitution of Eq. (2·28) into Eq. (2·18) yields 

r (l(ltl ; 1(2t2; Kat3) = - -~ __ L_-Go -1 (Kltl ; 1(2t 2) 
Y Ka 09 Ka (ta) 

10· 
+ ---~--~--};(Kltl; K2t2). 

YK s 09Ka(ta) 

(2·27) 

(2·28) 

(2·29) 

Adopting the Migdal approximation, ,we neglect the second term on the right 

side of Eq. (2·29). Using Eq. (2·27) in Eq. (2·29), we have 

F(I(ltl ; 1(2t 2; 1(3t 3) =OK1-K2,KaO(t1-t2)0(tl-t3). (2·30) 

Substituting Eq. (2·30) into Eq. (2·17), we obtain 

};(K1tl ; K 2t2) = i :z= yqy_q,G (Kl + q, t l ; K2 + q' ,t2) D (q' t2; qtl). 
q,q' 

(2·31) 

Secondly, calculation of Eq. (2·25) leads easily to 

II (qt; q't') = - i :z= y_qyq,G (Kt; K' t') G (1(' - q', t'; K -- q, t). 
7('1(1 

(2·32) 

(D) Basic transport equations 

As shown by Kadanoff and Baym, the transport equations are derived from 

Eqs. (2·20) and (2·26) in terms of the real time Green's functions, g~ and d~, 

obtained by a trivial analytical continuation: 

lim G~ (rltl; r2t2) = g~ (rlt l ; r2 t2) , (2· 33) 
t·o-->- 00 

lim D~ (rlt l ; r2t2) = d~ (rlt l ; r2t 2) , (2·34) 
to~>-CO 

\ 

where the notations> and < are the same as in KB. We now introduce the 

relative coordinates and the center-of-mass coordinates as follows: 
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1130 J. Yamashita and K. NakaJnura 

(2·35) 

We also define the following Fourier transforms: 

00 

g~ (Kc; rt) = ± i ~ d~ .) dre-iK~+icr-g~ (~r; rt), (2·36) 

v 

00 

d~ (q{J); rt) = i ~ d~ ~ dre-iq~+iillr- d~ (~r; rt), ' (2· 37) 

v 

where we have written g> (rlt l ; r2t2) = g> (~r; rt) and so on. Further,};~ (Kc; rt) 

and JI~ (q{J); rt) satisfy the same Fourier transforms as Eqs. (2·36) and (2·37), 

respectively. 

If the potential U defined by Eq. (2·22) has wavelengths much longer than 

the thermal wavelength of electrons and frequencies much smaller than the col

lision rate, we can derive readily from Eqs. (2·20) the following Kadanoff-Baym 

equation for electrons: 

[c- CK- U(rt) - Re };(Kc; rt), g~ (Kc; rt) ] + [Re g(Kc; rt), };~ (Kc; rt) ] 

=}; < (Kc; rt) g> (Kc; rt) -};> (Kc; rt) g< (Kc; rt). 

Similarly, we have for phonons 

[{J)2 - (J)q2 - Re JI (q{J); rt), d~ (q{J); rt) ] + [Re d (q{J); rt), JI~ (q{J); rt) ] 

= JI< (q{J); rt) d> (q{J); rt) - JI> (q{J); rt) d< (q{J); rt). 

(2·38) 

(2·39) 

The self-energies };~ (Kc; rt) and JI~ (q{J); rt) can be expressed as follows. From 

Eq. (2·31), we have in the real time domain 

};> (Kltl ; K 2t2) = i ~ J)qlJ)-q2g> (Kltl ; K 2t2) d< (q2t2; qlt1) , 
qlq2 

or 111 the configuration space from Eq. (2.21) 

};> (rltl ; r 2t2) = i ~ ))q))-q2g> (rlt l ; r2t2) eiq2r2d< (q2tZ; qltl) e-iqlrl. 
qlq2 

(2· 40) 

(2· 41) 

,Using the Fourier transforms (2·36) and (2·37), we can write Eq. (2·41) as 

ro 

};~(Kc;rt) = ~ ~ dr' ~ ~: Seq, R)g~(K+q, c+{J); rt)d~(q{J); r't), (2,42) 

v -00 

where 

(2,43) 

with l(=r-r'. Similarly, we have 
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Theory of Electron-Phonon Interaction 1131 

00 

II~(qw; rt)= ~ ~ dr' ~ ~;S(q, R)g~(I(+q, s+u); rt)g~(Ks; r't). (2·44) 

v -00 

According to KB, we note that the 1:'s and II's on the left sides of Eqs. (2·38) 

and (2·39) describe the kinetic effects of the electron-phonon interaction, i.e. how 

the interaction changes the energy-momentum relation of free electrons to the 

more complex spectrum. Because those .effects are not important in the present 

investigation, we employ the approximations 1:~ = Re 2:= 0 and II~ = Re II = 0 on 

the left side of Eqs. (2·38) and (2·39). 

Before deriving the transport equations, we consider the effect of the electron

electron interaction. This effect may be taken into account by adding to the 

potential U defined by Eq. (2·22) 

U
c 
(rt) = 2:= ~~~ ( dr' p (r' t) eik

(r-1"), 

Ii; VE ok
2 

) 
V 

and by replacing a factor v'lof the S-function (2·43) by 

(2· 45) 

V'l * = v'l / E 'l , (2·46) 

where p=n-no, Eo is the static dielectric constant and Eq =l+ (qD/qy is the 

wave-number-dependent dielectric constant, in which qD = (4nnoe2/ EoknTY/2 and no 

is the equilibrium density of conduction electrons. The replacement (2·46) cor

r~sponds to the random-phase approximation. 

Now we introduce the electron distribution function fK(rt) defined as 

( ds 
fK (rt) = ) 2n g< (Ks; rt), 

-CXJ 

and assume the following forms for g~ and d~: 

g> (I(s;rt) =a(Ks; rt) [1- f(Ks; rt)], 

g< (Ks; rt) = a (Ks; rt)f(I(s; rt). 

d> (qw; rt) = X (qw; rt) [1 + N(qw; rt)], 

d< (qw; rt) = X (qw; rt) N(qw; rt). 

(2·47) 

(2·48a) 

(2·48b) 

The functions a (Ks; rt) and f(Ks; rt) are interpreted as the local spectral func

tion and the local distribution function for electrons, and· X (qw; rt) and N(qw; rt) 

are those for phonons. 

Thus, using Eqs. (2·42) and (2·48) in Eq. (2·38) and writing explicitly 

the factors of ft, we get 

( ( ds dw ., 
= ~ ) dr' ) 2n -Z-n-S (q, R) a (K + q, s + ftw; rt) a (Ks; rt) X (q(V; r t) 

v -00 
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1132 J. Yamashita and K. NakaJ12ura 

x {fel( + q, e + h(ll; rt) [1-- f(Ke ;"1't)] [N(qw; r't) + 1J 

·-f(1{e; rt)[l-f(I(+q, e+hw; rt)]N(qw; r't)}, (I) 

where S (q, R) IS expressed as 

S ( R) -'- 1 " * * i"R q , - - L-.J vq+tc/zvq-tc/ze 
. 17 tc . 

(2·49) 

using Eq. (2·46). The potential U is written as the sum of two terms: U 

= U c + U11> where the first term represents the Coulomb potential and the second 

term represents the potential produced by the phonon field. As mentioned in 

Eq. (2.22), Up is given by 

(2·50) 

Although the same notation as in' the imaginary time domain has been used here, 

it should be interpreted as limto_>_oo 9q (t). The equation of motion of 9q is given 

by Eq. (2.23): 

(-t:2 + wq
2) 9q (t) = - Vq ~ drn (rt) e-

iq1'. 
v 

(IIa) 

We should notice that the electron-phonon interaction constant 111 Eq. (IIa) is' 

not modified by the electron-electron interaction. Using Eqs." (2·44) and (2. 48b) 

111 Eq. (2·39); the transport equation for phonons IS written as 

(j_ .. + S2q . 17) X (qw; rt) N(qw; rt) 
\ ot 

1 ~ oo~ de =-, ~ dr' -2 -Seq, R)a([(+q, e+nw; r't)a(J(e; r't)x(qw; rt) 
2 K n ' 

v -00 

x {f(K+q, e.+nw; r't) [l-f([(e; r't)] [N(qw; rt),+l] 

- f(Ke; 1" t) [1- f(K + q, e + nw; 1" t) ]N(qw; rt)}. (III) 
/ 

We have already determined the potential U. However, it is sometimes con-. 

venient to express U in terms of O'.q (t) = bq (t) instead of 9q (t). The equation 

of motion of O'.q is written as 

(~-- + iWq) O'.q (t) = - i (eq/h) ~ drn (rt) e-
iqr. 

ot v 

Then, the potential U is given by 

U= Uc+ Up, 

U -" C (a eiqr + a *e- iqr
) p-L....J q q q , 

q 

Uc=~(4ne2/17Eol~2) ( dr'p(r't)eih
(r-l"), 

k j 
V 

(lIb) 

elVa) 

(IVb) 

(IVc) 
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Theory of Electron-Phonon - Interaction 1133 

Equations (I), (II) - and (III) represent one form of our basic transport equ

ations. From Eq. (1), one can see easily that phonons play two different physi

cal roles in the description of transport phenomena. The potential Up on the 

left side implies that phonons act on electrons as a wave field, whose amplitude 

and phase are determined by Eq. (II). If the collision term of Eq. (I) is ex

pressed by the relaxation time approximation, we see easily that the distribution

function varies at distances of electron mean free path' 1 = Vthr, where Vth is the 

thermal velocity of electrons. Therefore, from Eq. (II) ,we find that the wave 

field is caused by long-wave phonons (q<qc = l-I), and that the criterion for the 

validity of Eq. (1) is Kt1,Z> 1, where I(th is the thermal wave number of ele

ctrons. This is nothing but the condition for the validity of the Boltzmann ap

proach. On the other hand, the right side of Eq. (I) implies that phonorts in

teract with electrons as quasiparticles and transfer them from one energy-momentum 

configuration to another. It should be noted that the transport equations are 

nonlocal in the sense that their collision terms at a given point in space relate 

the electron or phonon spectral functions and distribution functions _ at other 

points. The function S (q, R) IS characteristic of the nonlocal property of the 

transport equations. 

§ 3. Amplification of phonons 

The purpose of this section is to study the role of phonons as quasiparticles 

111 the non-ohmic~onduction. Putting N(qw;rt)=No(qw)+f(qw;rt) in Eq. (I) 

and adopting the relaxation time approximation for collision with the phonon 

distribution No (qw) in thermal equilibrium, we obtain the following equation of 

motion for the current defined as v = V-I ~ VKfK: 

( r -~~. + 1) v = Vo + v + v at w p , 
(3 ·1) 

where Vo = ner Eo/ In * IS the ohmic eurren t, and 

r 
vw = --~·nPU-DPn, 

m* 
(3· 2) 

00 

Vp= --V~- ~ 2
fiq

* ( dr' ( _2
dS

. d2~S(q,R)a(K+q, s+hw; rt)a (K-s; rt) 
ICq m) ) n· n 

v -00 

x [f(K + q, s + hw; rt) - f(Ks; rt)] X (qw; 1" t) f (qw; 1" t). (3· 3) 

Here, D=kBTr/m* is the diffusion constant. It is needless to say that the non

ohmic current arises from the phonon amplification of two aspects. 

From Eq. (III), the amplification factor of phonons is given by 

A(qw) = (1/2w)~ \ dr'-(ds/2n)S(q, R)a(K+q, s+hr}); r't)a(1,Cs; r't) 

v 
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1134 J. Yamashita and f<::'. Nakamura 

x [f(K -1- q, c + hw; 1" t) -- f(l(c; r't)]. (3·4) 

We find that the phonon amplification of quasiparticle nature may be interpreted 

as the population inversion process of electrons in momentum space. For the 

piezoelectric coupling 

(3·5) 

S (q, R) IS expressed as 

S (q, R) = ( 4n~=) [0 (R) _ 2qn
2 
_~osf,,_~q_~!!)e-2qDR 

EoV Pi n R . 

qn
4 

( e
2iKR 

] 

+7 ) dlC{lq+-;F+-Qn2} {lq-1C1 2+qn2}- . 
-00 

(3·6) 

It is difficult to evaluate Eq. (3·6). However, we can see that when q";JPqn, 

S (q, R) shows the damped oscillation as a function of R, whose period is of 

the order of II q, and in the limit q->O, S (q, R) decreases exponentially over a 

spatial range of the screening length qn -1. We have examined again the be

havior of S (q, R) with respect to R by approximating Vq * = ° for q<qn and 

Vq * = const for q >qn. The result is that S (q, R) is an oscillatory function with 

a period of the order of (q + qn)-1 when R is in the direction of q. Therefore, 

it is reasonable to approximate the period of S (q, R) with respect to R as 

(q + qn)-1. Since the electron distribution varies at distances of the electron 

mean free path l, as mentioned in ~ 2, the following two cases should be dis

tinguished in the calculation of Eq. (3·4). In the case qnl";JP 1, S (q, R) is equi

valent to Vq *20 (R), so that there remains no nonlocal property in Eq. (3·4). 

This case corresponds to high-mobility semiconductors such as InSb at 77°K. 

On the other hand, in the case 'qnl<I, there appears nonlocal property in Eq. 

(3·4), when ql<1. 

Let us consider now the case qnl";JP 1. As for the spectral function, it may 

be reasonable to assign the functional form to it: 

a (Kc; rt) = _________ [_C!~~;_ rt2 ___ . __ . 
(c~cK)2+tr(Kc; rty 

(3· 7) 

On the other hand, the distribution function is assumed to be gIVen by a dis

placed Fermi function or a displaced Maxwell function. Then, the amplification 

factor is expressed as 

with 

A(qw) =Ao(qw) (va cos f}-sq)/s 

-(X) --00 

r ' 
x-----------fo(c) [1- fo(c+hw)], 

(C-CKY+tr 2 

(3·8) 

(3·9) 
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Theory of Electron-Phonon Interaction 1135 

where Sq = wj q, Vd is the drift velocity of electrons and fa IS the distribution 

function in thermal equilibrium (va = 0). When kBT j T is much larger than 

one, a Lorentzian function in Eq. (3·9) may be replaced by ?rco (e - eI() and Ao 

is easily evaluated as 

I rc ) 1/2 ( m * S2 ) 3/2 ( 1 ) ( q2 \ 2 
Ao(qw) = 1- K Zwp

2 
--- - - ) pea) 

\ 2 kBT W q2 + qD2; 
(3·10) 

for the piezoelectric coupling, where K is the electromechanical coupling constant, 

w p is the plasma frequency, and p (a) is defined by 

00 

p (a) = ~ ~ d/C~2-(~+~~)2+i exp ( _/C2), (3·11) 

-OJ 

with a= (8j3y/2(ql) and /Co = (3j2Y/2Iqj2-m*sqjhljKth • The function pea) is equal 

to exp ( -/Co2
), when a';?> 1. This condition is equivalent to wqr,> 1, because Vtl,j S 

is of the order 102
• Thus, the amplification factor of phonon of w = Wq is just 

the same as the one obtained by the si~ple perturbation theory. On the other 

hand, p (a) = rc- 1/2a when ql<l, so that the amplification factor is smaller by (ql) 

than the one obtained from the simple perturbation theory. This means that 

even when ql<l, the quasiparticle aspect of phonon is not expected to disappear 

radically, although its amplification factor is smaller by (ql)2 than that of waves. 

Our present question is which aspect contributes dominantly to the phonon am

plification, -when qDl,}> 1. Noting from Eq. (3·8) and the Hutson-\iVhite relation 

(4·8) that the amplification factors have maximum values at qr-JqD, we find that 

the quasiparticle aspect is more dominant by (qDl)2 than the wave one. There

fore, we expect that the phonon amplification in high-mobility semiconductors 

may be described in terms of the particle aspect in the initial stage of amplifi

cation. As will be pointed out later, however, the situation will be modified in 

the final stage (the current saturation state), because the electron mean free 

path is decreased by the Cerenkov emission of phonons and then the condition 

qDl,}> 1 vvill break down. 

In the case qD I<l, the nonlocal property should be taken into account in 

Eq. (3,4) when ql<1. Although a quantitative result has not been obtained as 

yet, the radical reduction of the amplification factor does not seem to be expected 

even when ql<1. However, we can find that the maximum value of the amplifi

cation factor of waves is larger by (qDl)-2 than that of quasiparticle. It is cer

tain that the phonon amplification may be described in terms of wave aspect in 

low-mobility semiconductors such as CdS. 

Since T(Ke) in the spectral function represents the line width, it may be 

written as T(I(e) =hjr(I(e). There are two mechanismswich mainly contribute 

to the relaxation time r (l(e). One is the interaction between conduction electrons 

and thermal phonons, which determines the mean free path of electrons in the 

Ohmic. state. If r is assumed to have the order of the magnitude of 10-14 sec, 
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1136 J. Yamashita and I{. Nalul1nura 

the magnitude of C=kBTr/h is nearly equal to one at 300
o
K. These figures 

roughly correspond to the case of CdS. Therefore, the damping effect due to 

the interaction between electrons and thermal phonons is not serious, though not 

negligibly small. In the case of GaAs and InSb at 7rK, the value of C seems 

to be much larger than one, so that the damping effect is expected to be negligi

ble in the Ohmic case. The situation may be different when phonons are heavily 

amplified in the Cerenkov cone, because the damping by. the piezoelectric in

teraction cannot be disregarded. According to the usual experimental condition, 

the initial drift velocity is assumed to be as tvvice as the fnal velocity, to which 

the drift velocity is reduced by the scattering of amplified phonons. Conduction 

electrons as a whole are scattered by amplified phonoI:LJ a3 efficiently as thermal 

phonons, because the final velocity becomes half of the initial value. We must 

note',. however, that the amplified phonons interact selectively with electrons in 

the limited range in I(-space. Since excessphonons exist only in the very nar

row Cerenkov cone, it may be allowed to assume that the wave number vector 

q of the excess phonons is almost parallel to the field direction, which is chosen 

as the z-axis. Then, the conservation law leads to the result that the transition 

in the emission of q is allowed, if the following condition is nearly satisfied: 

Kz = (qz/2) ->K/ = - (qz/2). There is no special limitation for Ka; and Kyo As 

shown in the previous paper,2) the number of excess phonons is very large only 

in the narrow range of q, so that the electrons which interact with these excess 

phonons are scattered much more frequently than the average. Thus, the damping 

constant r (Ke) becomes quite large for these electrons and their transition 

probability must be reduced. Finally, the further increase of excess phonons 

must be checked when excess phonons are increased to a certain limiting number. 

"This is a typical nonlinear process in the electron-phonon interaction. 

In these circumstances, it may be possible that the mean free path of these 

electrons is much reduced as compared with the average. In the case of GaAs 

the value of ql seems to be a little larger than one for the most effectively am

plified phonons (q = 5 X 105
/ cm), so that the quasiparticle picture is expected to 

be applicable in the initial stage of the phonon amplification. It is possible, 

however, that the situation is modified in the final stage, where the mean free 

path of the electrons with I{z"-' 105
/ cm is much reduced to break the condition 

ql> 1. Therefore, the situation seems to be very complicated in the case of 

GaAs or lnSb at 7rK. We conjecture that the current saturation phenomena 

111 suc,h a case is explained by the two aspects of phonons. , 

The phonon-phonon interaction was discussed qualitatively in the previous 

"paper2) and it is not discussed in the present paper. An important effect of the 

phonon-phonon interaction is to replace the sound velocity in the factor (Vd (rt) 

- s) by the effective sound velocity which is sometimes much larger than the 

sound velocity. The fact that the critical drift velocity in GaAs and InSb is 

considerably faster than the sound velocity will find the best explanation in the 
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Theory of Electron-Phonon Interaction 1137 

idea of the effective sound velocity. This fact is a strong support of the idea 

that phonon amplification process is probably the cause of an initiation of the 

current instability. 

However, it is not quite certain whether the Cerenkov emission picture is 

appropriate, or the wave picture is suitable for explanation' of processes concern

ing the high-field domain, because these pro,cesses take place in the well-developed 

stage of the phonon flux. 

§ 4. Amplification of lattice waves 

In § 3, we have mentioned that in low-mobility semiconductors the phonon 

amplification may be described in terms of the wave aspect. Further" this aspect 

is expected to appear in the well-developed stage of amplification, even in high

mobility semiconductors. The linear theory of wave' amplification is well esta

blished and is known as the Hutson-White theory. In this section, we want 

to study the wave amplification in the nonlinear regime. 

If the phonon amplification of quasiparticle nature is disregarded, then the 

following equations are easily derived from Eqs. (I) arid (3 ·1) 

Jin + div(nvd) = 0, 
at 

r D 
Vd = Vdo--~-f1U --f1n , 

m* n 

(4·1) 

,(4·2) 

where aVd/a t has been neglected, Vd = v / n is the drift velocity of electrons, VdO 

= (er/m*)Eo is the Ohmic drift velocity, and U is defined by Eq. (IV). Thus, 

Eqs. (4 ·1), (4·2) and (II b) are regarded as a set of coupled equations which 

we want to solve. 

(a) Linear approximation. 

The linear theory will first be reviewed briefly, because it gives a starting 

point for study in the nonlinear regime. In the limit of the linear approxima

tion, Eqs. (4 ·1) and (4·2) are reduced to 

!!~ + no div Vd+ VdOf1n = 0, 
at 

r D 
Vd=VdO----· f1 U:---f1n. 

1n* no 

Let us solve the problem by using the Fourier senes: 

n(rt) =no+ ~ n(q)exp{i(qr-vqt--'-irqt)} +c.c., 
q 

Vd(rt) =VdO'-!- ~ v(q)exp{i(qr-vqt-irqt)} +c.c., 
q 

Up (vt) =~ Cqa(q)exp{i(qr-vqt-irqt)} +c.c. 
q 

(4· 3) 

. (4·4) 

(4· 5) 
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1138 J. Yamashita and K. Nakanzura 

Then, the amplification factor of waves of wave number q IS written easily as 

r q = (V\~2nOfq2Im*h) (qvao - wq) I [(qVdo - wqY + (Dq2 + fWp2y]. (4·6) 

At the same time, the renormalized frequency is given by 

Vq-Wq= - (VCq2nofq2Im*h) (Dq2+fW p2)/[(qvao- Wq)2+ (Dq2+fWp2)2]. (4· 7) 

For the piezoelectric coupling (3·5), we can write Eq. (4·6) as 

r q = (K 2wcI2) (vao cos e I s - 1) I [( VdO cos 01 s - lY + (wei WqY (1 + wq
2
1 WeWn)2] , 

(4,8) 

wheTe We = f( 7)\ and Wn = s21 D. This is the famous Hntson- ,;Vhite relation. In 

the linear approximation, 'the average value of nVd is il0VdJ, and in the next ap

proximation it is evaluated as 

<nVd) = nOVdO- (hfIVm*)~ 2rqqja(q) j2 exp(2rqt). (4· 9) 
q 

The last term is identical with the acoustoelectric current derived by Hutson. 

Although there was no need to use the distribution function in the deriva

tion of Eqs. (4·6) and (4·7), it may be interesting to see what function is to 

be used for n (rt) in order to get the same relations. Such an investigation will 

be ~ useful for the second order approximation theory, which will be discussed in 

(c). It is not a hard task to prove that the distribution function 

n(rt) = (noIN)exp[ - (Up+ Ue)/kBT] exp (UnclkBT) 

~no[1- (Up+ U e- Une)/kBT] (4·10) 

satisffies the relations (4·3) and (4·4), if we define r q and Vq by Eqs. (4·6) 

and (4·7), where N is the normalization constant. Here, Uae is defined by 

(4·11) 

It is quite easy to show that the field Eae is the same as the acoustoelectric 

field given by Eq. (4·9). 

(b) Stationary state 

It is believed that a stationary state IS realized at the final stage. Then, 

all electrons are trapped in the potential trough, which is moving to the field 

direction with the renormalized sound velocity s*. The amplification of sound 

waves is expected to be stopped. At present, it is not clear experimentally what 

state is realized in the final stage of the amplification process. The problem of 

stationary state was discussed first by Gurevich. 9
) On the basis of a simple ap

proach, we want to point out here that such a stationary state is conceivable. 

For simplicity, the one-dimensional case will be considered. Let us start 

with the assumption that the density distribution is given by 

n(.rt) = (noIN)exp{ - [UJ)(x-s*t) + Uc(x-s*t) - Uac(x-s*t)JI1~BT}. (4·12) 

On the other hand, the acoustoelectric potential Uae is given by Uae = (m* If) 
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Theory of Electron-Phonon Interaction 1139 

x (Vao-S*) (x-s*t). Then, it is easily shown that Eqs. (4·1) and (4·2) are 

satisfied by the distribution function (4 ·12) and the additionary assumption: 

Va = s* The physical picture is obvious. All electrons are trapped in the po

tential valley and the valley itself is moving to the x-direction with the sound 

velocity. Thus, this solution corresponds to the so-called" bunching". In fact, 

from Eq. (lIb), we see easily that when next) =n(x-s*t), the potential Up is 

of the functional form Up(x-s*t) and its amplitude does not increase with time. 

(c) Second order approximation 

The initial rate of amplification must be decreased with time. In order to 

see this situation, let us proceed to the second order approximation. Here, we 

shall introduce two simplifying assumptions: (i) the coefficient a (q) is taken 

as a real quantity and is assumed to be positive, and (ii) Cq = C (a cQnstant). 

Then, we see that the real part of n (q) becomes negative and the imaginary 

part of n (q) becomes positive. Further, in usual conditions, the real part of 

n (q) is much larger than the imaginary part. Let us start with the distribution 

function 

(4 ·13) 

- Using Eq. (IVb) , we have the following equation after some calculation: 

(4·14) 

where some leading terms alone are written down. Here, the correction terms 

in each bracket have the order of the magnitude (CjkBT)""L., aq(t), so that the 

linear approximation will break down at the stage when the bunching of elec

trons becomes appreciable. It is quite conceivable' that the bunching pheno

menon lies outside the linear theory. Since a q (t) is positive and the real part 

of nq (t) is negative, we may write Eq.( 4·14) in the following form: 

[1+ (qnjqY(1+0s)Jnq(t) = - (noCjkBT) (1-01)aq(t) +i(nojDq) (l--02)'Vq(t) , 

(4 ·15) 

where 61; 62 and 6s are some time-dependent positive quantities which are increas

ed with time. If these quantities are neglected, Eq. (4 ·15) is identical with an 

equation derived in the linear approximation. Then, we have an approximate 

formula for r q (t) , 

rq(t) = (VCq2nofq2jm*h) (1-61) (1-62) (q'vao-{J)q) 

-;- [(qVdO - {J)qY (1- 62Y + (Dq2 + f{J)p2 (1 + 6s) YJ .. (4 ·16) 
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1140 J. Yamashita and K. Nakamura' 

Equation (4,16) means that r q (t) decreases rapidly when the bunching .of elec

trons begins to play. 

In the second order approximation, the different modes of the Fourier com

ponents are coupled each other and, as a result, the initial rate of amplification 

is decreased with time. Since the change of the rate is dependent on q, and 

the high-frequency part of the spectrum is expected to be cut off, the dispersion 

curve of the amplified wave is expected to shift to the side of lower frequency. 

(d) ComiJUter experiments on the domain motion 

In many cases, a propagating acoustic domain is observed accompanied by 

the current saturation phenomena. At the present time, however, there is not 

any, nonlinear theory applicable to the domain phenomena. In this subsection, 

we want to study the domain problem*) using a computer. For this problem~ 

it is convenient to introduce the total electric field E = Eo - e~lf1 U and to use 

Eqs. (2·50) and (IIa). Then, the basic equations 

E 
u 
$ 

lLJ 

1000 

an/at+div n=O, 

v = njJ.E- Df1n , 

850 2450 

OL-------------~ 
1/ 

;;
IE 
u ---c: 

10 
o 

-IO[\J 

o 

'---___ "'J!\ ('-.-__ ----'1 
L-______ v ________ _ 

200fL 0 200fL 0 

(a) First one-way trip 

(4· 17a) 

(4'17b) 

4050 

*) Friedman has recently discussed the domain problem on the basis of the particle aspect: 

Phys. Rev. 163 (1967), 712. 
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-----------, 

7250 

13 
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(b) Return trip 
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Fig. 1. Computed electric field, electron density and piezoelectric potential distributions in the se

quence of time. The number written in the right edge of each figure denotes the time in the 

unit of 2.2286 X lO-l1 sec. When t= 11250, 12050, 12850 and 13650, the drift velocity of electrons 

in the accumulation layer on the second one-way trip (c) is estimated as vd=2.24, 1.64, 1.48 and 

1.45 X 105 cm/sec, respectively. 
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1142 J. Yamashita and K. lVakamura 

div E + J72cpp = 4ne* (n - no), 

Dcpp = 4nep * (n - no), 

(4·17c) 

(4·17d) 

where CPP is the piezoelectric potential, e*=e/Eo and ep*=I(2e*. Here, no is the 

density of the background of the positive charge which usually depends on r. 

Equations (4·17) are nothing but the classical equations adopted in the macro

scopic theory. 

A one-dimensional crystal of length L is considered. Equations (4 ·17) are 

solved numerically with the following initial and boundary conditions: 

p(x, 0) =0; p (0, t) = p (L, t) = 0 , 

L 

~ E(xt)dx=LEo, 

o 

CP:fJ (x, 0) = cp/ (x, 0) = 0; 

where the prime denotes the differentiation with respect to time. The values 

of the parameters used in the calculation are: L = 2 X 10-2 cm, Eo = 1000 V / cm, 

K2=0.3, s=1.75x105 cm/sec, ji=300cm2/Vsec, Eo=9 and D=8cm2/sec. The 

donor dens~ty is taken as no = 1013/cm3 inside the crystal and as no = 1014
/ cm3 at 

each end. For convenience of calculation, we have chosen the sample shorter 

than that used in the usual experiments, and instead have taken the coupling con

stant several times as large as K"-'O.l in the actual CdS crystal, in order to get 

adequate amplification of waves Jhrough the sample. Also, the value of the ap

plied field has been d~termined by the equation Eo = (s/ Ji) [1 + (qnl) (4kBT /3m*s2y/2], 

which gives the maximum gain of amplification of waves with the frequency 

Wm = (Wcwny/2 in the Hutson-White relation (4·8). 

The computed electron density, electric field and piezoelectric potential dis

tributions for successive instants in time are shown in Fig. 1. The sequence 

shows that a packet of the electron density fluctuation is nucleated near the cathode 

and its amplitude grows up, as it propagates with the average velocity Vn= 1.5 X 105 

cm/sec which is nearly equal to the sound velocity estimated by the formula 

s* = s (1- K2/2) in the linear theory. Inthe initial stage, the packet is composed 

of a depletion layer and an accumulation layer, anfd after a while. some additio

nal fluCtuations appear on both sides of the packet. As for the field distribution, 

it is found that a high-field domain appears in the depletion layer and a low

field domain in the accumulation layer. As soon as the packet reaches the anode, 

it is reflected and is attenuated on its return trip (Fig. 1 (b)). Then, a new packet 

is again nucleated near the cathode and moves towards the anode (Fig. 1 (c)). 

One finds that its amplitude grows up to a level higher than that on the first 

one-way trip. In the final stage, where the deep depletion layer and the sharp 

accumulation layer are realized, the values of the electric field outside the do

main becomes smaller than that of the applied field and the value of the total 
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electric current through the crystal reduces to 

about half of its ohmic value. Figure 2 shows 

that the current on the second trip decreases 

more rapidly with time than that on the first 

one-way trip and tends t~o saturate. 

Weare interested in the mechanism of the 

domain formation. It is instructive to consider 

the behaviors of the piezoelectric potential dis

tribution. In the early stage, a potential valley 

is formed near the cathode (Fig. 1 (a)). As 

will be shown later, this valley is produced by 

the density distribution arising from the diffu

sion of electrons at the boundary and gives 

rise to an accumulation layer through the piezo-

_ 1.0 

'E 
~ 
.3 
~ 

.~ 0.5-
Q) 

" 0+

C 

e 
'
::J 
<J 0 

o 
Q._-'---_b_-'-i ~ t 

0.5 1.0 1.5)(104 

Fig. 2. Computed decay of current 

with time. The unit of time is the 

same as that in Fig. 1. a, band c 

denote the first one-way, return and 

second one-way trip, respectively. 

electric field acting on the wall of the valley 111 the direction opposite to the 

applied field. As the valley becomes broad, a potential barrier appears at the 

edge of the valley and moves towards the anode with increase of its height. As 

soon as the barrier reaches the anode and disappears, a large potential valley 

arises from there and goes back to the cathode with decrease of its depth (Fig. 

1 (b)). This means that the phase of the reflected wave shifts by n from that of 

the incoming wave because of the boundary conditio'n Cf!p(L, t) =0" When the 

valley approaches the cathode, the density distribution returns to the initial dis

tribution. The potential distribution keeps the shape of valley for some time 

after the nucleation of the new packet of the density fluctuation near the cathode. 

Shortly, a potential trough is formed by interference between the reflected wave 

at the cathode and the incoming wave and moves towards the anode with in

crease of its depth, accompanied by the potential barriers before and behind it 

(Fig. 1 (c)). The back barrier height increases in the initial stage but decreases 

with the: gradual increase of the front barrier height. Electrons are accumulated 

in the potential trough through the piezoelectric fields on its wall and are depleted 

in the front barrier. As written in Fig. 1, the drift velocity of electrons in the 

potential trough is decreased with time and approaches the sound velocity. 

Using Eqs. (4·17), we can understand the formation of the packet of density 

fluctuation in the initial stage. If we assume p = poe-a:>.: for the density distribu

tion arising from the diffusion of electrons at the boundary, we get 

Cf!p(xt) = - (4nep*po/a2
) [(l-e-a:>.:) -t(1-e-a(:>':+8t») 

- t sgn ex - st) (1- e-al:>.:-st l)]. (4·18) 

The potential distribution given by Eq. (4·18) takes the shape of a valley whose 

wall moves with the sound velocity. The piezoelectric' field Ep = - P Cf!p on the 

wall is produced in the direction opposite to the applied field, and then the drift 

velocity of electrons becomes smaller there than that in the other region. So, 
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1144 J. Yamashita and K. Nakamura 

electrons are piled up on the wall and are depleted in front of the wall. This 

leads to the packet of the density waves shown in Fig. 1 (a), and subsequently 

such a density distribution gives rise to the potential barrier. From the point 

'of view mentioned here, we find that the domain formation is a consequence of 

the transient generation of the acoustic flux packet at the boundary and of the 

subsequent amplification of it. It is almost certain that the domain formation is 

irrelevant to the Ridley mechanism. Io
) The process described by ou'r computer 

experiment is the same as the round trip process observed by McFee ll
) in pho-

,toconducting CdS. 

The authors would like to thank M. Suga for assistance in the computer 

analysis. 
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Note added in proof: 

During the course of publication of this paper an interesting paper was written by Tien [Phys. 

Rev. 171 (1968),970]. The results of his co~putor calculation are similar in many respects to those 

of the present paper in sections 4 and 5. 
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