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We develop in this series a theory of itinerant Peierls systems that mainly aims to study 

polyacetylene. In order to investigate roles of the long range Coulomb interaction in electronic 

structures and lattice distortions in a Peierls system, we develop a transfer matrix technique 
adapted to the. unrestricted Hartree·Fock (UHF) approximation. The method makes it pos

sible to calculate UHF states and equilibrium lattice geometries in a lattice with any aperiodic 

structure due to the presence of solitons. 

Applying the method, we obtain the UHF states in the case of regular lattice that may 

become the HF ground state. There are at least eight such UHF states which are distinguished 
by the long range orders in the spin and charge densities and the bond orders. The nearest 

neighbour exchange interaction is responsible to produce such plentiful UHF states. We 

calculate the bond alternation potential and the band gap in trans polyacetylene using paramet

rizations of the Hamiltonian and the elastic potential that are able to well reproduce spectra and 

equilibrium geometries of small conjugated hydrocarbons. The bond alternation potential is 

very sensitive to the strength of the nearest neighbour Coulomb interaction. The Coulomb 
potential with fast damping prevents the bond alternation. The band gap is much larger than 

the energy 2 eV of the lowest absorption band as long as the Coulomb interaction in poly

acetylene is similar to that in small conjugated hydrocarbons, suggesting the excitonic nature 

of the absorption band. We make also an illustrative calculation for an itinerant spin Peierls 

system with an antiferromagnetic spin order as well as a lattice dimerization. 

§ 1. Introduction 

41 

The soliton (bond alternation domain wall) model of polyacetylene devel

oped by Su, Schrieffer and Heeger
1

) (SSH) and by Rice
2

) has achieved a great 

success. It is able to explain the conductivity, l),2) optical properties,3),4) magnetic 

resonances
5

) and other properties of polyacetylene. It therefore seems to be a 

fundamentally correct model for polyacetylene. The model, however, utilizes 

the HUckel J[ electron Hamiltonian and no effect of the Coulomb interaction of J[ 

electrons is explicitly taken into consideration. It is well established that the 

HUckel Hamiltonian is a too crude approximation and explicit consideration of 

the electron Coulomb interaction is indispensable to obtain a good description of 

J[ electronic structures of conjugated molecules. In particular, the electron 

correlation in polyenes is by no means in a weak correlation regime. To explain 
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42 H. Fukutome and M. Sasai 

the existence of the lowest lying singlet Ag excited state in polyenes, it is 

necessary to take a lot of electron correlation effects into account. 6
) Models of 

polyacetylene in the strong correlation regime were proposed by Kond0 7
) and by 

Nakano and Fukuyama. 8
) Their models start with the Heisenberg Hamiltonian 

for 7[ electrons. However, the Coulomb interaction of 7[ electrons in conjugated 

hydrocarbons is not so strong enough to yield the Heisenberg Hamiltonian as a 

good effective Hamiltonian. The ratio (yo - 1'1) / lsi is in order of 1 ~ 3 in the 

effective 7[ electron Hamiltonian with reasonable parametrizations, where Yo and 

1'1 are the one center and nearest neighbour two center Coulomb repulsion 

integrals and S is the nearest neighbour resonance integral. Therefore, the 

electron correlation in polyacetylene seems to be in an intermediate regime as 

long as the Coulomb interaction in it has the strength similar to the one in smaller 

conjugated molecules. 

The long range Coulomb interaction may have important roles in poly

acetylene. It may have serious effects on the energy and interaction of charged 

solitons. Magnetic susceptibility experiments9
) have shown that the Pauli sus

ceptibility developes beyond a high doping concentration, indicating that highly 

doped polyacetylene becomes metallic. The continuum version of the SSH 

model proposed by Takayama, Lin-Liu and Maki lO
) predicts the stability of high 

density soliton lattice l
!) in contradiction to the experiments. The possibility of 

a soliton-metal transition due to the Coulomb interaction was pointed out by 

Horovitz. 12
) 

The purpose of this series is to develop a theory of polyacetylene that 

explicitly takes the long range Coulomb interaction of 7[ electrons into account 

and connects the weak and strong correlation regimes. For this purpose, we use 

the unrestricted Hartree-Fock (UHF) approximation for the 7[ electron Hamilto

nian. The UHF approximation gives the exact ground state energy in both the 

weak and strong correlation limits and connects the two limits. A difficulty of 

polyacetylene problems lies in the fact that polyacetylene with solitons has in 

general an aperiodic structure. To overcome this difficulty, we develop a trans

fer matrix technique adapted to the UHF approximation. The transfer matrix 

technique l3
) was very powerful to the studies of one dimensional random sys

tems. 14
) It was applied also to Huckel molecular orbital studies of conjugated 

chain polymers 15) and substituent effects on the bond alternation in polyace

tylene. 16
) By means of the UHF transfer matrix technique, it becomes possible to 

carry out computations for polyacetylene with arbitrary arrangements of 

solitons. 

We give, in this paper, a general formulation of the UHF transfer matrix 

method adapted to the long range Coulomb interaction and obtain the UHF 

ground state in undoped trans polyacetylene with a regular bond alternated 

lattice. We discuss also itinerant spin Peierls systems that are realizable in one 
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Theory of Electronic Structures and Lattice Distortions 43 

dimensional crystals composed of stacked array of ion radicals of conjugated 

molecules. In succeeding papers, we shall apply the method to the problems of 

solitons, soliton-soliton interactions and the instability of high density solitons. 

§ 2. UHF-transfer matrix method for a poly acetylene chain 

with the long range Coulomb interaction 

and variable bond lengths 

We develop here a method of calculating J[ electronic structures and equili

brium geometries of a polyacetylene chain with the long range Coulomb interac

tion and variable C-C bond lengths. We use the geometrical parameter Xn that 

is the deviation of the bond length rn between the n- and n + 1-th carbon atoms 

from the single bond length ro; Xn = ro- rn. We assume that all the C-C bond 

angles are fixed at 120°. Then, the geometries of the trans and cis isomers of a 

polyacetylene chain are specified by the Xn'S. We adopt, as the J[ electron 

Hamiltonian, the Pariser-Parr-Pople l
7) (PPP) type one with the nearest neighbour 

transfer and exchange interactions and the long range Coulomb force. 

The Coulomb integral O'n of the n-th J[ atomic orbital (AO), the resonance 

integral /3n between the n- and n + 1-th J[ AO's and the Coulomb repulsion 

integrals Ymn between the m- and n-th J[ AO's are functions of Xn'S 

an==_~rVmn , 
m 

Vmn = v( Ymn), 

Ymn = y( rmn), 
} (2'1) 

where - Vmn is the Coulomb potential between the n-th J[ AO and the moth (J core, 

rmn is the distance between the m- and n-th J[ centers that is a function of Xn, 

... Xm-l, m> n, and the primed sum denotes the summation over m"* n. 

We solve the Schrodinger equation of J[ electrons in the temperature UHF 

approximation. We consider a UHF state with the DODS (different orbitals for 

different spins) molecular orbital (MO) coefficients C~.a, where ± denote the up 

and down spins and the index a specifies an MO. We impose a restriction for the 

UHF state that for an MO a with complex MO coefficients C~.a there is always 

another MO - a with the complex conjugate MO coefficients C~.-a = C~.a *. This 

restriction means that all the elements of the HF density matrix including the 

bond orders are real. 

The J[ energy in the temperature UHF approximation is given by 

Err = L.;,{ O'n(jn + 2/3npn + Yo(jn + (jn - - Yn (( pn +)2 + (pn -)2)} 
n 

+ 21 L.;,' Ymn(jm(jn . 
m,n 

(2'2) 

Here, (jn± are the densities of up and down spin J[ electrons on the n-th J[ AO and 

pn ± are the bond orders between the 71- and n + 1-th J[ AO's 
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44 H Fukutome and M. Sasai 

+-- -.;;-1lc+ 121" + Qn - - .L.J ii,a) a - , 
a 

qn = qn + -+- qn - , 

pn t = ~ cif + l.a Cif,~ fa t , 
a 

pn = pn + -+- pn - , I (2'3) 

where fa T are the statistical weights of the {loth up and down spin MO's. The Yo 

and Yn = Yn+ln are the Coulomb repulsion integrals on the same 7[ center and 

between nearest neighbour 7[ centers, respectively. 

The energy of the (j skelton is the sum of the elastic energy and the Coulomb 

potential between (j cores 

E"=~ U(Xn)-+- V, 
n 

V = '~21 ~' Vm,n , 
m,n 

(2'4) 

where Vm,n is the Coulomb potential between the m- and n-th (j cores and U is 

the elastic potential of the C-C single bond whose explicit form will be given later. 

The free energy of the system with the Xn'S as the adiabatic parameters is 

F = EtDt - TS , EtDt = EJ[ -+- E" , I 
- TS=kT ~ ~{fas In fa

s
-+-(1- fa

S )ln(1- fa
S

)}, 
a S 

(2'5) 

where k is the Boltzman constant and s = ± represents spin. 

From the variation of the free energy with respect to Cif,~ and faT we obtain 

the UHF equation and the Fermi weights 

where EaT'S are the orbital energies and EF is the Fermi energy. Using Eq. (2'6), 

we obtain another expression of EJ[ 

(2'8) 

To solve Eq. (2'6), we use the transfer matrix technique. We define the 

transfer matrix Tn T by 

(2,9) 

where 
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Theory of Electronic Structures and Lattice Distortions 

An±=an+Yoqn±+~'Ynmqm=An+Lln, ) 

An = an + ~fLqn + ~,mYnmqm, LIn = Yo( qn + - qn - )/2, 

Bn±=/3n-YnPn± . 

45 

(2-10) 

In the following, we consider a polyacetylene chain with N (an even number) 

carbon atoms and solve Eq. (2-6) with the periodic boundary condition C,i:+.v,a 

= Cii',a to avoid the complexity due to the end effect. Then, according to Ref. 15), 

Eq. (2-6) can be written 

(2-]1) 

From Eq. (2-11) and the periodic boundary condition, we obtain 

(2-12) 

so that the secular equation to determine the orbital energies is given by 

c==ca±, 
} (2-]3) 

where det and Tr mean determinant and trace, respectively, and we have used the 

relation det(A-l)=l+det(A)-Tr(A) that holds for a two dimensional matrix 

A and the unimodularity of X±; det( X±) = 1. 

To calculate the electron densities and bond orders, we introduce the Green 

functions 

They satisfy 

G± =[Gii'm ] 
nm G~-lm' 

±_[I/Bn±] 
pn - 0 ' 

n>m. 

From Eq. (2-15) and the periodic boundary condition, we obtain 

that leads to 

Gii'n = Gii'+Nn = fn± Tn±GAn + fn±Pn±, 

fn± = T,f-l"- Tl ± TN±-" Tn+l , 

From Eqs. (2 -15) and (2 -17), we obtain also 

} 

(2-14) 

(2-15) 

(2-16) 

(2-17) 
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46 H. Fukutome and M. Sasai 

(2'18) 

By using the relation 

[
all, 

A= 
aZI, 

- alz]/det(A), 
all 

(2'19) 

Eqs. (2'17) and (2'18) become 

C~n = (In± )1l/Bn±{2-Tr(X±)}, 

C~+ln = {I - (In±)lz}/Bn±{2-Tr( X±)}, 
} (2'20) 

where we have used Tr(Jn±Tn±)=Tr(X±) and (Tn±Jn±)zz=(Jn±)lz. 

Calculating from Eq. (2'20) the residues of C~n and C~+ln at c=ca±, we 

obtain the following expressions for the electron densities and bond orders: 

Ic+ 12_Q ±( ±) R [C± C±*]-P ±( ±) ii,a ~ n E a, e n + l,a n ,a - n E a , 

(2'21) 

The qn ± and pn ± of Eq. (2' 21) satisfy the stationary conditions 

of/oqn±=O, (2'22) 

as we shall prove in the Appendix. 

Equations (2·13) and (2'21) are the SCF equations to determine ca±, qn± and 

pn ± and make it in principle possible to calculate them for a chain with any 

structure. However, Tr( X±) is a function of c very rapidly oscillating for large 

N and it is practically difficult to compute ca± from it except for the case of 

periodic structures. To overcome this difficulty, we utilize the following tech

nique. The Green functions (2'14) have poles at c=ca±. The Fermi weight 

fez) also has poles at z= ±kTJ[(21-l)i, 1=1,2···. It can be expanded as 

z =-- kT + --~-1 00 {II} 
f( ) 2 l~l z-kTJ[(21-1)i z+kTJ[(21-1)i· (2'23) 

We make the path integration of the functions C"/i,n(Z )f( z - c) on the rectangular 

contour shown in Fig. 1. The parameters E and r of the contour are chosen in 

such a way that 

E~2 maxl,Bnl, r=2JrkTlJ~4maxl,Bnl/N , (2'24) 

where lJ is an integer. The condition (2' 24) ensures that the contour contains all 

the poles of C"/i,n and r is larger than the average level spacing of the orbital 
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Theory of Electronic Structures and Lattice Distortions 47 

r 

E+ir 

E-ir 

E Fig. 1. The contour for the path integration of Eq. 

(2'25). The poles of the Green functions Gli,n are 

on the real axis and those of the Fermi distribu

tion function on the imaginary axis. 

energies. The latter condition makes C"fhn (E + ir) smooth functions of E. 

From the Cauchy theorem, we obtain 

qiiin( E) = ~ Ciii,a CiF,*af( Ea± - E) 
a 

= ;i 1: Im{ C*'n(E+ ir)}/(E-E)dE 

+~lr Re{ C*'n( - E+ ir)f( - E-E+ zT) 
J[ 0 

- C*'n(E+ zT)f(E-E+ ir)}dr 

v 

- ~ 2kT Re{ C*'n( E+ kTJ[(2l-l) i)}, r = 27rkTv . 
l~l 

The electron densities and the bond orders are given by 

qn ± = qffn ( E F), 

(2-25) 

(2-26) 

Equation (2 -25) gives also the integrated level density weighted by the Fermi 

distribution function 

(2- 27) 

where v±(E) are the level densities of up and down spin J[ electrons. Numerical 

integration of Eq. (2 -25) is feasible owing to the smoothness of C*'n (E + ir). 

By virtue of the Hellman-Feymann theorem for the temperature UHF ap

proximation, we have the condition for the equilibrium geometry as 

JF JE" oE" ---=--+--=0 
JXn JXn OXn ' 

(2-28) 

where O/OXn is the differentiation operating only on the parameters in E" but not 

on qn± and pn±. From Eqs. (2-28), (2-2) and (2'4), we obtain the equations to 

determine the equilibrium Xn'S 
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48 H. Fukutome and M. Sasai 

+" oai +~ ",(al'ij + a v,j) L.J qi L.J qiqj -----. 
i OXn 2 ij OXn OXn 

(2'29) 

By means of the above formalism, we can calculate iteratively the physical 

quantities and the equilibrium geometry in any possible lattice structure of 

polyacetylene. We note that this formalism can be applied with slight modifica

tions to anyone dimensional system composed of segments each of which has 

only one electron orbital that predominantly contributes to the electronic struc

ture governing lattice distortions of the system. 

§ 3. Case of periodic lattices 

When the lattice has a periodic structure, the formulas derived in § 2 can be 

brought into the forms explicitly taking the periodic structure into account. Let 

the MO coefficients and the transfer matrices satisfy the periodic condition 

N=LM, 8=2J[l/L, l=O,1,"'L-1, .1=1, "'M, 
} (3'1) 

where we specify the MO's by the pseudo-momentum 8 and the band index .1. 

Note that the unit cell length M of the UHF MO's and transfer matrices may be 

twice the lattice period when an odd number of electrons is contained in a lattice 

unit cell. Owing to the periodic condition (3'1), we obtain 

that leads to the secular equation 

The Green functions (2 '14) now become 

Equations (2'15) and (3'1) give 

~ e iIO Gihm(8)=( Ym±)IGihm+( Ym±)I-IKm+Pm±, 
o 

Gihm=( Ym±)LGihm+( Ym±)L-1Km±Pm±, 

Km±= TiiI-l'" Tl± 7M±'" TiiI+l, Ym±=Km± Tm±, 

} 

L-1~l~1, ) 

M>m>l. 

Using the relation ~t~Je'I(O-O')=Loo.o', we have from Eq. (3'5) 

(3'2) 

(3'3) 

(3'4) 

(3'5) 
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Theory of Electronic Structures and Lattice Distortions 49 

-~( ie _ Y; ±)-IK ± ± - L e m m pm . (3'6) 

We obtain from Eqs. (2'15) and (3'6) 

(3.7) 

Equations (3'6), (3'7) and (3'4) lead to 

Cthm= 1 ~(Km±)11/Bm±{2 cos (1-Tr( Y±)}, ) 

Cth+lm= 1 ~{eie_(Km±)12}/Bm±{2cos (1-Tr( Y±)}. 

(3'8) 

Calculating the residues of Eq. (3' 8) and replacing the summation over (1 by the 

integration, we get 

qm±= ~~1" Qm±(E).±({1»f(E).±({1)-EF)d{1, 
).~I 7[ 0 

pm±= ~~1" Pm±({1, E).±({1»f(E).±({1)-Edd{1, 
)'~I 7[ 0 

M 
(3'9) 

Qm±( E) = [Km±( E)]11/ {Bm± ~ [Ki±( E )]11/B,±}, 
1=1 

M 

Pm±({1, E)={cos {1- [Km±(E)]12}/{Bm±~ [Ki±(E)]l1/Bi±}. 
z=l 

The level density in the periodic lattice is given by 

(3'10) 

From Eq. (3'3), we have 

fe Tr( Y±)=~; ~ Tr( Y±)=-~{1± f;./Km±)l1/Bm±= -2 sin (1, 

(3'11) 

so that we get 

±()- 1 ..... "1(K±) IB±· {1 lJ J - --2 L.J m II m SIn 
7[ m 

(3'12) 

lJ±(E) is zero for the E'ssuchthat ITr( Y±)1>2. ByusingEq. (3·12),Eq. (3'9)can 

be rewritten 
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50 H. Fukutome and M. Sasai 

qm±= ~ lflm± f[Km±(c)]11[4~{Tr( Y±(C)W]-1/2/(C~CF)dc, I (3·13) pm±=~ lflm±f{ ~ Tr( Y±)~(Km±h2} 

x [4~{Tr( Y±W]-I/2/(c~EF)dE, 

where the integration is made in the range /Tr( Y±( c))/:S;: 2. The total energy per 

unit cell is obtained from Eqs. (:l'·8).,and (2'4) as 
" " \" ,.. '. 

Etot=~ ~lrr ~ EA S
( 8)/(E/( 8)~C·F)d8 

A If 0 S 

(3'14) 

§ 4. UHF states in regular trans polyacetylene 

We consider here undoped trans polyacetylene with a regular bond alternated 

lattice. Applying the formalism given in § 3, we derive the UHF SCF equations 

and obtain the UHF states that may become the HF ground state of the system. 

The results of this paragraph can be applied also to other regular one dimensional 

systems. The parameters of a unit cell have the properties 

Q'I = Q'2 = Q' , /31 *- /32 , ) 

112m-1 = 122m, 112m = 122m+I, ~'/I n =~' 12 n . 
n n 

( 4·1) 

Two electrons are present in a unit cell and the electron densities in it satisfy 

QI++Q2+=qI-+q2-=l. Hence, we can put 

QI= 1 +d, (4·2) 

Then, the parameters An± of Eq. (2'10) in a unit cell can be expressed as 

AI±=A~D±, A2±=A+D±, 

A=Q'+ ~o +~' lIn, D= ~o d, 

~ro=/o+2~'/I2m+I~2 ~ 112m. 
m m 

The transfer matrices and the matrices Km± are given by 

TI±=[(c~A+D±)/BI± , 

1, 

(4'3) 

-/l,~/R,']. ) 

(4 0 4) 
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Theory of Electronic Structures and Lattice Distortions 51 

The secular equation (3'3) becomes 

Tr( T2± Tl±)={(E-A)2_(D±)2_(Bl±)2_(B2±)2}/Bl± B2±=2 cos 8, (4'5) 

so that the orbital energies are obtained as 

E±S(8)=A±E/, E/=[(DS)2+(B1S)2+(B2S)2+2BlsB2s cos 8]1/2. (4'6) 

The subscripts + and - denote the conduction and valence bands of J[ electrons, 

respectively. Equation (4'6) shows that a UHF state has the band gaps 2[(D±)2 

+(Bl±-B2±)2]1/2. By substituting Eqs. (4'2) and (4'6) into Eq. (3'14) and 

putting EF=A, the total energy per unit cell is obtained as 

E tot =2a+ r
2

0 +~' rln+~.d2+ r.2 
D2+rl ~(P1S)2+r2 ~(P2S)2 

n ro 0 S S 

From Eqs. (3.9), (4'4) and (4'6), we have the SCF equations to determine.d, 

D, Pl± and P2± 

.d = I; ~ 1"(.d - sD)th(E/ /2kT)/E/ d8, ) 

D= 4
ro ~ 1"(D-s.d)th(Eo

s
/2kT)/E/d8, 

J[ S 0 

P1
S

= - 2~1"(Bls+ B2
S 

cos 8)th(Eo
S
/2kT)/E oSd8, 1 

P2 S 
= - 2~ 1"(B2S + B1 S cos 8)th(EoS /2kT)/E oSd8 . 

These equations can be rewritten as 

where 

.d= ~O{.d(K++K-)-D(K+-K-)}, 

D= ~o {D(K++ K-)-.d(K+- K--)}, 

P1±+ P2±= -(Bl±+ B2±)(K±-G±), 

Pl±-P2±= -(B1±-B2±)G±, 

) 

) 

K±=~l" th(Ee±/2kT)/Ee±dfJ, ) 
J[ 0 

G±=.l [" sin 2 2fJ th(Ee±/2kT)/Ee±d8. 
J[ .0 

(4'8) 

(4'9) 

(4-11) 

(4-12) 
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52 H. Fukutome and M. Sasai 

Equations (4 0 10) and (4 °11) yield solutions of the following types: 

A) L1 =to, D=O, PI±= pd2, P2±= P2/2 , 

B) D=tO, L1=0, PI±=PI/2, pz± = pz/2 , 

C) L1 =0, D=O, rn PI±=PI/2, P2± = Pz/2 , (4 0 13) 

(2) PI+=tPI- , pz + =t P2 - , 

D) L1 =to and/or D=tO, PI + =t PI- , P2 + =t P2 - . 

Solutions of the type A have an alternating modulation of the spin densities and 

those of the type B one of the charge densities. Solutions of the type C have 

neither modulation of the spin nor charge density. Equation (4°11) in this case 

is decoupled for the up and down spin bond orders. Its each spin component has 

the same form as the SCF equation of the spinless Fermion system obtained by 

Kondo. 7
) Consequently, any combination of up and down spin solutions is 

allowed as an SCF solution. We subdivide this class into the solutions with the 

same up and down spin bond orders, C1 type solutions, and those with different 

up and down spin ones, C2 type solutions. Solutions of the type D have modula

tions in both or either one of the spin and/or charge densities and different up and 

down spin bond orders. The up and down spin energy bands in solutions of the 

types A, Band C1 are identical: 

ce±=ce=[Z2+BI2+B22+2BIB2COS e)1/2, 

BI=/3I-YIPI/2, B2=/32-Y2Pz/2, 
} (4°14) 

where Z=L1, D and 0 for the cases A, Band C1, respectively. Consequently, Eq. 

(4 0 10) for the cases A and B reduces to 

A) 

B) 

K±=K=2/yo, } 

K±=K=2/ro . 
(4°15) 

The up and down spin energy bands in solutions of the other types are different 

except for equi-spaced lattices where the stronger symmetry of the lattice may 

make the bands identical. 

In order to get more concrete information about possible solutions, we 

consider an equi-spaced lattice. Then, /31=/32=/3, YI=Y2=Y and Eq. (4°11) 

becomes 

PI±-P2±=Y(Pl±-P2±)G± . 

Equation (4 °16b) yields solutions of the two types: 

a) 

b) 

PI±=P2±=p±, 

PI±=tP2±, G:i=l/y. 
} 

(4 0 16a) 

(4 0 16b) 

(4·17) 
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Theory of Electronic Structures and Lattice Distortions 53 

Solutions of the type a have uniform bond orders, whereas those of the type b 

have a spontaneous alternation of the bond orders even in the equi-spaced lattice. 

Combining Eqs. (4 ·13) and (4 ·17), we get a catalogue of possible UHF solutions 

of different types. We list up here the solutions with the identical up and down 

spin energy bands: 

A-a, 

A-b, 

DA-b, 

B-a, 

B-b, 

DB-b, 

Cl-a: Pl±=P2±=P/Z, 

Cl-b:Pl±=pI/Z, P2±=Pz/Z, 

CZ-b: Pl±= P2+, Pl± * P2± , 

Pl++Pl-=P2++P2-=P. 

(4·18) 

In Eq. (4·18), we subdivide the D-b combination into the subcases DA-b with L1 * 
0, D=O and DB-b with D*O, L1=0. Solutions of the types A-b, B-b and Cl-b 

have an alternating modulation of the bond orders with the same phase for the up 

and down spin components. They are called bond order wave (BOW) type. 

Solutions of the types DA-b, DB-b and CZ-b also have alternating modulations of 

the bond orders but the modulations of the up and down spin components are in 

the opposite phases so that they have uniform total bond orders. They are called 

spin bond order wave (SBOW) type. Thus, these nine solutions are distinguished 

by the different modes in the modulations of the spin densities (SD), charge 

densities (CD) and bond orders (BO ). We therefore give these solutions the 

names shown in Table 1. 

The C8 of the energy bands in these nine kinds of UHF solutions is 

B=/3-yP/Z, (4·19) 

where P=(PI + P2)/Z, p' is ° (no BOW class), (Pl- P2)/Z (BOW class) or Pl+- P2+ 

= -(pI--P2-) (SBOW class) and Z is L1 (SDW class), D (CDW class) or ° (no 

SD-CDW class). Equation (4·16a) has the common form 

Table 1. Possible UHF solutions at equi-spaced lattice. 

No BOW class BOW class SBOW class 

A-a A-b DA-b 

SDW class 

SDW SD-BOW SD-SBOW 

B-a B-b DB-b 

CDW class 

CDW CD-BOW CD-SBOW 

Cl-a Cl-b C2-b 

No SD-CDW class 

RHF BOW SBOW 
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54 H. Fukutome and M. Sasai 

p= --(2j3-YP)(K- G), (4'20) 

for all the UHF solutions and determines the average bond order p. The 

spontaneous bond order fluctuation p' and the correlation gap parameter LI or D 

are determined by the following combinations of Eqs. (4 '16b) and (4 '15): 

BOW, SBOW G=l/y, 

SDW K=2/yo, 

SD-BOW, SD-SBOW : K=2/yo, G= l/y, (4'21) 

CDW K=2/ro , 

CD-BOW, CD-SBOW: K=2/ro , G= l/y. 

We see from Eqs. (4 '19) ~ (4' 21) that if a solution of a BOW type exists, then 

there is always a solution of the corresponding SBOW type that is degenerate in 

energy. We note also that solutions of BOW types exist always in pair since the 

exchange of PI and P2 of a solution gives another solution that has an inequivalent 

bond order alternation but is degenerate in energy. We discriminate the two 

degenerate BOW type solutions by the subscripts 1 and 2. 

In the following, we shall discuss each UHF solution. RHF: Substituting 

(4'19) with Z=O and p'=O into Eq. (4'20), we obtain 

11" e ( e) p=----;; 0 cos
2 2- th IBlcos Z-/kT de. (4'22) 

At T=O, Eq. (4'22) gives p=2/J[ that is just the bond order of the conventional 

RHF solution. 

BOW and SBOW: These solutions in polyenes were obtained by Cizek and 

Paldus. 18) Kondo's solution7
) for the spinless Fermion system is just formally 

identical with each spin component of BOW and SBOW. They exist always 

below RHF as proved by the instability of RHF.7).18) The nearest neighbour 

exchange interaction is essential in producing these solutions. The Hubbard 

Hamiltonian cannot have them. Their stability or instability for spin density 

fluctuation can be seen as follows. Using Eqs. (4' 7) and (A, 2) of the Appendix, 

we obtain the second order variation of the free energy with respect to LI as 

aF I 2 21" aEe I --2 =--- ---Tth(Ee/2kT) de aLi .1~o Yo J[ 0 aLi .1~o 

=~_KBOW . 
Yo 

(4'23) 

Equation (4' 23) shows that if 

K BOW >2/yo , (4'24a) 

then BOW (and SBOW) IS unstable for spontaneous alternation of the spin 
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Theory of Electronic Structures and Lattice Distortions 55 

densities. By using Eqs. (4' 20) and (4' 21), the condition (4' 24a) can be trans· 

formed to the following condition for the average bond order of BOW: 

pBOW = -2;3( K - G)BOW / {l- y( K - G)BOW} > - ;3(2y- Yo)/Y( yo- y). (4'24b) 

SDW: The SDW solution in polyenes and polyacetylene was obtained by 

Misurkin and Ovchinnikov l9
) for the Hubbard Hamiltonian and by the author 20

) 

for the PPP Hamiltonian. Its extension to the bond alternated lattice was 

calculated by Tric. 21
) It exists always below RHF as proved by the instability of 

RHF. 20
) It is the HF ground state of the Hubbard Hamiltonian in equi-spaced 

lattices. In the PPP Hamiltonian, however, it may become unstable for sponta

neous alternation of the bond orders. The condition for the instability of SDW 

can be obtained by the same manner as the derivations of Eqs. (4'24a) and (4'24b) 

as 

(4'25) 

SD-BOW and SD-SBOW: They are UHF solutions of hitherto unknown 

types. From Eqs. (4'20) and (4'21), the average bond order in them is given by 

pSD-BOW = -;3(2y- Yo)/Y( Yo- y). (4'26) 

Since ;3<0, yo>y and O::;:p::;:l, we obtain from Eq. (4'26) the condition for the 

existence of SD-BOW and SD-SBOW as 

(4' 27) 

They are not solutions bifurcating from the instability of SDW. They may exist 

above SDW even if SDW is stable, but become lower in energy than SDW when 

SDW becomes unstable. 

CDW, CD-BOW and CD-SBOW: The SCF equations for the CDW class have 

the same forms as those of the SDW class except for the replacements of Yo by ro 

and L1 by D. In order for solutions of the CDW class to exist, ro must be positive, 

e.g. the inequality 

ro=4 ~ (YI2m-YI2m+d-yo>0, 
m201 

(4'28) 

must be satisfied. Of course, no solution of the CDW class exists in the Hubbard 

Hamiltonian. The CDW solution in tre PPP Hamiltonian was obtained by the 

author 20
) and Paldus and Cizek. IS

) CD-BOW and CD-SBOW are solutions of 

hitherto unknown types. By the same way as the derivation of Eq. (4' 27), we 

obtain the condition for their existence as 
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56 H. Fukutome and M. Sasai 

(4-29) 

A CDW type solution may become lower in energy than the corresponding SDW 

type solution if the condition 

(4-30) 

is satisfied. The condition (4 -28) is satisfied for the effective Coulomb interac

tion unscreened at long distances. The conditions (4 -29) and (4 -30), on the other 

hand, impose rather severe restrictions on the distance dependence of the effective 

Coulomb interaction though there may be the possibility of realizing them under 

special circumstances. 

The above results indicate that each of the solutions, BOW (SBOW), SDW, 

SD-BOW (SD-SBOW), CDW and CD-BOW (CD-SBOW) has the possibility of 

becoming the HF ground state in a uniform one dimensional system. The nature 

of the HF ground state may change according to the distance dependence of the 

effective electron Coulomb interaction. We show in Fig. 2 the domains of the 

BOW, SDW and SD-BOW ground states in the parameter space of ro/lel and 1'1 lei 
calculated by the instability conditions (4 -24) and (4 -25). We show also the 

existence domain (4-27) of SD-BOW. The region of the SD-BOW ground state 

is a very narrow zone between the domains of the BOW and SDW ground states. 

All the BOW type solutions are linearly unstable for a small alternating 

distortion Xl = X + u and X2 = X - u of the lattice. The /3m's and I'm'S with the 

distortion are /31 = /3 + /3' u, /32 = /3 - /3' U, 1'1 = I' + 1" u and 1'2 = I' - 1" u. Then by 

using Eq. (A-2) of the Appendix, the variation of the free energy for the lattice 

distortion is obtained from Eq. (4-7) as 

5.0 

0.0 

-~1"[( oBI OEo + oB2 OEo )th( Eo /2kT)] de 
J[ 0 au oBI au oB2 u~o 

BOW 

/ 

/ 

/ 

/ 

SDW 

5.0 10.0 

Fig. 2. The domains of the SDW, SD-BOW 

and BOW ground states of a one dimen· 

sional equi-spaced lattice system in the 

parameter space of lo/lEI and IIIEI. The 

domain of the SD· BOW ground state is the 

narrow zone with hatching. The ex

istence domain of SD· BOW is the region 

bounded by the dashed lines. The region 

with fllEl > lo/lEI is not realizable for the 

Coulomb interaction. 
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Theory of Electronic Structures and Lattice Distortions 

= Y'(PIZ_ pzZ)/2-(2/3' - Y' pd{(BI + Bz)K -2Bz G} 

+(2/3' - Y' pz){(BI + Bz)K -2BI G} 

= yG(pl - pz){2/3' - y'(pi - pz)/2}, 

S7 

(4'31) 

where we have used Eq. (4'11). Equation (4'31) shows that the free energy 

linearly decreases for the small lattice distortion to shorten the bond 1 and to 

lengthen the bond 2 for the BOW I type solution with PI> pz but it linearly 

increases for the BOW z type solution with PI and pz exchanged. The first order 

variations of the up and down spin components of the free energy of an SBOW 

class solution have non-zero values with the same magnitude but of the opposite 

signs, so that the total first order variation vanishes. Therefore, the degeneracy 

of the BOW I, BOW z and SBOW type solutions is lifted in bond alternated lattices 

and the BOW I type solution comes to have the lowest energy. The free energies 

of the RHF, SDW and CDW solutions without spontaneous alternation of the 

bond orders have no linear term in u. The above result indicates that an 

equilibrium geometry of a BOW class solution is always bond alternated. If a 

system has the BOW ground state at the bond alternated equilibrium geometry, 

the system is non-magnetic. A system with the SD-BOW ground state has an 

antiferromagnetic spin order as well as a lattice dimerization. 

§ 5. The bond alternation potential and the band gap 

in trans polyacetylene 

According to the theory developed in § 4, we calculate here the UHF states, 

their potentials and band gaps in regular trans polyacetylene. We make also an 

illustrative calculation for an itinerant spin Peierls system. 

The parametrization of the PPP Hamiltonian and the elastic potential in 

polyacetylene is made as follows. The resonance integral is put in the exponen

tial form 

(S'1) 

We assume that the effective Coulomb potentials of J[ electrons and CJ cores are 

the same 

Ymn = Vmn = Vmn . (S'2) 

We use for the Coulomb repulsion integrals Ymn = y( rmn) the Ohno or Mataga

Nishimoto (MN) formula ZZ
) 

Ohno: 

MN : 

y( r)= Yo/[l +( r/ao)zJI/z , 

y( r) = Yo/ [1 + r/ao]' 
} (S'3) 

We use the elastic potential U(x) of the single bond with the anharmonic terms 
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58 H. Fukutome and M. Sasai 

since C-C bonds in polyacetylene much deviate from the single bond length: 

U(x)= ;X2(1+ ~ ax+ ~ bX2). (5'4) 

The parameters in Eqs. (5'1) ~ (5' 4) are determined using ethane, ethylene 

and benzene with the C-C bond lengths 1.536, 1.337 and 1.397 A, respectively, as the 

reference molecules. We use as the single bond length ro the C-C bond length of 

ethane. The parameters (30 and 0 are determined so as to give the values of (3(x) 

for ethylene and benzene proposed by Pariser and Parr 17
) (PP) or by Schulten, 

Ohmine and Karplus 6
) (SOK), namely, (3 (ethylene)=-2.92eV, (3(benzene) 

=-2.3geV (PP) or (3(ethylene)=-2.62eV, (3(benzene)=-2.43eV (SOK). The 

SOK parametrization gives much slower distance dependence of (3(x ) than the PP 

parametrization. Since the distance dependence of (3(x) directly affects the bond 

alternation potential, we examine both the parametrizations. For the one center 

Coulomb repulsion integral ro, the standard semi-empirical value I-A is used 

where I is the valence state ionization potential and A is the electron affinity. 

The parameter ao is assumed to satisfy the constraint roao = e2
, where e is the 

electron charge, that gives the unscreened Coulomb potential at long distances. 

The Ohno formula gives much larger nearest neighbour Coulomb interaction than 

the MN one. Since the nearest neighbour Coulomb interaction is of crucial 

importance, we examine both the formulas. We use for the force constant x of 

the C-C single bond the value of n-alkanes determined by Shimanouchi. 23
) The 

parameters a and b of the anharmonic terms are determined so as to give the 

equilibrium geometries of ethylene and benzene. For the RHF ground state in 

equi-spaced lattices, Eq. (2'29) to determine the equilibrium geometry becomes 

dU(x) 

dx 
2 d(3(x) p_~ dr(x) p2 

dx 2 dx 
(5'5) 

The values of a and b are determined to satisfy Eq. (5'5) for x=0.199A, p=l 

(ethylene) and x =0.139A, p=2/3 (benzene). In the determination of a and b, the 

Ohno formula for r(x) is used. In the following calculations using the MN 

formula, no readjustment of a and b is made to make possible direct comparison 

of the J[ electronic energy with the one in the Ohno formula case. The para

meters thus determined are shown in Table II. Both the parameter sets given in 

Table II. Parametrizations of the Hamiltonian and elastic potential. 

/30 (eV) o (A -I) Yo (eV) ao (A) x (eV/A2) a (A -I) b (A -2) 

ppa ) -1.5027 3.3382 11.13 1.2935 27.8 12.95 3.738 

SOK a
) - 2.0419 1.2518 11.13 1.2935 27.8 -0.46 12.11 

Spin-Peierls -0.2 1.2518 6.0 8.35 2.70 35.7 357.2 

a) For trans polyacetylene. 
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Table II are able to well reproduce spectra and equilibrium geometries of small 

conjugated hydrocarbons with the RHF ground state. 

Calculations of the UHF states are made by solving iteratively Eqs. (4 0 10) 

and (4 0 11) under the constraints A, Band C1 of Eq. (4°13). Namely, the right

hand sides of Eqs. (4°10) and (4 °11) are calculated by feeding trial values of Ll (or 

D), PI and P2. Then, their next iteration values are obtained from the left-hand 

sides of Eq. (4 0 10) ;and (4 0 11). The iteration is stopped when the differences of 

qm± and pm between consecutive iterations become smaller than lO-6. 

In the PP-Ohno and SOK-Ohno parametrizations, the condition (4°27) for the 

existence of SD-BOW is satisfied, but the condition (4°25) for the instability of 

SDW is not. Hence, SD-BOW is higher in energy than SDW. In the PP-MN and 

SOK-MN parametrizations, both the conditions are not satisfied because of the 

faster damping of the MN Coulomb potential than the Ohno one. The condition 

( 4 ° 28) for the existence of CDW is satisfied for both the Ohno and MN formulas. 

The value of ro in the equi-spaced lattice with r=1.41A is 6.2492eV (Ohno) and 

l.014geV (MN). The conditions (4°29) for the existence of CD-BOW and (4°30) 

for the CDW type ground state are not satisfied in all the parametrizations. 

Therefore, the HF ground state in regular trans polyacetylene is either SDW or 

BOW. 

We show in Fig. 3 the free energy potentials at 300
0

K of SDW and BOW 

plotted against the distortion (Y! - Y2)/2 of the two bonds at an average bond 

length (rl+r2)/2=1.41A that is close to the equilibrium average bond length. 

Because of the large band gap as shown later, the entropic term and the tempera

ture dependence of the free energy are negligibly small at temperatures below 

300"K. Figures 3(a) and (b) show that the Ohno formula gives the HF ground 

state consisting of SDW and BOW and a bond alternated equilibrium lattice 

geometry in the region of the BOW ground state. Figure 3(a) shows the linear 

distortion dependence of the BOW potential near the equi-spaced lattice and the 

splitting of BOW I and BOW 2 upon lattice distortion. On the other hand, Figs. 

3(c) and (d) show that the HF ground state in the case of the MN formula is SDW 

in all (SOK case) or almost all (PP case) lattice distortions. The equilibrium 

geometry of the HF ground state is equi-spaced and no bond alternation occurs. 

This large contrast of the Ohno and MN cases indicates that the bond alternation 

potential is very sensitive to the strength of the nearest neighbour Coulomb 

interaction. The value of ()'o -)' )/IP'I, that determines the extent of electron 

correlation, is abOl:.t 1 for the Ohno case but about 3 for the MN case. The 

electron correlation in the MN case is stronger than the Ohno case bringing about 

a large stabilization of SDW. The MN parametrization was shown to make 

even the HF ground states of short polyenes to be SDW. 6
) This and no occur

rence of the bond alternation definitely indicate the inappropriateness of th(; MN 

parametrization in polyenes and polyacetylene. We do not know how the non-
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0.00 0.05(r;-r,)/2 (A) 0.10 000 0.05 0.10 

00 0.02 (r, - r, )/2 (A) 
-7.9 -8.8 

RHF 

-8.2 
SD"", 

-8.9 
sow 

-8.3 

-8.4 

(eV) 

0.00 

-7.2 

-7.3 

-7.4 

-7.5 

(eV) 

-9.0 
BOW, 

BOW, 

( b ) 

( a ) 

(eV) 

0.05 0.10 0.00 0.05 0.10 

V, - r,)/2 (Al V, - r,)/2 (A) 

BOW, 
-7.9 BOW, 

-8.0 

-8.1 

( c ) SOW 
( d ) 

SOW 

-8.2 

(eV) 

Fig. 3. The bond alternation potentials of the BOW and SDW states in regular trans 

polyacetylene with the average bond length 1.41A. Ca) for the PP-Ohno, (b) for 

the SOK-Ohno, (c) for the PP-MN and Cd) for the SOK-MN parametrizations. 

The inset of Ca) shows in an enlarged scale the BOW, and BOW2 potentials near 

the equi-spaced lattice and the energies of RHF and CDW at the equi-spaced 

lattice. 

empirical effective J[ electron Coulomb interaction derived from the all valence 

electron Hamiltonian looks like in polyacetylene. However, a calculation 

of the effective J[ electron Hamiltonian of ethylene by Iwata and Freed24
) 

showed that the suppression of the effective Coulomb repulsion integrals is larger 

in the one center part than the two center one, suggesting that the distance 

dependence of the Ohno formula, which gives the nearest neighbour Coulomb 

repulsion not so much different from the non-empirical value, may be a good 

approximation at least in a short distance. The longer range part of the effective 

Coulomb interaction may suffer a large suppression due to the dielectric screening 

by (J electrons. However, the screening of the long range part does not affect 

SDW and BOW though it affects CDW. 

The bond alternation potential in the case of the Ohno formula is much 

shallower in the SOK parametrization with the /3(x) of slower distance depen-
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dence than the PP parametrization with the steeper (3(x). Electron correlation 

also has an important effect for the bond alternation potential. The correlation 

stabilization of SDW makes the barrier of the bond alternation potential at the 

equi-spaced lattice lower. The occurrence of the SDW ground state near equi

spaced lattices indicates that the state of J[ electrons around a neutral soliton is 

SDW like since the lattice dimerizations in the vicinity of a soliton are small. 

The presence of an unpaired electron in a neutral soliton is nicely described by the 

SDW like electronic structure near the soliton as schematically illustrated in Fig. 

4(a). The correlation stabilization of the SDW like electronic structure brings 

about a lowering of the formation energy of a neutral soliton. The barrier height 

of the bond alternation potential gives an approximate estimation of the soliton 

formation energy. The barrier height is about 0.25 and 0.05 eV for the PP and 

SOK parametrizations, respectively. The observed density of neutral solitons in 

undoped trans polyacetylene is about 850 ppm.
g

) The density of thermally 

formed solitons is below this observed figure for the value 0.25 e V of the soliton 

formation energy but the value 0.05 e V is too small and yields a much larger 

population of thermally formed solitons. Thus, the PP-Ohno parametrization is 

consistent with the observed neutral soliton density but the SOK-Ohno one is not. 

We show in Fig. 5 the contour map of the bond alternation potential in the 

PP-Ohno parametrization that is plotted against (rl - r2)/2 and (rl + r2)/2. The 

equilibrium geometry has the bond distortion (rl - r2)/2=0.073A and the average 

bond length (rl + r2)/2= 1.413A that are in good agreement with the values 0.07 

±0.02A and 1.42A, respectively (assuming 120
0 

bond angles) observed by X ray 

scattering.25) The bond orders of the BOW ground state at the equilibrium 

geometry are shown in Table III. They show that the bond dimerization in the 

equilibrium BOW state is nearly complete. 

In order to see the energetic relations of the UHF states, we show in Fig. 6 

the potentials of RHF, CDW, BOW and SDW in the equi-spaced lattice plotted 

against the bond length r in the case of the PP-Ohno parametrization. In the 

parametrization, SD-BOW exists above SDW. However, we failed to calculate 

it because the iteration procedure starting with all trial values tested converged 

( a 

UDSP1NSOLI10N DOW:~ ~P! N SOL nON 

b ) 

f\J\AJW\JVVVvJ\Jv\f 
--+-- .~ ---+ -------------.+ --+---+----+------+---+---+ --+----+---I--___+_____ 

'-------- -~ '-----~~ '-------~~ 
CDW BOW CDW 

~OL nOli 

Fig. 4. Schematic illustrations of the SDW like J[ 

electronic structure around a neutral soliton (a) 

and the CDW like J[ electronic structure around a 

charged soliton (b) in trans polyacetylene. The 

real and dashed lines in (a) represent the den· 

sities of up and down spin J[ electrons, respec· 

tively. The J[ electronic structure at the lattice 

in between two solitons is BOW like. The 

centers of solitons are marked by black dots. 

These electronic structures are suggested ones. 
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" ~ 
'[ 

S 
1.43 

1.41 

0.05 

Fig. 5. The contour map of the bond alternation 

potential of the HF ground state in regular 

trans polyacetylene. The parametrization 

is the PP·Ohno. The boundary between the 

BOW and SDW ground states is indicated by 

a dashed line. The equilibrium geometry is 

indicated by a cross. 

(eV) 

Fig. 6. The potentials of the RHF. CDW. BOW 

and SDW states in equi·spaced trans poly· 

acetylene. The parametrization is the pp. 

Ohno. 

Table III. Physical quantities of UHF states in trans polyacetylene. 

E total Band gap 

I 

L1 or D 

(eV) (eV) 
PI P2 

(eV) 
ql-q2 q+ -q~ 

RHF -7.9424 0 0.63662(2/Jr ) 0 0 0 

Equi-Spaced 
CDW -7.9462 0.6780 0.63486 0.3390 0.1085 0 

(r=1.41A) 

BOW -8.0847 4.2348 0.3307510.89360 0 0 0 

SDW -8.1988 5.5706 0.57434 2.7853 0 0.5005 

Bond-Alternated") BOW - 8.4491 8.2474 0.1913210.96373 0 0 0 

a) At the equilibrium geometry with (rl+r2)/2=1.413A and (n-r2)/2=0.073A. 

to SDW. This is considered to be due to that the condition PI * P2 for SD-BOW 

does not definitely eliminate the case PI = P2 of SDW in the numerical calculation 

procedure and the iteration slips down to SDW when SD-BOW is higher in energy 

than SDW. We show in Table III the extent of the charge or spin density 

alternation, the bond orders and other physical quantities of the UHF states at r 

= 1.41 A. The charge alternat!on in CDW is so small that its correlation stabili

zation relative to RHF is small. BOW has a large spontaneous bond order 

alternation that leads to a large stabilization due to the exchange interaction. 

SDW has a large spin density alternation that gives the largest correlation 

stabilization of SDW. 

We show in Fig. 7 the band gaps of BOW and SDW and the correlation gap 

parameter L1 of SDW plotted against (rl - r2)/2 at (rl + r2)/2= 1.41 A. The band 
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63 

0.00.00 

(r, -rz);2 (A) ~, (r,-rz)/2 (A) 
o.o.+-:-c-~--~-~- __ ~_-_-

0.00 0.05 0.10 0.05 0.10 

Fig. 7. The lattice distortion dependences of the band gaps of the BOW and SDW 

states in regular trans polyacetylene with the average bond length 1.41A. The 

correlation gap parameter L1 of SDW is also shown by dashed line. (a) for the PP

Ohno, (b) for the SOK-Ohno, (c) for the PP-MN and (d) for the SOK-MN 

parametrizations. 

gap of BOW increases roughly linearly with (rl- r2)/2, while that of SDW IS 

nearly constant. The band gaps in all the parametrizations are much larger than 

the energy 2 eV of the lowest strong absorption band in undoped trans poly

acetylene. Suzuki et a1 3
) assigned the 2 eV band as due to the interband transi

tion based on the SSH model. The SSH model is consistent with the behaviour of 

the band for doping and photo-conductivity experiments 26
) as they showed. 

However, our result shows that the band should be excitonic as long as the one 

center and nearest ne!ghbour Coulomb repulsion integrals in polyacetylene have 

values similar to those in small conjugated hydrocarbons. The nearest neigh

bour exchange interaction is the cause to produce the large band gap. All the 

non-empirical and semi-empirical band calculations for polyacetylene made so 

far gave values of the band gap much larger than 2 e V 27
) in agreement with our 

result. 

The Franck-Condon band gap at the equilibrium geometry of the PP-Ohno 

case (Fig. 7(a)), that gives the most reasonable bond alternation potential, is 
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about 8 eV. This band gap is just at the position of the edge of the absorption 

band in the vacuum ultraviolet region observed by an SOR experiment.28) The 

band, of course, should contain 15- 15* transitions since its edge position is the 

same as the absorptions of polyethylene and long chain n-alkanes. Our result 

shows a possibility that it contains also the interband 7[ - 7[* transition. 

If the 2 e V band is excitonic as suggested by our and other calculations, we 

have to explain how the photoconductivity can emerge from the excitation to the 

band. A possible mechanism is suggested by the distortion dependence of the 

band gap. As seen in Fig. 7(a), the band gap decreases toward the equi-spaced 

lattice. The gap of the exciton band is considered to have a similar lattice 

distortion dependence. The lattice around the bound electron-hole pair is ex

pected to make a distortion toward equi-spacing. The lattice distortion might 

finally lead to splitting of an exciton into a zwitter ionic pair of charged solitons. 

We note that the state of 7[ electrons around a charged soliton may be CDW like 

as schematically illustrated in Fig. 4(b). Though the correlation stabilization of 

the neutral CDW is small, the CDW like electronic structure around a charged 

soliton may have a large charge density alternation, that brings about a large 

correlation stabilization, owing to the absence or excess of an electron. If this 

picture of charged solitons is correct, the Coulomb interaction between charged 

solitons may be strongly screened by the CDW like polarization of 7[ electrons 

around them and the zwitter ionic pair of charged solitons might relatively easily 

split into free solitons. We shall examine this idea in a succeeding paper of this 

series. 

We finally show an example of itinerant spin Peierls system to have the SD

BOW ground state. We make a parametrization of the Hamiltonian and the 

elastic potential that mimics an array of ion radicals of conjugated molecule like 

TTF or TCNQ which forms a van der Waals stacked column. A possible 

parametrization is given in Table II. The parameters of the elastic potential are 

obtained by expanding the van der Waals potential A/r12 
- B/r6 with the binding 

energy 0.433 e V and the equilibrium van der Waals distance ro = 3.4 A. The 

value of /30 is estimated from the overlap of 7t lobes at ro=3.4A. The values of 

/'0 = I - A for ion radicals of conjugated molecules are unknown but values in the 

order of 7~4eV are considered to be reasonable. To obtain the SD-BOW 

ground state, it is necessary to make the nearest neighbour Coulomb interaction 

/' be in a narrow range near 90% of /'0. A large value of ao is chosen to make 

/' be in the range. The bond alternation potentials of SD-BOW and BOW in the 

system are shown in Fig. 8. The SD-BOW potential has a linear distortion 

dependence in the vicinity of the equi-spaced lattice and the splitting of SD-BOW 1 

and SD-BOW2 is seen as expected. We show in Table IV the physical quantities 

of the SD-BOW, SDW and BOW states in the system. The spontaneous bond 

order alternation of SD-BOW at the equi-spaced lattice is smaller than that of 
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0.00 0.05 0.10 

-3.22 

(eV) 

(r,- r,)12 (A) 

SO-BOW2 
50-BOWl 

Fig. 8. The bond alternation potentials of the SD

BOW and BOW states in an itinerant spin 

Peierls system. Both the potentials of SD

BOW, and SD-BOW, and those of BOW, and 

BOW, are shown near the equi-spaced lattice. 

The energy of SDW is also indicated at the 

equi-spaced lattice. The parametrization of 

the system is given in Table II. 

Table IV. Physical quantities of UHF states in an itinerant spin Peierls system. 

E total Band gap 
L1 (eV) 

(eV) (eV) 
P, p, q+-q-

BOW -3.1910 5.0808 0.06362 0.99596 0 0 
Equi-Spaced 

SDW -3.2032 4.9710 0.38742 2.4855 0.8285 
(y=3.4A) 

SD-BOW -3.2044 5.0780 0.19279 0.63747 2.2182 0.7394 

Bond-Alternateda
) BOW -3.2ll5 5.2818 0.05840 0.99659 0 0 

SD-BOW -3.2144 5.2340 0.09382 0.85494 l.5154 0.5051 

a) At the equilibrium geometries with (Yl -I Y2)/2=3.4A and (Yl- Y2)/2=0.055A (BOW) or =0.050A 

(SD-BOW). 

BOW. Its spin density alternation also is smaller than that of SDW. This is due 

to the coexistence of the two kinds of long range orders in SD-BOW. The 

narrowness of the domain of the SD-BOW ground state is due to the exclusive 

nature of the two long range orders. 
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Appendix 

We prove here that the qn±'s and pn±'S given by Eq. (2·21) satisfy the 

stationary condition (2·22). To do this, we calculate the derivative of the free 

energy by an arbitrary quantity R. From Eqs. (2·5) and (2·7), we have 

a~ [~~(EaS~EF)/aS~ TS]=~ ~ a;'R
s 

las. (A·1) 
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We obtain from Eqs. (A'I) and (2'8) 

~~ = a~ {F-CF(~ ~ las - N)} 

- 21 ~')'mnqmqn + E cr
]. 

m,n 

Taking the derivative of the secular equation (2'13), we have 

a~ Tr[X±( ca±)] = ~{ a~ ( Tn±)ll' (In±)ll + a~ ( Tn± hz' (In±h l } 

=,,[~( ±-A ±)(In±)ll _ aBn {ca±-An±(J ±) 
~ aR ca n Bn± aR (Bn±)Z n II 

We have also the relation 

Tr(X±) =Tr(Jn± Tn±) 

From Eqs. (A'3) and (A'4), we get 

~{a~ (ca±- An±)(Jn±)ll- a~;( (l-(Jn±hz)}/Bn±=O, 

where we have used 

(In±)IZ= - BB;± (Zn±)ll, (Jif+dzi =(Zn±)ll, 1 
n+1 

In±=Zn±Tn±+I, Jif+l= Tn±Zn±, 

Zn±= Tif-I'" TI± TN±'" Tif+z. 

When qn±'s and pn±'S satisfy Eq. (2'21), Eq. (A'5) gives the relation 

~ a;'R± la±=~( a:;{ qn±+ a~R± pn±). 

(A '2) 

(A '3) 

(A '4) 

(A '5) 

(A '6) 

(A'7) 

For R=qn± and Pn±, Eqs. (A'2) and (A'7) lead to Eq. (2'22). We note also that 

Eq. (2'29) can be obtained from Eqs. (A'2) and (A'7) for R=xn. 
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