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Theory of electronic relaxation in solution in the absence 
of an activation barrier 

Biman Bagchi, Graham R. Fleming,a) and David W. Oxtobya) 

Department o/Chemistry and The James Franck Institute, The University o/Chicago, Chicago, Illinois 60637 

(Received 10 January 1983, accepted 1 March 1983) 

We present a theory which describes the effects of viscosity on those electronic relaxation processes in 

solution in which the intramolecular potential surface does not present a barrier to the motion leading to the 

decay of the initially formed excited state. We model the reactive motion as the motion of a solute particle on 

the excited state potential surface with a position dependent sink which gives rise to the decay of the excited 

state population. Three different types of sinks are considered: (A) a pinhole sink at the minimum of the 

potential surface; this models the situation when the molecule decays to ground state as soon as it reaches the 

potential minimum; (B) a Gaussian sink with probability of decay maximum at the potential minimum; (C) a 

Lorentzian sink with maximum decay at the potential minimum. For case (A) an explicit analytic solution is 

obtained for the decay rate, but for cases (B) and (C) we obtained the decay rate numerically. Model (A) 

predicts nonexponential decay at all viscosities except at long times when the decay is single exponential. For 

cases (B) and (C) the decay is single exponential at low viscosities but becomes multiexponential at high 

viscosities. We show that the experimentally observed fractional viscosity dependence of fluorescence 

quantum yield arises naturally in this theory due to the position dependence of the sink as well as due to the 

competition between radiative and nonradiative relaxation. Our model also predicts a crossover from an 

apparent negative (constant viscosity) activation energy at low viscosities to a positive activation energy at 

high viscosity. The physical significance of these results is discussed in light of the available experimental 

results on TPM dye relaxation. Some possible generalizations of our theory to more realistic cases are 

indicated. 

I. INTRODUCTION 

Electronic relaxation processes involving large 

amplitude motion can be divided into two categories: 

those in which an intramolecular potential barrier is 

present and those in which the intramolecular potential 

surface does not present a barrier to motion of the ini

tially formed excited state. Solvent friction is clearly 

important in both classes but in the zero barrier case 

provides the only "resistance" to motion on the excited 

state surface. The case with a Sizeable internal barrier 

(6.E > kT) has been discussed extenSively from both ex

perimental1
-

S and theoretical1
-

13 viewpoints following 

the classic work of Kramers. 1 Recent attention has 

been directed toward frequency dependent effects in 
solvent friction when barriers are sharp14,15 and to the 

inertial or energy controlled regime expected at very 
low values of the solvent friction. 16,17 The zero barrier 

case has received much less attention from the theoreti

cal standpOint with the calculations of Forster and Hoff

mann18 and of Cremers19 being the only discussions of 

which we are aware. 

From the experimental point of view the zero barrier 

case has attracted conSiderable interest as a descrip

tion of the viscosity dependent radiationless decay of the 

excited singlet state of the triphenyl methane (TPM) 
dyes. 20-28 This viscosity dependence has been investi

gated by a variety of steady state and time resolved 
spectroscopic techniques and the experimental findings 
are summarized below. 

(i) The fluorescence quantum yield cf>f depends on a 

a)Carnille and Henry Dreyfus Teacher Scholar. 

fractional power of the solvent viscosity. Following 

the initial suggestion of Forster and Hoffmann18 that 

cf>f a: 1/213 several workers have found adequate fits to this 
form over large viscosity ranges. 18,22,21 

(ii) The form of the ground state recovery curve is 

viscosity dependent. For example, Ippen et al. 24 found 

that malachite green exhibits single exponential decay 

in solvents with viscosity less than 1 P. For solvents 

with higher viscosity, the decay was fit as a sum of two 

exponentials, 24 but Cremers and Windsor21 suggest that 

a sum of many exponentials is required to fit their 

ground state recovery and excited state absorption data. 

(iii) The form of the fluorescence decay curve has 

also been described as a double exponential decay but 

of the time constants obtained by Hirsch and Mahr, 22 

only their shorter one corresponds to one (the longer) 

of the time constants observed in the ground state re

covery measurements of Ippen et al. 24 The viscosity 

dependence of the decay constants of malachite green 
depended more nearly on 1/1/3 22,23 and the discrepancy 

between this dependence and the 1/213 dependence of the 

fluorescence quantum yield was interpreted in terms of 

viscosity dependent coefficients of the two exponential 

terms. 22 By contrast, Beddard et al. 23 fitted the fluo

rescence decay of crystal violet as the sum of two ex
ponentials (for 1) > 0.8 P) and found the decay times to 

vary as the 0.68 ± 0.1 and 0.58 ±0.1 powers of the vis

cosity for the shorter and longer decay times, respec
tively. 

(iv) From a preliminary study Cremers19 suggested 

that there was no intrinsic effect of temperature on the 

radiationless decay of crystal violet. In other words, 
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7376 8agchi, Fleming, and Oxtoby: Electronic relaxation in solution 

at constant viscosity the activation energy is zero. 

More recent work on ethyl violet by Gilbro and Sund

strom29 finds a small (- 0.8 kcal/mol) but definite nega

tit'e activation energy at constant viscosity. 

(v) Ground state recovery experiments carried out 

at a range of wavelengths have suggested the existence 

of an unstable intermediate in the relaxation process20•30 

and may require reinterpretation of some of the earlier 

studies carried out at a single wavelength. The inter

mediate is probably a twisted ground state species. The 

formation time of the intermediate has a roughly TJ2I3 

dependence but its decay is much more strongly vis

cosity dependent (decay time ex TJI. 5). 

In this paper we present a new theoretical model for 

radiationless processes involving large amplitude mo

tion in the absence of an internal barrier, so that this 

model is suitable for describing electronic relaxation in 

TPM dyes. We follow Forster and Hoffmann18 in as

suming that the motion on the excited state surface is 

effectively one dimensional; the relevant coordinate for 

the TPM dyes involves the synchronous rotation of the 

phenyl rings about the bond between each phenyl group 

and the central carbon atom. Motion of the phenyl rings 

toward the excited state equilibrium geometry then may 

lead to a Significant enhancement in the rate of internal 

conversion, presumably through a decrease of the en

ergy gap between the 50 and 51 surfaces. 

Since there is no high barrier for the reactive motion, 

there is no natural separation of time scales between 

the motion in the reactive region and in the rest of the 

potential surface. We have, therefore, solved for the 

time-dependent probability of a system remaining on the 

excited state surface. In this model, the radiationless 

relaxation is represented by a coordinate dependent sink 

(which gives rise to decay in excited state population) 

centered on the excited state potential minimum, and 

the radiative relaxation by a position independent sink 

along the potential surface. The motion along the po

tential surface is governed by the force from the poten

tial (approximated as harmonic) and the viscous drag 

of the solvent. We model all these competing factors by 

a modified Smoluchowski equation of the following form 

ap(x, t) =A a
2
p(x, t) +B~XP(x t) 

at ax2 ax ' 

(1.1) 

whereA=kBT/l; and B=w2Jl/l;, w being the frequency 

of motion on the harmonic surface, l; the relevant fric

tion coefficient, (.l the reduced mass of the reactive mo

tion, and T the temperature. knr is the magnitude of the 

radiationless rate at the origin [where S(x) is chosen to 

be unity 1 and kr is the radiative rate constant, indepen

dent of position. For the sink function S(x), we have 

investigated three different functional forms: 

(a) The sink is a pinhole at the origin. This models 

the situation where there is no radiationless transition 

from anywhere except the origin where the energy gap 

between the two surfaces may be a minimum and so the 

decay is very fast. This model is relevant to those 

situations where there is a "funnel" in some region of 

the potential surface. 31 Mathematically, this model 

corresponds to the well_known8.32.33 problem of diffusion 

in the presence of an absorption barrier and can be 

solved exactly to obtain p(x, t). 

(b) 5(x) is a Gaussian function with a maximum at the 

origin. This is actually quite realistic because the 

energy difference between two harmonic surfaces is a 

quadratic function, and so an exponential energy gap law 

predicts a shifted Gaussian probability distribution for 

the transition probability between two surfaces. For 

this case we have obtained a series solution since ana

lytic solution is not possible. However, some interest

ing conclusions can be drawn directly from the structure 

of the equations. 

(c) S(x) is a Lorentzian function with the transition 

probability a maximum at the origin. While the physical 

basis of this model is not as obvious as for the other 

two cases, it may be useful in some situations. In addi

tion, this model will serve as a valuable check on the 

dependence of relaxation on the functional form of 5(x). 

Forster and Hoffmann18 studied a model which is sim

ilar in spirit to the model presented here. However, 

they chose a quadratic form for 5(x) which is entirely 

unreasonable since it predicts an increase in rate even 

when the energy gap between the ground and the excited 

surfaces increases. There are also some unjustified 

statistical assumptions in their treatment of relaxation: 

in particular, they assume that all of the molecules 

follow the average relaxation pathway, rather than 

allowing for a random distribution of motions on the ex

cited surface. Their model gives a prediction for the 

viSCOSity dependence of the quantum yield (CPf ex TJ2!3) 

which is in accord with the experiment. However, we 

regard this good agreement as somewhat fortuitous, in 

view of the fact that the time dependence of the fluores

cence decay given by the Forster-Hoffmann model is 

exp( - a t3
) which has not been observed experimentally. 

We shall return to this point later. 

An extensive study of the viscosity dependence of 

electronic relaxation of TPM dyes has been carried out 

by Cremers19 who solved a system of coupled Smolu

chowski equations for the time dependence of the popu

lation in ground and excited states. His treatment dif

fers from our method in that he did not introduce any 

model for the sink function. Instead, he assumed that 

the transition probabilities have an exponential depen

dence on the energy gap between the electroniC levels 

involved and used the numerical values of the potential 

energies of the two surfaces evaluated by a separate 

quantum chemical calculation. His work is therefore 

more specifiC. Moreover, Cremers' results are un

reliable in the low viscosity regime due to problems of 

convergence. Cremers' also did not consider the tem

perature dependence of the nonradiative rate. We shall 

present a more detailed comparison of our theory with 

that of Cremers in the following sections. 

The Smoluchowski equation (1. 1) is known to be a 

limiting form of the phase space Fokker-Planck equa

tion8 (sometimes referred to as Kramers equation) and 

is strictly valid only when ((.l/l;) «w-1
• Fortunately, 
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for many of the TPM dyes, w is rather small, so Eq. 

(1.1) may actually be valid over most of the experimen

tally accessible range of viscosity. However, Eq. (1.1) 

is definitely not capable of describing relaxation in the 

short time inertial or energy controlled limit. One must 

use the full phase space Fokker-Planck equation in this 

limit. We are presently carrying out such a calculation 

which will be described in a forthcoming article. 

The diverse and interesting viscosity dependences 

i-v observed in the relaxation of TPM dyes arise from 

the competition between the steric hindrance within the 

molecule and the solvent viscosity. The first factor 

favors the relaxation whereas the second one hinders it. 

Our model with a coordinate dependent sink in a har

monic potential surface includes these two competing 

factors in a way which is not only intuitive but also con

sistent with recent experimental observations. We show 

by explicit calculation that the fractional values of the 

exponent O! for the viscosity dependence of quantum yield 

(cjJf <X TIC<) naturally arise from this model and that there 

is no theoretical reason for O! to be exactly equal to 2/3. 

In fact, in Our model, O! is dependent on such natural 

parameters as w, knr' kr and also on the coordinate de

pendence of S(x). For a pinhole sink, we find that if kr 

is much less than B(=w21l/1;), then the exponent O! is 

exactly equal to unity; i. e., the rate of decay is in

versely proportional to viscosity. This is reminiscent 

of the well-known Smoluchowski limit of Kramers' solu

tion for the rate in the presence of a high barrier. But 

in the present case we have a nonsteady state solution 

in the absence of an activation barrier, whereas 

Kramers solution was obtained with the assumption of a 

steady -state diffusion across a high barrier which would 

break down when the barrier height is of the order of 

kB T. Recent experiments on electronic relaxation in 

DPB (diphenyl butadiene) showed that even though the 

activation energy in this case is of the order of kBT, the 

rate is inversely proportional to viscosity. 6 We believe 

our calculation with a pinhole sink provides an explana

tion of this finding. We have also shown that the transi

tion from single exponential to multi exponential decay of 

excited state population as viscosity is increased can 

also be explained from this model. 

Another very interesting prediction of our model is 

a cross-over behavior in the temperature dependence 

of the decay rate. Our model predicts that at low vis

cosities the rate would decrease as temperature is in

creased (i. e., an effective "negative" activation energy), 

but at high viscosities, the rate again increases as tem

perature is increased (i. e., the effective activation en

ergy is positive). As noted above, this negative activa

tion energy at low viscosities has already been ob

served.
29 

We have also conSidered the dependence of 

relaxation on the wavelength of excitation. 28 In our model 

this feature enters through the dependence of the proba

bility distribution p(x, t) on the initial condition. Thus, 

we have shown that all the essential features of elec

tronic relaxation in TPM dyes can be explained in a very 

simple manner. We believe our model to be the first to 

provide a systematic account of the features of TPM dye 

relaxation. 

The organization of the rest of the paper is as fol

lows: In Sec. II, we discuss the formal aspects of the 

theory and in Sec. III we present numerical results along 

with their interpretation. Section IV concludes with a 

brief discussion. 

II. THEORY 

In this section we analyze the form of the equations of 

motion for the three types of sinks which we are consid

ering. We show that for a pinhole sink the equations 

may be solved explicitly for the decay rate. For the 

Gaussian and Lorentzian sinks analytical solution is not 

possible; we examine the qualitative form of the relaxa

tion for these sinks, but postpone discussion of the full 

numerical results to Sec. III. 

A. Pinhole sink 

For this case, once a particle arrives at the origin 

it decays with unit probability. Mathematically this 

corresponds to the well-known problem of an absorbing 

barrier at the origin. 8,32 For convenience, we write the 

equation of motion in the following form 

ap -
-=!:-P 
at ' 

where 

P = exp(krt)P , 

'£'=B~(~~+X) 
ax B ax 

(2.1) 

(2.2) 

(2.3) 

.£, is an ordinary Fokker-Planck operator in one vari

able. We solve Eq. (2.1) for the following initial

boundary values for P: 

p(x,t=O)=O(x+Xo) , 

p(x = ± co, t) = 0 , 

p(x = 0, t) = 0 . 

(2.4a) 

(2.4b) 

(2.4c) 

The same conditions also apply for P. Equation (2. 4a) 

is the statement of the fact that the system is placed at 

x = - Xo at time t = OJ it is straightforward to generalize 
this condition to include some simple distribution for xo. 

With the conditions (2.4), the solution of Eq. (2.1) can 

easily be obtained by the method of imagesB,32,33 

- _ VB!A { r_ B(x + IXol e-
Bt)2] 

p(x, t) - v 21T{1 _ e-2B t) exp [ 2A(1 _ e-2Bt) 

r B(x-Ixol e-Bt)2]} 
- exp L- 2A(1 _ e-2Bt) • (2.5) 

Therefore, the probability distribution p(x, t) for the 

system to be at position x at time t is obtained from 

Eqs. (2.2) and (2.5). 

Let us define p/t) to be the probability of the mole

cule being in the eXCited state after time t. Then P .(t) 

is given by 

f
o ~ 

p.(t) = dxP(x,t)= f. dxP(-x,t) 
-~ 0 

2 
=.fTf exp(-krt)erf(Z(t», (2.6) 
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7378 8agchi, Fleming, and Oxtoby: Electronic relaxation in solution 

where erf(a) is the error function34 defined by 

f
a 2 

erf(a) == dq e-· 
o 

(2.7) 

and 

_ IXol e-Bt 

Z(t) - v'2A/B{1 _ e-2B t) (2.8) 

Equation (2. 6) gives the relaxation of the excited state 

population in the presence of an absorbing barrier (pin

hole sink) at the origin. This equation predicts a multi

exponential relaxation, as can easily be appreciated 

from the following series expansion of the error func

tion34
: 

~ (Z(t))2.+1 
erf(Z(t))==f:t(-I)' n!(2n+l)! (2.9) 

with Z(t) given by Eq. (2.8). For long times (such that 

Bf» 1), Z(f) becomes 

Z(f) - Ixo I ~ e-
Bt 

• (2.10) 

Equation (2.9) then predicts that at sufficiently long 

times, p.(t) will become single exponential. Since B is 

inversely proportional to the viscosity, the decay in this 

case is governed by tiTJ. 

Another physical quantity relevant to the discussion 

of relaxation in the presence of an absorbing barrier is 

the first passage time distribution Q(t, xo). 33 Q(t, xo) is 

the probability that the particle, starting at position Xo 

at time t == 0, reaches the barrier for the first time at 

time t. In other words, it gives the probability of being 

absorbed in the time interval between f and t + dt. For 

a barrier at the origin, this is given by33 

d fO d 
QU, xo) == - dt _~ dx p(x, t) = - dt P .(f) (2.11) 

which is equal to 

2B [ e-
2Bt

] 
Q(t, xo) = Trr 1 + 1 _ e-2B t Z(t) exp[ - (Z(t))2], (2.12) 

where we have neglected kr for this discussion. The 

average first passage time (t)av is defined by 

(2.13) 

which is the inverse of the "average" rate k of relaxa

tion, of excited state population. Thus, expression 

(2.12) for Q(t, xo) has some interesting detailed infor

mation on relaxation of the excited state population. 

The complete expression for the relaxation rate from 

the excited surface is given by 

1 ~ I X 1
2.+1(BI2A)·+<1/2) r(k /2B + n + 1.) 

k-1 - __ L... (- I)' 0 r 2 

- B.fiT .=0 n!(2n+l)! r(kr /2B+2n+2) . 

(2.14) 

Since A and B have the same viscosity dependence, Eq. 

(2.14) predicts an inverse viscosity dependence of rate 

at small viscosity. This is due to the fact that B is in

versely proportional to the friction coefficient (B = w2 jJ.I 
,) and so it becomes larger than kr at small viscosities 

(TJ - 1 CP) for reasonable values of kr and w. Often w is 

large enough that kr« w2 j.LI' over a large range of vis

cosity; in that case, inverse dependence of rate on vis

COSity should be detectable experimentally. We shall 

come back to this point in the next section. 

Due to the simple expression for the rate constant, 

it is possible to study its temperature dependence ana

lytically. To do this, we write 

a 2 f~ a Iz<t.T) 2 
-(k- I ) == - dt- dq e-q 

aT .fiT 0 aT 0 

1 f~ = - ~ dt Z(t, T) exp[ - (Z(f, T))2] 
TV1T 0 

(2.15) 

at constant viscosity, so that aklaT is positive (i. e., 

the rate increases with increase of temperature). This 

implies an effective positive activation energy. The 

physical significance of this result will be discussed 

later. 

B. Gaussian sink 

The general Gaussian sink is represented by a Gauss

ian function centered at a point x", 

(2.16) 

This can mOdel the situation where the minima of ground 

and excited state surfaces are shifted by certain amount 

in coordinate space so that the energy gap between the 

two surfaces can be fitted to a quadratic form. When 

x=x"', S(x)=I, but as x- oo , S(x)-O, so that kDr takes 

its full value at x=x",. x",=O implies that S(x) is peaked 

at the minimum of the excited surface. 

In the Gaussian case, due to the complicated struc

ture of Eq. (1.1), it has not been possible to solve this 

equation exactly for p(x, t). Instead, we have solved it 

by a series expansion. However, some conclusions re

garding the viscosity and temperature dependences can 

be drawn immediately from the analytic structure of the 

series solution. 

A convenient way to solve Eq. (1.1) is to expand it in 

the eigenfunctions of the Fokker-Planck operator .c 
defined by Eq. (2.3). The expansion solution is 

~ 

p(x, t) =2: (J.(t) b. (x) , 
.=0 

where b.(x) is the nth eigenfunction of .c 35 

.cbn = - nBbn , 

(2.17) 

(2. 18a) 

(2.18b) 

where H. is the Hermite polynomial of order n, V = (AI 

B)1/2 and the normalization constant An is given as 

(2.19) 

The conjugate eigenfunction b; is defined through35 

(2.20a) 

b+ 1/2 (x) 
.=An Hn~:n-v . (2.20b) 

It can easily be checked that bn and b~ are orthonormal 
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Following the usual procedure, we obtain the following 

system of equations for CT"(t): 

a",(t) = - mBCT",(t) 
.. 

- k ... L A!/2 A~2 1 ",,"CT" (t) - krCTm(t) • 
"-0 

(2.22) 

For Sex} given by Eq. (2.16), 1",." is 

o H"'+"-2k~2V2~ma2)172) • (2.23) 

For x", = 0 (i. e., a Gaussian centered at the origin) 1 ",.n 

Simplifies to 

1 = (_1),"+" /2 2",+"+<1/2) V 1 + ~ a ~ 
2 )-("'+"/2)( 2 )112 

m," 2V· a2+2V2 

(
m +n+1\ ( 1-m -n a2

+2V2) 
® r 2 "} 2F t - m, - n; 2 ; 4 ye ; 

(m + n) even, (2.24) 

where 2F! is an ordinary hypergeometric function34 de

fined as 

(2.25) 

(Y) I is Pochhammer's symbol. 34 In this case both a and 

b are either negative integers or zero, so 2Ft is a poly

nomial with the upper limit of the sum (2. 25) at 

min(m, n). 

The initial condition p(x, t = O} = o(x + xo) gives 

CT.,(O) = b~(-xo) • (2.26) 

The expression for PeW, in this case, is given by 

P e(t) == 1.. .. dx p(x, t) = V'2 lTA 0 V CTo(t) • (2.27) 

Equation (2. 27) has the consequence that we have to con

Sider only the even eigenstates, 1. e., CTo, CT2, CT4, ••• , etc., 

in Eq. (2. 24). The expression for the rate constant is 

also very simple and is given by 

k- t = 1" dt P .(t) = (V2iT V)1I2 o"o<s ==: 0) , 
o 

where uo(s) is the Laplace transform of 00W 

&o(s) == 1" dte-stoo(t) . 
o 

(2.28) 

Both Eqs. (2.23) and (2.24) are easy to solve numeri

cally because the matrix M defined as 

&(t) = M O'(t) (2.29) 

is a real symmetric matrix. This is the advantage of 

expanding p(x, t) in the eigenfunctions of the Fokker

Planck operator .c. 

C. Lorentzian sink 

In this case, we assume the following form for Sex}: 

a2 

Sex) = -::r;-:r+ • (2.30) 
x a 

For this chOice of S(x}, the series expansion of p(x, t) 

in eigenfunctions of.c leads to the following system of 

equations: 

am(t} = - mBCTm(t} 

- kart A!/2 A!..12 1m, "CT"(t} - krCTm(t) , 
"=0 

{n+m even}, (2.31) 

where 

1 m," = lTa exp(a2
/ 2V2) 

X(-1)n+m!2:lC"(-;'y):lCmC';v)' (2.32) 

:K'"(Y) are polynomials somewhat different from Hermite 

polynomials. They are defined through the following 

generating function: 

G(Y, t) == exp(2Yt + t2
) ==: tJC~~Y) t' 

and have the following recursion relation: 

:le l +! (y) ==: 2 YJC I + 2Z:lC'_1 • 

(2.33) 

{2.34} 

Equation (2.31) is of the same form as Eqs. (2.23) or 

(2.24). We expect models B and C to give similar re

sults for small xo. The expressions for P .(t) and (kyl 

are still given by Eqs. (2.27) and (2.28), respectively. 

Though the final solutions for cases B and C have to be 

obtained numerically, there are some interesting fea

tures which can be deduced merely from the structure 

of Eqs. (2.22) and (2.31). We write these equations 

in the following form: 

am(t) = - mBum(t} - krom(t} - knrtJ nmCT"(t) , (2.35) 
n-O 

where Jnm now symbolize the rest of the factor in those 

three equations. First, conSider the case of extremely 

small viscosity, so that B(=w21l/~) is very large. In 

this limit, ao dominates because higher coefficients de

cay rapidly, so we have 

(2.36) 

For the Gaussian sink peaked at the origin, J oo is given 
by 

(2.36a) 

Thus, in this low viscosity limit, the excited state popu

lation relaxation, as given by Eq. (2. 27), is single ex

ponential. Another interesting point is that the rate 

constant of this decay is independent of viscosity. This 

is due to the fact that viscosity dependence in Eq. (2.35) 

enters only through B. 

As viscosity is increased, B decreases and other bath 

states enter into the picture. There may be a region in 

viscosity where CT O and CT2 dominate. Then Eq. (2.35) 
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7380 Bagchi, Fleming, and Oxtoby: Electronic relaxation in solution 

predicts a biexponential decay, for the Gaussian sink 

(xm = 0), of the following form: 

oo(t) = m .°0(0) + U em-t + m_uo(O) + U em.! , 

m.-m_ m_-m. 

where 

m. = H - Q ± v'Q2 + 4R J , 

Q = (Joo +J22 )knr + 2B + 2kr , 

R = k~rJ20 - (2B + kr + knrJ22)(knrJoo + kr) , 

and 

u = (kr + knrJoo)oo(O) + knrJ02U2(0} . 

In the limit of small viscosity 

B» knr(Joo + J 22 } , Q2» 4R , 

so we have 

m+"'"R/Q; R<O, 

m_"'"-Q-R/Q; Q>O. 

(2.37) 

(2.37a) 

(2.37b) 

(2.37c) 

(2.37d) 

(2.38a) 

(2.38b) 

In this limit, Eq. (2.37) gives a biexponential decay 

with rate constants given by Eq. (2.38). One of the rate 

constant (mJ is large, predicting a sharp initial decay 

if the prefactor for this decay term is larger than the 

\lrefactor of the exp(m.t) term. 

As viscosity is further increased, Eq. (2.35) pre

dicts multi exponential decay. The transition from single 

exponential decay at very low viscosity to multiexponen

tial decay at high viscosities with a biexponential decay 

at intermediate values of viscosity has already been 

observed in the experiments of Cremers and Windsor21 

and of Ippen et al. 24 

Next we examine the temperature dependence of the 

rate constant given by Eq. (2.28). The derivative of 

the rate constant with respect to the temperature can be 

written in the form 

~ = - ~ - k2(V V2iT)1I2 J~ dt~ . 
aT 2T 0 dT 

(2.39) 

For the low viscosity case, the rate constant k is ap

proximately given by 

k"'" (V V2iTr1 (kr + knrJ 00) • (2.40) 

It is easy to see that both a/aT(V-1) and aJoo/aT are 

negative for both Gaussian and Lorentzian sinks. This 

implies that ak/aT in Eq. (2.40) is also negative which 

means that we have an effective negative activation en

ergy for this case of very small viscosity. However, 

as viscosity is increased, higher eigenstates of.c be

come important and ak/aT can become positive. We 

shall show in the next section that numerical calculation 

indeed predicts such a cross-over behavior of ak/aT 

as viscosity is increased from small values. As men

tioned in the Introduction, negative activation has al

ready been observed in relaxation of some TPM dyes 

at low viscosities. 29 

III. NUMERICAL RESULTS AND DISCUSSION 

in the previous section. 

In order to obtain the time dependent probability func

tion Pe(t) for the position dependent sinks (cases Band 

C), we need to solve systems of Eqs. (2.22) and (2.31). 

For practical purposes we must truncate the expansion 

(2. 17) at some finite value nmax of the summation index 

n. This is phYSically very reasonable for small values 

of viscosity 71 because in this case the first term domi

nates and we need to include only a small number of 

eigenstates bn(x) in order to obtain good convergence. 

For high values of 7/, the higher eigenstates become im

portant. Then the expansion becomes increasingly 

awkward because a large number of eigenstates are 

needed for good convergence. We have limited our study 

to a maximum value of 50 P for viscosity 71. At this 

value of 71, we get good convergence by truncating the 

series at nmax = 48 for the Gaussian sink, but for a 

Lorentzian sink we had to include as many as 84 eigen

states in order to obtain reliable convergence. Above 

the value of 50 P of 71, it becomes extremely difficult to 

obtain satisfactory convergence. 

We have already pointed out that the matrix M of Eq. 

(2.29) is a real symmetric matrix, and therefore it is 

straightforward to obtain the solution of P e(t) which is 

given by Eq. (2.27). Similarly, the rate k, given by 

Eq. (2.28), can also be obtained without difficulty. 

It is interesting to note the difference between our 

method of series solution and Cremers' finite-differ

ence numerical quadrature. 19 Cremers' method be

comes inefficient at small values of viscOSity where 

very small time steps are needed in order to obtain re

liable results. This difficulty in Cremers' method 

originates from the fact that at small values of viscosity, 

the motion of the solute particle in the potential well is 

highly oscillatory (or undamped) and it is very difficult 

to follow the time evolution of Pe(x, t) numerically. In 

contrast, the series solution (2.17) is exceedingly sim

ple for small viscosity, but becomes awkward at very 

large viscosity. This is due to the fact that at large 

viscosity we need a large number of Hermite polynomi

als which are not appropriate for describing a positive 

definite function such as our probability distribution 

function Pe(x, t). This is a well-known difficulty in the 

numerical solution of reaction rates. 9 

In order to carry out explicit calculations, we need 

numerical values for a number of quantities: the fric

tion coefficient!:, the reduced mass J-L, the initial posi

tion Xo on the excited surface, the parameter "a" of the 

sink function S(x) (for cases B and C), the radiative rate 

constant kr and the nonradiative rate constant knr . In 

the numerical calculations presented here, we have as

sumed stick boundary conditions for the rotational fric

tion. For synchronous rotation of three phenyl groups, 

the total friction is given by 

(3.1) 

and 

(3.2) 

In this section we describe and discuss the results where TJ is the zero frequency shear viscosity and R is 

obtained by numerical solution of the equations described the hydrodynamic radius of the rotating group. In writ-
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ing Eq. (3.2), we have assumed a spherical shape for 

the rotating phenyl groups. For more accurate results, 

one should consider a spheroid instead of a sphere but 

for qualitative purposes, this does not make any dif

ference since the crucial factor is the proportionality 

between ~ and 1). We have chosen R equal to 5 A which 

approximately corresponds to the volume of a phenyl 

group (assumed spherical) of crystal violet. For the 

reduced mass /l, we take it equal to three times the mo

ment of inertia of each phenyl group about its axis of 

rotation. These choices of ~ and /l imply that the as

sumed reactive motion is an average of the synchronous 

rotation of the three phenyl groups and that the stochas

tic forces on the three rings are independent of each 

other at all times. For w, we have rather arbitrarily 

chosen values between 5.0X10i1 and 5.0x1012 S-1 in 

order to simulate relaxation both on shallow and on 

steep potential surfaces. In the absence of more pre

cise experimental and theoretical data for w, we do not 

have a way to estimate it. For the initial position Xo on 

the excited surface, we have mostly worked with the 

value 0.1 which corresponds to six degrees, a value 

which seems reasonable. We have, of course, varied 

Xo to study its effect on relaxation. For the sink param

eter a, we have chosen a value of 0.01 and varied it to 

study its effect. For knr and kr we have chosen values 

equal to 1.0 X 1012 and 1.0 x 109 S-I, respectively. These 

values are consistent with the experiments on TPM dye 

relaxation at very low viscosities (when knr dominates) 

and at very large viscosities (when kr dominates). 

A. Viscosity dependence of fluorescence quantum yield 

As noted after Eq. (2.14), the pinhole sink model 

predicts an inverse dependence of nonradiative rate on 

viscosity. This is an expected result because all that is 

needed for nonradiative relaxation is the arrival of the 

solute particle at the origin. In our model, the solute 

particle is basically undergOing a random walk type of 

diffusive motion on a potential surface and so the rate 

of diffusion is inversely proportional to viscosity. 

Therefore, at low viSCOSities, this model predicts an 

approximate linear viscosity dependence of the fluores

cence quantum yield. However, at high viscosities when 

4 

FIG. 1. Dependence of fluorescence quantum yield (<p,) on 

viscosity (1) predicted by this theory for Gaussian sink. 

a=O.OI, xo=O.I, knr =I.0xl012 , k r =I.0xl09, w=lxl012. 

Viscosity (1) is in poise. 

c: 

17L-__ L-__ ~ __ ~ __ L-__ L-__ ~ __ ~~ 

-4 -3 -2 -1 0 2 3 

In TJ 

FIG. 2. Dependence of nonradiative rate (k) on Viscosity (1) 

at three different temperatures. a = 0.01, Xo = O. I, knr = 1.0 

xl012 , kr=O. 0, and w=l xl012. Viscosity (1)) is in poise. 

radiative relaxation competes with nonradiative relaxa

tion, the fluorescence quantum yield is no longer pro

portional to viscosity, although the pure nonradiative 

part always retains the inverse viscosity dependence. 

For Gaussian and Lorentzian sinks, a fractional vis

cosity dependence of fluorescence quantum yield is ob

tained. Figure 1 illustrates a representative calculation 

for a Gaussian Sink. The slope of the plot of In rP, vs 

In 1) in the lower viscosity region is - O. 64 for the param

eters chosen. The graph becomes flatter in the high 

viscosity region. Similar behavior is also obtained for 

the Lorentzian sink. In fact, a careful analysis of the 

data shows that the slope of the plot In rP, vs In 1) always 

changes with viscosity except at low viscosities, and it 

may not be meaningful to conSider this slope as a con

stant independent of viscosity. In order to study the 

effect of viSCOSity on the nonradiative relaxation, we 

have carried out a calculation with kr == O. Figure 2 

shows the result of this calculation at three different 

temperatures. After a slow start at small viscosities, 

the nonradiative rate falls rapidly with viscosity and at 

large viscosities (1) 2: 1 P), the slope is approximately 

equal to - 1; i. e., inverse viscosity dependence. 

The fractional power viscosity dependence of fluores

cence quantum yield can arise from two different 

sources: either from the influence of the position de

pendent sink on the nonradiative relaxation, or from 

the competition between the radiative and the nonradia

tive relaxations. At very low viscosities, the contribu

tion of the radiative relaxation to the overall decay is 

negligible and the influence of the position dependence of 

the sink becomes important. For the pinhole sink case, 

we have rP,cc 1)+1 whereas for a pOSition independent sink 

(i. e., pure radiative decay), rP, cc 1)0. Therefore, it is 

obvious that for Gaussian or Lorentzian sinks, we will 

have a fractional dependence of rPf on viscosity. This is 

further confirmed by our finding that the fractional 

power depends on the width of the sink function. If the 

sink function is made narrower, then the fractional 
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FIG. 3. The decay of excited state population for pinhole sink 

case at different viscosities. Viscosities (in poise) are indi

cated on the graph. Xo = O. I, knr= 1. Ox 1012
, kr =0.0, and 

w=I.0xl012. 

power increases at low viscosities. As the viscosity of 

the solvent is increased, the contribution from the ra

diative part increases. At high viscosity, although the 

nonradiative rate itself becomes inversely proportional 

to viscosity, the radiative part makes the dependence of 

if>f on 1'/ weaker, giving rise to a fractional power less 

than unity. However, in the intermediate viscosity re

gime where both damping of solute motion and radiative 

decay are significant, both these factors influence the 

dependence of fluorescence quantum yield on viscosity . 

In order to separate these effects, it might be useful to 

analyze the viscosity dependence of only the nonradia

tive decay from experimental data rather than the quan

tum yield. 

It is interesting to contrast the fractional viscOSity 

dependence obtained in the present zero barrier case 

with that obtained in our earlier studies of photochemi

cal isomerization in the presence of a Significant inter

nal barrier. 4,5 In the latter case, a fractional viscosity 

dependence is obtained only as a result of the breakdown 

of the ordinary hydrodynamic approximation for the fric

tion, and generalized hydrodynamics has to be used for 

the explanation of the viscosity dependence of the rate. 15 

In the present zero barrier case, the fractional viscosity 

dependence arises quite naturally within the ordinary 

hydrodynamic model for the friction. Our study seems 

to indicate that this dependence arises from two factors: 

competition between radiative and nonradiative relaxa

tion and from the position dependence of the sink func

tion S(x). 

The fractional power O! depends on the parameters W, 

a, and Xo which enter naturally into this theory. The 
value of O! depends strongly on w, the frequency of the 

(assumed) harmonic surface. If W is decreased, then 
O! also decreases which is obviously due to the greater 

importance of kr • The same effect is seen if Xo is in

creased or a is decreased. 

Thus, our study indicates that the fractional power O! 

depends on several phYSical quantities which are deter
mined by the particular molecule and experiment under 

study. Further theoretical and experimental investiga-

tions with an aim to characterize the influence of these 

parameters are required to give a better understanding 

of the viscosity dependence of fluorescence quantum 

yield in systems where the barrier height is low or ne
gligible. 

B. Time dependence of the excited state population 
decay 

In general the decay behavior of P e(t), for all cases 

studied, is rather strongly dependent on the viscosity 

range. For the pinhole sink case, the decay behavior 

is governed by the ratio t/1'/ and the decay is, in gen

eral, nonexponential. For the cases of coordinate de

pendent sinks, the decay is single exponential at low 

viscosities, but becomes nonexponential at large vis

cosities. 

Figure 3 shows InP e(t) vs time for several different 

viscosities in the pinhole sink case. At low viscosities 

(1'/ - 0.01 P), there is a rapid initial decay which is fol

lowed by a slower exponential decay at longer times. At 

intermediate viscosities (1'/ ~0.1 p), the decay curve has 

three regions; at very short time (t.:5 20 ps for this par

ticular calculation), the decay is rather slow which is 

then followed by a fast decay in the intermediate time 

region. The decay becomes exponential at long times. 

At large viscosities (1'/ ~1 P), the nonradiative decay is 

very slow though it still retains the three regions of 

different slopes. 

The form of the curves in Fig. 3 can be interpreted 

with the use of Fig. 4, where the distribution function 

p(x, t) is shown at three different times, for the case of 

the pinhole sink at the origin and 1'/ = O. 1 P. The area 

under each p(x, t) curve represents the total population 

remaining on the excited surface after time t and the 

position of the base line of each curve represents the 

average potential energy at that particular time. In the 

pinhole sink case there can be no population decay until 

the distribution has broadened sufficiently to reach the 

position of the sink (i. e., the origin). Thus, in the cal

culation shown in Fig. 4, at 5 ps the distribution has 

broadened conSiderably, but all the molecules are still 

present on the excited state surface, and there has been 

no decay. Once the distribution has traveled down the 

potential surface and broadened enough to reach the 

FIG. 4. Distribution function 

p (x ,t) at three different times 

for pinhole sink and for TJ = O. 1 

P. The * marks the initial ex

citation at Xo. 
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FIG. 5. The decay of excited state population for a Gaussian 

sink. Parameters are the same as in Fig. 2. Viscosities (in 

poise) are indicated on the graph. 

position of the sink, very rapid decay takes place and 

the distribution becomes asymmetric. The decay at 

this stage is rapid because the distribution is still cen

tered around a rather high position on the potential sur

face so the rate of fall is rapid and there are rapidly 

increasing numbers of molecules lying above the sink. 

At longer times, the distribution moves at a slower 

speed toward the origin and a steady state is reached. 

This gives rise to the long time exponential decay ob

served in Fig. 3. Figures 5 and 6 show the decay curve 

p.(t) for the Gaussian sink function for several different 

viscosities. The behavior for the Lorentzian sink is 

quite similar and is not plotted separately. For low 

viscosities, the decay becomes exponential after an ini

tial sharp decay (Fig. 5). As viscosity is progressively 

increased, the decay becomes nonexponential and at 

large viscosity (1) '" 1 P), the decay is nonexponential 

except at very long times when it becomes roughly expo
nential (Fig. 6). 

We interpret the above results in the following way: 

in the low viscosity regime, the initial delta function 

distribution broadens slowly and retains a sharply 

peaked Gaussian form for a rather long time (of the or

der of several hundred w-t ). During this time, the dis

tribution oscillates back and forth on the potential sur

face and it decays by a certain amount each time it 

passes through the origin where the sink function is 

peaked. The probability of decay is therefore propor

tional to the height of the distribution function and also 

to the amount of time it spends near the origin. At low 

viscosities, the latter factor is weakly time dependent 

and therefore the former factor dominates. This im

plies that the rate of change of p.(t) is proportional to 

p .(t), giving rise to an exponential decay. 

But as the viscosity is increased, the motion on the 
potential surface becomes damped within a short time 
(within a few w-t

) and the distribution p(x, t) also quickly 

becomes broad. The rate determining step in the decay 
of P .(t) is then the time of travel of the distribution 
from its initial position to the origin. Since different 

parts of the broad distribution travel at different speeds, 
they arrive near the origin at different times and this 

gives rise to a nonexponential decay. In other words, 

the rate of decay of p.(t) is never proportional to P .(t) 

except, perhaps, at very long times when the distribu

tion is localized near the origin and decays at a rate 

determined solely by the sink function and knr. 

C. Temperature dependence of the decay rate at 
constant viscosity 

For the pinhole sink, the temperature dependence of 

the decay rate at constant viscosity is straightforward. 

Decay can only occur from the minimum of the potential 

surface and the rate limiting step is thus the time taken 

to reach the minimum from the initial configuration. 

As the temperature is increased the kinetic energy of 

the particle is increased and thus the minimum is 

reached more rapidly. This is true at all viscosities 

and so the constant viSCOSity activation energy will be 

positive in all cases. 

For the position dependent sink, the situation is more 

subtle. In this case the particle oscillates in the poten

tial well for sometime before decaying. At low viscosi

ties this oscillation perSists for many passages through 

the potential minimum. (Of course there is some prob

ability of decay on each passage.) Now the overall de

cay rate is determined by the length of time the particle 

spends on the region of the surface where the decay 

probability is Significant. At higher temperatures, the 

amplitude of the oscillation will be larger and the par

ticle will have a lower probability of decay. Put in an

other language, in the low viscosity case, at higher 

temperatures the population of levels with longer life

times is increased and thus the average rate of decay is 

decreased. Thus, for small viscosities, the overall 

decay rate decreases with increasing temperature and 

the activation energy at constant viscosity will appear 
to be negative. 

At high viscosities, 1. e., when (Mil;) < w-t, the picture 

changes. In this case, the rate determining step is the 

time taken to reach the region of rapid decay. The par

ticle is so heavily damped that it will not oscillate as in 

the low viSCOSity range. Now as the temperature is in-

-0.4 

~ -0.6 
c:: 

-0.8 

-1.0 

Time (psec) 

FIG. 6. The decay of excited state population for Gaussian 

sink. Viscosities (in poise) are indicated on the graph. Other 

parameters are the same as in Fig. 2. 
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FIG. 7. The temperature dependence of the nonradiative rate 

showing the crossover from negative to positive activation en

ergy as viscosity is increased from very low values. a = O. 001, 

xo=O.l, w=3 X IOI2
, knr=lOI2, kr=O.O. Viscosities (in poise) 

are indicated on the graph. 

creased the kinetic energy of the particle is increased 

and the region of rapid decay is reached more rapidly. 

In the alternative language, increasing temperature 

broadens the distribution about the critical configuration 

and leads to progressively greater population of the 

rapidly decaying levels. Thus, in the large viscosity 

case, as in the pinhole sink case, the overall rate of de

cay increases with increasing temperature. Now the 

constant viscosity activation energy will be positive. 

The intuitive considerations presented above are con

firmed by the numerical calculations. Figure 7 shows 

Arrhenius plots for a Lorentzian sink at 10, 30, and 50 

cpo The crossover from negative to positive activation 

energy between 10 and 30 cp is clearly shown by the 

calculation. Similar results are found for the GaUSSian 

sink case and for a wide range of values of w and the 

sink half-width, although, of course, the precise vis

cosity at which the switch over occurs depends on these 

parameters. As noted in the Introduction, recent data 

of Gillbro and Sundstrom for ethyl violet at 5 and 10 cp 

indicate a small but definite (Eo = - 0.8 kcal/mol) decrease 

in rate with increasing temperature. Z~ It will be fas

cinating to see if the switch over to positive Eo can be 

observed in the TPM dyes. 

D. I nfluence of excitation wavelength 

The decay of the excited state population function 

P e(t) depends28 on the wavelength of excitation due to the 

obvious fact that light of different wavelengths will ex

cite the molecule to different positions on the excited 

state potential surface. In our model this fact enters 

through xo, the initial position of the solute particle. 

For long wavelength excitation, Xo will tend to be 

smaller than at short wavelengths. We have studied this 

dependence of Pe(t) on xo, and find that the decay at con

stant viscosity becomes slower when Xo is increased, as 

expected. The change in decay is, however, not uni-

form as Xo is increased, being smaller at large values 

of xo. 

IV. CONCLUSION 

Let us first summarize the main results of this paper. 

We have developed a new theory to explain the viscosity 

dependence of the relaxation behavior of TPM dyes in 

solution. Since the electronic relaxation in these dyes 

involves an inSignificant activation barrier, we have 

modeled the relaxation as the motion of a solute particle 

on a potential surface without any barrier. In our 

model, the decay of the excited state population arises 

from a position dependent sink in the potential surface. 

Although the idea of a sink as the source of the excited 

state population decay is not new, we believe that ours 

is the first theoretical study which treats the Brownian 

dynamics in a consistent way, We have shown that 

many of the features of the TPM dye relaxation are con

sistent with our model. We believe our model repre

sents an improved description of the photophysics of 

these molecules over that provided by the models of 

Forster and Hoffmann18 and of Cremers. 19 In particular, 

we mention the fractional viscosity dependence of the 

fluorescence quantum yield, the change in form of the 

excited state decay from single through double to mul

tiple exponential, and the apparent negative activation 

energy at constant viscosity. The model offers predic

tions of a crossover to positive activation energy at 

higher viscosity, of subtle effects resulting from 

changes in excitation wavelength, and of the detailed 

form of the time dependence of the population decay. 

Our model should be applicable to a wide range of sys

tems which show coordinate dependent relaxation pro

cesses, but lack an internal barrier to the reactive mo

tion. Since the well-known Kramers theory of chemical 

reactions is valid only for a high activation barrier, the 

present theory of reaction in the absence of any barrier 

may be regarded as complementary to Kramers' theory, 

In the present work, we have not attempted a quantita

tive interpretation of the TPM data, but rather concen

trated on interpreting the striking qualitative features 

of the photophysics of these interesting molecules. 

Quantitative calculation will require reliable values for 

the frequency w of the potential surface and for the width 

and shape of the sink function. In some particular cases, 

it may also be necessary to consider specific solvent 

effects4
,6 and the possible involvement of different ro

tameric species. 28 

The formalism presented in this paper is based on 

the Smoluchowski equation which may not be valid at 

very short times. However, our formalism can easily 

be extended to more general cases. One obvious gen

eralization is to consider the phase space Fokker

Planck equation. 8 For this case our equation of motion 

with the coordinate dependent sink takes the form 

ap ap F(x) ap 
-+v-+----
at ax 11 av 

= 1~ iv+ kBT ~)P-k S(x)P-krP, 
11 av V 11 av nr 

(4.1) 

where v is the velocity of the solute particle and F(x) is 
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the force equal to - w2x for a harmonic surface. This 

equation can in general be solved by expanding p(x, v, t) 

in the eigenfunctions of the operator 

.c=--v+::.IL:...-I:a(: kTa) 
v J1. av J1. av 

(4.2) 

which are again Hermite polynomials, but this time 

functions of velocity instead of coordinate. The rest of 

the calculation will be carried out numerically by the 

finite difference method. 8 

Another possible generalization is to consider a 

kinetic equation for the phase space distribution function 

p(x, v, t} of the form 

ap ap F(x} ap 
-+v-+----
at ax J.L av 

= -.ccp(x, v, t) - knrS(x}P - krP , (4.3) 

where .cc is a collision operator defined by the equation 

.ccp(x, v, t) = 1: dv' {K(v, v'}p(x, v, t} -K(v', v}p(x, v', tn. 

(4.4) 

Several simple forms are available in the literature for 

the kernel K(v, v'} to simulate the collisions of the solute 

particle with solvent molecules. One general form used 

by Skinner and Wolynes12 is 

I Y + 1 (/3J.L)1/2 
K(v, v ) =g 2";::; 2";" 

xexp{- ~:[('Y-1)V+('Y+1}V'F}, (4.5) 

where g is the average collision frequency defined by 

g= 1: dv feq(v) 1: dv ' K(v, v'} (4.6) 

with 

(
{3J1. )112 [{3J1. 2] 

feq(v} == 21T exp - TV 

and'Y is the solvent to solute mass ratio. The eigen

values and eigenfunctions of this operator .cc are given 

by Skinner and Wolynes who also pointed out that the 

FOkker-Planck operator (4.2) is a limiting form of .cc 
in the limit y- O. Equation (4.3) can thus be solved by 

expanding in the eigenfunctions of .ce • 

Thus, the formalism developed here can be general

ized to consider a broader class of problems. We hope 

to consider some of these generalizations in a future 

publication. 
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