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Theory of electronic transport in molecular crystals. III. Diffusion coefficient 
incorporating non local linear electron-phonon coupling 
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Electronic transport in molecular crystals is studied for simultaneous local and nonlocallinear 
electron-phonon coupling using a generalized polaron Hamiltonian derived previously. Nonlocal 
coupling increases the scattering, giving lower band contributions and higher hopping 
contributions. It also gives a phonon-assisted term which dominates at high temperature, leading 
eventually to a constant diffusion coefficient whose magnitude depends on the ratio of the 
nonlocal to local coupling and is independent of transfer integral. Incorporating nonlocal 
coupling thus mainly increases the magnitude of the diftTusion coefficient and decreases its 
temperature dependence. 

I. INTRODUCTION 

This series of papers seeks to develop a theory of elec­
tronic transport in molecular crystals valid for arbitrary 
electronic and phonon bandwidths and for arbitrary linear 

electron-phonon coupling strength. In Paper I, 1(.) the case of 
local (in site) coupling was treated and general results given. 
In Paper II, I(b) the problem of non local coupling was tackled; 
this turns out to be more difficult in general than the local 
case, which is perhaps the reason that it has not been exten­
sively treated before. In the general case, nonlocal effects 
surely playa role, but these have been largely neglected. In 
Paper II, I(b) a nonlocal polaron transformation of the model 
Hamiltonian was given and its effects on band shapes stud­
ied. In the present paper, we study transport in this model. 
Recently, the field of exciton transport and exciton-phonon 
coupling has been extensively reviewed by Kenkre and Rein­
eker. 2 

Given that the transformation leaves only a weak resid­
ual interaction, the method for deriving the diffusion coeffi­
cient D has been established. 1.3-5 To a good approximation, 

D = a2«u/1 r kk + Ykk» , (1.1) 

where a is the nearest-neighbor distance and kl a is the wave 
vector; the double angle brackets denote a thermal average 
over polaron states of energy Ek , and Uk is V k E k . The quan­
tities r kk and Ykk' referred to as scattering and hopping 
rates, are given by 

rk'k' = I,'Wkk;k'k' , 
k 

Yk'k' =! V~ I, Re 
k 

(1.2) 

X(! Wkk;k'+q,k'+q - Wk,k+q;k',k'+q)lq=o, 

(1.3) 

where the primed sum excludes k = k'. Finally, the quanti­
ties Ware given by 

"I Visiting Fellow. Permanent address: Department of Chemistry, UMIST, 
Manchester, M60 100, U. K. 

Wk,k+q;k',k'+q = 100 

dtl(Vk'+q,k+qVkk,(t) 

Xexp[i(Ek'+q -Ek+q)t] 

+ (Vk'+q,k+q(t)Vkk') exp[ - i(Ek -Ek,)t]}. (1.4) 

Here Vkk , (t) is a coefficient in the residual interaction ex­
pressed in the Heisenberg representation with respect to the 
zeroth-order phonon Hamiltonian, and the single angle 
brackets denote an average over phonon states, 

Thus the evaluation of D is automatic, at least in princi­
ple. In practice, each stage presents difficulties. As in Papers 
I and II, we treat these difficulties by making approxima­
tions which allow results to be obtained in algebraic form. In 
this way the behavior of the model is obtained in broad out­
line and can readily be explored analytically and numerical­
ly. 

In Sec. II we present the Hamiltonian with some modi­
fications helpful in treating transport. In Appendix A we 
evaluate the correlation functions ( VV (t ) and in Appendix 
B we use these to obtain the scattering and hopping rates. 
These results are combined in Sec. III where an expression 
for the diffusion coefficient is derived and its behavior is 
studied. Finally, Sec. IV consists of a discussion, with parti­
cular reference to the new features which arise when nonlo­
cal coupling is incorporated in electronic theory. 

II. HAMILTONIAN 

The transformed Hamiltonian isl(b) 

H=Hex +Hph + V, (2.1) 

where Hex is the excitation or polaron Hamiltonian, Hph is 
the phonon Hamiltonian, and V is the residual interaction. 
Here 

(2.2) 

(2.3) 
q 

where q k+ and a k are polaron creation and annihilation oper-
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ators, E is the bare excitation energy, jk is the renormalized 
transfer integral, and A ~ is a parameter of the generalized 
polaron transformation; the last term in E k corresponds to 
the polaron binding energy, with Wq a phonon frequency. 
The renormalized transfer integral is related to its bare ana­
log J k in the untransformed Hamiltonian by 

where 

()kk' = [exp - S]kk' , 

() i/k, = [exp Sh'k , 

Skk' =N-I/2Ak_-k~'(b;:'_k -bk_ k,). 

The phonon Hamiltonian retains the usual form 

q 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

with b q+ and b q the phonon creation and annihilation opera­
tors. 

The transformation parameters are chosen to be related 
to the nonlocal electron-phonon coupling parametersf~ in 
the untransformed Hamiltonian byl(b) 

(2.9) 

The interaction then takes the form l:kk' Vkk,a: ak" where 

Vkk , = I! JK TKk;Kk' _N I
/2 IWQf~K 

k Q 

X [2N -1/2A = f, TK+ Q,k;K,k'Q - TK+ Q,k;Kk' tPQ] 1 , 
(2.10) 

with tPo = bQ + b ~ Q the phonon displacement operator. 
The operators T are defined as 

Tkk';qq' = ()kt'()qq' - «()kt'()qq') ' (2.11) 

their exponential form helping to ensure that matrix ele­
ments of V 2 are never large, whatever the strength of the 
electron-phonon coupling. In Eq. (2.10) the second and 
third terms are Hermitian only when taken together, where­
as for use in this paper it proves convenient to rewrite Vkk ; so 
that its terms are individually Hermitian: 

Vkk , = I {JK T"k;Kk' _N- 1
/

2 IWQf~K 
k Q 

X [ N - I12(A = fT K + Q,k;K,k' _ Q + A ~\ T K+ Q,k + Q;Kk' ) 

- !(TK+Q,k;Kk' tPQ + tPQ TK+Q,k;Kk']) ' 
(2.12) 

This form corresponds to one used previously in which non­
local coupling changes the transfer integral through the dis­
placements in the polaron state,6 

Evaluation of the thermal averages in jk and A ~ 
yields I(b), 7-9 

jk = I «()k)2[exp EO]kk' Jk, , (2.13) 
k' 

A~ = I «()k>«()k_q)[expEq]kk,/k" (2.14) 
k' 

where 

(2.15) 

(2.16) 

and nq is the thermal equilibrium number of phonons in 
mode q of frequency W q : 

nq = n(wq) = (e PCUq 
- 1)-1, (2.17) 

with,B = lIkB T. In order to solve the implicit Eq. (2.14) for 
the transformation parameters, approximations are made. 

At least for optic modes it is plausible to take (see Paper 
II) 

(2.18) 

where g is the local coupling parameter and the ¢Jk which 
describe the nonlocal coupling are odd in k. The real part of 
A ~ is then just g, and its imaginary part as assumed to be 
proportional to that of/k: 

A~ = g-i1](¢Jk - ¢Jk-q)' (2.19) 

The imaginary part ofEq. (2.14) is thereby evaluated, and the 
scaling parameter 1] can be obtained independent of wave 
vector as assumed, after some simplifications which include 
replacing the exponent in Eq. (2.15) by its average over k. 
Such simplifications are not necessary in evaluating j k from 
Eq. (2.13), but for the more difficult analysis in the present 
paper, it proves convenient to make them nonetheless. This 
will normally have only a minor effect on the band, which is, 
in any case, given a simple model form. 

We take Jk and ¢Jk in the nearest-neighbor forms, 

J k = Jcos k, 

¢Jk = ¢J sin k . 

(2.20) 

(2.21) 

Numerical solutionsl(b) show that 1] never rises above unity 
but falls significantly with increasing ¢J, g, and T, though the 
product 1]¢J always increases as ¢J increases for fixed g and T. 
The algebraic and numerical behavior of 1] shows that an 
adequate representation well suited for present purposes is 

(2.22) 

which is exact as ¢J-o and also for g = 0 and 
(2n + 1) ¢J 2--+ 00 • With previous assumptions, the energies 
become 

Ek = E' + J cos k - C sin2 k, 

where 

E' = E - w( i + ~ 1]2¢J 2) , 

j = 1]J, 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

while W is the mean phonon frequency and n = n(w). The last 
term in Ek distorts the band and complicates its density of 
states function (see Sec. IV); if C is large enough compared 
with j, the band may acquire an additional extremum 
between the center and the boundary of the Brillouin zone, 
so becoming wider than U. Since the scaling parameter 1] 

now renormalizes J and is independent of wave vector, the 
average «() + () > has the same structure as for local coupling, 
corresponding to 
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«() k1· ()qq') = [7]Okk' + N -1(1 - 7]) ]Ok + q,k' +q' • 

(2,27) 

This correctly yields Eq, (2.25) and (2.19) from Eqs. (2.4) and 
(2.9), respectively. 

III. DIFFUSION COEFFICIENT 

A. Thermal averaging 

Using the results of Appendix A and B, we may evalu­
ate the thermal average over the states in Eq. (1.1). For a 
function F (E) we use 

«F(E)) =Q-I f:", dEe- f3EN(E)F(E) , (3.1) 

(3.2) 

where N (E) is the density of states (see Appendix B). The 
scattering rate rkk is given as a function of energy in Eq. 
(BI4), but for vU r kk and part ofYkk we need the velocity as 
a function of E. 

The velocity is biggest in regions where the density of 
states N (E) is largest, and hence should contain two Gaus­
sians like those in N(E). From Eq. (2.23) the mean-square 
velocity is ~(J 2 + C 2). Then a suitable approximate form 
which gives this result is 

V(E)2N(E) = [J 2G(E; 2- I /2B) 

+ C 2G(E + ~ C; 2- 1/2C)]/21T 1/2, 

(3.3) 

where G (x;b ) is defined in Eq. (B2). Combining v with N (E ) in 
this way gives the product required for the averaging in a 
much neater form than writing a separate expression for 
V(E)2 yielding complications from cross terms between dif­
ferent Gaussians. 

In performing the thermal averaging and simplifying 
the results, products and ratios of Gaussians occur. Some 
can be treated exactly, but not all. Examination of the pro­
ducts and ratios shows, however, that unless Band Care 
very close in size, one Gaussian of each pair is dominant. We 
therefore approximate each combination of Gaussians as the 
sum of the dominant contributions for B large and for C 
large. This should provide an adequate interpolation 
through the region where Band C are comparable in size. 

The partition function Q is found to be 

Q = [B exp(p2B2/4) + C exp(pC /2) 

(3.4) 

The band contribution to the diffusion coefficient reduces to 

Db1az = [(B + C)/2Fo(21T)I/Z] 

X { B2 + r
2 

exp[ _p 2r zB2/4(B 2 + 2r2)] 
4(B2 + 2r2)1/2 

+ C
2 
+ r

2 
exp[ _pZr 2C Z/4(C 2 + 2r 2)]} . 

(C 2 + 2r2)112 
(3.5) 

Here the exponents never exceed p 2 r 214 in magnitude, and 
since we assume pr < 1, the exponentials can be set to unity, 
leaving 

D la 2 = +. B+C [B2+r2 c 2+r2] 
b 2(21T)I/2ro 4(B2 + 2r2)1/2 (C 2 + 2r2)112 

(3.6) 

The factor 1/4 in the first term in square brackets occurs 
because the maximum contribution to the velocity from the 
transfer integral is j, i.e., only half the corresponding contri­
bution B to the bandwidth, whereas the maximum contribu­
tion to the velocity from the nonlocal coupling is equal to the 
whole contribution C to the bandwidth. 

The part of the hopping contribution independent of 
the polaron velocities reduces to 

D 1 a2 = ..!.. r { B 
h 2 0 (2B 2 + r 2)1/2 

X exp[ _P2B4/4(2B2+r2)] 

+ 2 C 2112 exp[ _P 2C 4/4(2c 2 +r 2)]}, 
(2C +r) 

(3.7) 

and the other part reduces to 

D ' 1 a2 = ..!.. r (B + C) { B 2/(B 2 + r 2) 
h 2 0 4(3B2 + 2r2)1/2 

X ex [_..!.. p 2 B 2 ( 2B 2 + r 2 )] 

P 4 3B 2 + 2r 2 

C
2
/(C

2
+r2) [1 (2C

2
+r2)]} 

+ 4(3C2+2r2)1/2exp -"4 P2C2 
3C 2+2r 2 • 

(3.8) 

The velocity dependence of D h again leads to a factor 1/4 in 
the term depending on B. 

B. Algebraic behavior 

The contributions [Eqs. (3.6)- (3.8)] to the diffusion co­
efficient each consist of Band C. These terms have essential­
ly the forms obtained for local coupling in Paper I except 
that D hwas not derived there. Compared with Dh , D h is 
negligible if r is much greater than Band C, and has no 
important qualitative effect if r is much less than Band C. 
Minor differences from Paper I occur in numerical factors 
arising from the corrected form of Y kk and the more carefully 
derived form of v(E) constrained to give the correct mean­
square velocity. 

Nonlocal coupling affects the diffusion coefficient first 
by modifying the transfer integral, which is changed by the 
displacements on polaron formation. 6 It is this feature which 
affects the energies, density of states, and velocities. It also 
leads to the pairs of terms in the contributions to the diffu­
sion coefficient, cross terms being zero in our treatment, al­
though nonlocal coupling does affect Band r. These effects 
from modifying the transfer integral are largely quantitative, 
producing no new types of behavior. 

The other way in which nonlocal coupling affects the 
diffusion coefficient is by introducing a new type of term in 
the interaction V. This term involving U represents phonon­
induced fluctuations in the transfer integral. The mean­
square fluctuations are nonzero, giving rise to the term pro­
portional to II(Y) in r o, Eq. (B13). This corresponds to the 
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phonon-assisted current. 10.11 By increasing the scattering, it 
decreases Db and increases Dh and D;'. 

At sufficiently high temperatures, both Io( y) and II( y) 
tend to the same asymptotic value e Y (21TY) 1/2, and the term in 
[n(n + 1)]1/2 dominates ro. In this limit r = y1/2J1, is much 
greater than Band e, so that D ;, can be neglected compared 
with D h , which reduces to 

Dh/a2 = (B + elF oI2r. (3.9) 

Substituting for ro and r, we find 

Dh/a2 = [we /8 I 12J1, (fi + 1]2¢ 2)]e Y • (3.10) 

Iffurther g = 0 (or g-( ¢ and the temperature is not too high: 
see below) so that nonlocal coupling dominates, substitution 
for e, n, and y yields 

Dh/a2 = (w2/8 1/2J1, ) exp(21]2¢ 2/sinh ~{Jw), (3.11) 

which for {Jw). 1 becomes 

Dh/a2 = (w2/8 112J1,) exp(41]2¢ 2/ {Jw). (3.12) 

The high-temperature hopping diffusion coefficient for pure 
local coupling I follows similarly as 

Dh/a2 = (J2{Jw/128 1/2J1, ) exp( - ! g 2{JW) . (3.13) 

Comparing Eqs. (3.12) and (3.13) we see that for pure 
nonlocal coupling Dh lacks the factor {Jw compared with 
pure local coupling, because nonlocal coupling introduces 
the extra factor [n(n + 1)]'12 in ro which cancels that in y. 
Nonlocal coupling therefore gives a constant preexponential 
factor rather than one which decreases with increasing tem­
perature as for local coupling. Since in this limit{Jw-( 1, non­
local coupling will also tend to give a larger preexponential 
factor. This tendency may be enhanced by the dependence 
on w2 rather than J 2 and by the lack of dependence on cou­
pling strength compared with the inverse dependence for 
local coupling. 

The exponentials differ markedly in form, though both 
increase with increasing temperature. For local coupling the 
renormalization factor 1]2 from J 2 in the transfer rate com­
bines with eY , leaving an exponential which becomes con­
stant at high temperature so that Dh eventually decreases 
through the preexponential factor {Jw. For pure nonlocal 
coupling the renormalization factor 1]2 from we in the trans­
fer rate cancels with a corresponding factor in the scattering 
rate, leaving the factor e Y intact. Here the decrease in 1]2 with 
increasing temperature offsets the increase in 1/ {J until at 
the highest temperatures this exponential also becomes con­
stant, and Dh with it. 

In practice, local and nonlocal coupling must occur si­
multaneously: there is no general mechanism or symmetry 
constraint which can force either to be zero, whether for 
excess charge carriers or for singlet or triplet excitons. Then 
at high temperatures the nonzero g will always reduce 1] until 
eventually g 2).1]2¢ 2. This yields a hopping diffusion coeffi­
cient from Eq. (3.10) which has features of both Eqs. (3.12) 
and (3.13), with nonlocal coupling determining the transfer 
rate but local coupling the scattering rate and the exponen­
tial: 

Dh/a2 = (w2¢ 2/8 112g 2J1, ) exp( - ~g 2{JW). (3.14) 

Hence, this limit yields simple activated behavior. The con-

stant preexponential factor displays the competitive effects 
of nonlocal coupling in promoting and of local coupling in 
hindering transport, while the activation energy ~ g 2W is half 
the local polaron binding energy. Equations (3.13) and (3.14) 
correspond to the expressions for the mobility contributions 
/11 and /12 given by Sumi 12 for a Gaussian density of states, 
except that his preexponential factors each differ from those 
here because they refer to the most strongly coupled limit6 of 
small polaron theory. 13 

C. Numerical behavior 

Numerical calculations of the total diffusion coefficient 
D = Db + Dh + D;' obtained from Eqs. (3.6)-(3.8) are pre­
sented in Figs. 1-6. Each figure shows D as a function of T 
for various values of ¢ 2 and a fixed value of g 2, which in­
creases in successive figures. All these figures refer to the 
same values of J1, = 0.1 wand J = 0.5 w. This value of J is the 
largest compatible with our neglect of multiphonon contri­
butions to Win Eqs. (B2) and (B3) at all temperatures, so that 
the figures actually give the smallest relative contributions 
from nonlocal coupling. Temperatures below 1/ {Jw = 0.2 
are excluded by our approximations and those above 1/ 
{Jw = 5 are likely to exceed typical crystal melting tempera­
tures for plausible optical mode frequencies w. 

Figure 1 shows the results for pure nonlocal coupling. 
Stronger coupling means stronger scattering and hence low­
er band mobilities and higher hopping mobilities, these con­
tributions dominating at low and high temperatures, respec­
tively. Thus we see that increasing the coupling strength 
decreases D at low temperatures and increases it at high tem­
peratures, so that the curves for different coupling strengths 
cross at intermediate temperatures. (The crossings for 
¢ 2 = 3 and 10 are omitted for clarity.) The curves go 
through a minimum and for the stronger couplings show a 
point of inflection before increasing again. This feature is 
associated with the hopping contribution D ;,. As the tem­
perature increases, r increases through the factor y'/2 and 
D;' falls relative to Dh, until eventually D increases through 

2.5 

2.0 

"'" 3 
N 1.5 0 
'-. 
0 
'-' 
m 1.0 
0 

0.5 

0.0 
0 

_----10.0 

______ ---------3.0 

__ --------- 1. 0 

2 

kT/w 

__ --0.3 

O. I 

3 4 

FIG. 1. The reduced diffusion coefficient D / wa2 as a function of the reduced 
temperature 1/ /3w for different values of the nonlocal electron-phonon cou· 
pling. The local electron-phonon coupling is given by g 2 = 0 (i.e., the cou­
pling is entirely nonlocal), the transfer integral by J / w = 0.1. Each curve is 
marked with the value of if> 2 determining the nonlocal electron-phonon 
coupling. 
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3 9
2 O. 1 

2 "r ,--, 
10.0 

3 
N 

3.0 

0 
"'- 1.G 
0 ....., 
r:n 0.3 

0 0.1 

0 

0.0 

-1 
0 2 3 4 

kT/w 

FIG. 2. Same as Fig. I, but withg 2 = 0.1. Sinceg is nonzero, ¢ can now be 
zero. 

the phonon-assisted contribution. 
Once the local coupling is nonzero, we can compare 

diffusion coefficients with and without nonlocal coupling. 
Figures 2-6 show this for successively stronger local cou­
pling, with most crossings omitted for clarity. The stronger 
the local coupling, the more similar the curves in general 
shape, though this comparison is complicated by the change 
in the shape ofthe curves withg 2 for pure local coupling. At 
high temperatures the curves for large g 2 are well described 
by Eq. (3.14), with D a::,p 2 except for the lowest values of,p 2 

including zero. 
Calculations for lower values of J show more marked 

effects of nonlocal coupling, because the band and hopping 
contributions depending on B are reduced compared with 
those depending on C. The curves therefore show deeper 
minima, which for ,p 2 = 0 may disappear completely. All 
diffusion coefficients are reduced by similar amounts, so that 
proportionately larger changes are seen for smaller values of 
,p 2. The subsidiary maxima seen at intermediate tempera­
tures for the larger values of,p 2 and smaller values of g 2 are 
weakened or eliminated. Finally the curves incorporating 
nonlocal coupling diverge more rapidly from those with 
,p 2 = 0 at high temperatures, in accordance with the factor 
,p 21]2 in the ratio ofEqs. (3.14) and (3.13). 

Reducing the phonon bandwidth A increases the diffu-

3 0.3 

2 10.0 ,--, 
3 

N -3.0 
0 
"'-
0 _1.0 ....., 
r:n 0.3 
0 

0 0.1 --- -
0.0 

-1 
0 2 3 4 

kT/w 
FIG. 3. Same as Fig. I, but with g 2 = 0.3. 

,--, 
3 

N 
o 
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o 
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1 1. 5 __ ------ 10.0 ;--
________ -------- 3. 0 

0.5 r- ____ 1.0 

\~" 
-0.5 ~" 

0.0 
-1.5~_,-.__,-.__,-.__,__. 

o 2 

kT/w 

3 4 

FIG. 4. Same as Fig. I, but with g 2 = I. 

sion coefficient at most temperatures of interest. For narrow 
bands, weak coupling, and intermediate temperatures the 
increase comes mainly through D ~ - 1/ r 2 - 1/ A 2, but at 
higher coupling strengths and temperatures Dh dominates 
and the increase varies as 1/ A, from Eqs. (3.13) and (3.14). 
Thus D may go through a quite marked maximum as T in­
creases, as Fig. 7 shows. 

IV. DISCUSSION 

A. Review of results 

The results in the present paper constitute a theory of 
electronic transport in molecular crystals more general than 
hitherto available. Although only linear electron-phonon 
coupling is treated, it may comprise local or nonlocal inter­
actions or both, and neither type of interaction is restricted 
in magnitude. The transfer integral is not restricted in mag­
nitude, either, although for simplicity of presentation we 
have taken B < w as in Paper I and C < w. Polaron band nar­
rowing ensures that these conditions are readily fulfilled ex-

1.0 

0.5 

0.0 
,--, 
3 

N 
0 -0.5 
"'-
0 ....., 

-1. 0 r:n 
0 

-1. 5 

-2.0 

-2.5 
0 

9 2 3.0 
_----10.0 

2 

kT/w 

_----3.0 

3 4 

FIG. 5. Same as Fig. I, but with g 2 = 3. 
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FIG. 6. Same as Fig. 1, but with g 2 = 10. 

cept for wide bands, weak coupling, and low temperatures, 
conditions when our treatment is least suitable and least nec­
essary. We have assumed Gaussian densities of states for the 
polaron and phonon bands; these analytically convenient 
forms provide reasonable representations of densities of 
states in three dimensions. A number of approximations 
have also been made for convenience, as indicated at various 
points in the text. None is expected to have major qualitative 
effects, and all could be avoided in numerical work. 

As expected, nonlocal coupling has the biggest effect on 
the diffusion coefficient when it is largest compared with the 
local coupling. The additional nonlocal coupling tends to 
decrease the diffusion coefficient at low temperatures and 
increase it at high temperatures, until eventually the 
phonon-assisted term [Eq. (3.14)] dominates. Qualitatively 
speaking, the strength of the nonlocal coupling affects the 
magnitude of the diffusion coefficient for given values of the 
other parameters, but not the temperature dependence. The 
shapes of the curves change more between different Figs. 1-7 
than within a given figure. 

Nonlocal coupling has been treated previously in a 
number ofways.6,10-12.14-18 These treatments do not use the 
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FIG. 7. Same as Fig. 1, butwithg 2 = 0.3but.J/w = 0.01 andJ /w =0.1. 

nonlocal polaron transformation as done here, but this omis­
sion is less serious than it might seem, provided the local 
transformation or some equivalent technique6 is used. This 
reduces the nonlocal term in the residual interaction Vby a 
factor exp[ - (2n + 1) g 2]. Provided the temperature is high 
enough and g 2 is large enough, the nonlocal term is small 
enough for a perturbative treatment to apply. 

B. Temperature-independent mobilities 

Recent interest in nonlocal coupling has been stimulat­
ed by the possibility that it might explain the almost tem­
perature-independent charge-carrie drift mobilities ob­
served in some crystallographic directions for certain 
crystals. 19 Since the mobility f1, is related to the diffusion 
coefficient by the Einstein relation f1, = e{JD, any contribu­
tion to D which is proportional to T at high temperatures 
will eventually yield a constant mobility. Contributions 
varying like n, [n(n + Ijp12, etc., will have this effect. How­
ever, most theories yield contributions which ultimately be­
come constant or decreases with increasing T, so that 
f1, - T - n with n > 1.20 Such is the case with the present treat­
ment, which yields mobilities independent of temperatures 
over significant ranges of temperature only for special sets of 
parameter values. Ultimately the present results yield Il- 1/ 
T, while in the extreme strong coupling limit6 

g2[n(n + 1)]1/2»w/..:::1 > 1 the method of steepest descents l3 

yields f1, -1/T 1/
2

, as noted by Sumi.12 
In fact, temperature-independent mobilities are not 

commonly observed, as far as the rather limited data avail­
able are concerned. Where they are observed, a layer-like 
structure perpendicular to the transport direction appears to 
be a necessary concomitant, and this structural feature 
ought, therefore, to play an essential role in explaining such 
mobilities. It would imply weak transfer interactions 
between layers, greatly enhanced by vibrations changing the 
distance between layers, vibrations which would tend to be 
of low frequency. This implies an important contribution 
from nonlocal coupling, with its tendency to increase the 
magnitude of D and reduce its rate of fall with temperature. 
The other important qualitative effect of a layer structure 
would be to make the polaron density of states rectangular 
rather than the Gaussian assumed here. It is this effect which 
produces a constant mobility in Sumi's theory,12 whereas a 
Gaussian form gives results consistent with those here, as we 
have seen. We also note that the mobilities within the layers 
tend to decrease more rapidly than in the present theory 
(except for special parameter sets), so that the average tem­
perature dependence resembles that here. 

It has been suggested21 that constant mobilities may be 
common because hopping rates are generally proportional to 
n. This is true, but only for weak coupling (both local and 
nonlocal), and then hopping will not predominant. Once 
coupling becomes strong, polaron effects complicate the 
temperature dependence, including that of the phonon-as­
sisted part with its additional factor [n(n + Ijp12. It then 
requires some special feature such as wide phonon and nar­
row carrier bands, or the rectangular density of states in two 
dimensions to yield a constant mobility.6 Temperature-inde­
pendent mobilities are striking precisely because they are 
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unusual, and as such they require special explanation ratper 
than the general theory presented here. 

C. Comparison of local and nonlocal coupling 

As already argued, both types of coupling must occur in 
general, although their relative strengths will depend on the 
phonon modes concerned. For example, molecular modes 
may be expected to have much more effect on the local site 
energy than on the transfer integrals. The strength of the 
nonlocal coupling will also correlate with the size of the 
transfer integrals to some extent. When these are accidently 
zero by cancellation of terms, vibrations can only make them 
larger, but as the transfer integrals become larger through 
strong overlap, vibrations wiIl have relatively less effect, un­
til the Frenkel exciton or tight-binding limit is superseded by 
the Wannier exciton or delocalized limit and nonlocal cou­
pling becomes zero. 

Nonlocal coupling can be anisotropic whereas local 
coupling cannot. This property was implicitly invoked above 
in explaining the constant mobility in layer structures. An 
analogous property could explain the anisotropy in charge­
carrier trap depths for transport within and between layers 
in anthracene,22 if one accepts the idea23 that static disorder 
in imperfect crystals (rather than dynamic disorder due to 
phonons in perfect crystals) can cause trapping through 
changes in transfer integrals as well as through changes in 
site energies. 

Although both nonlocal and local coupling conserve 
crystal momentum, strong local coupling and polaron for­
mation can be regarded as symmetry breaking. 24 One could 
perhaps view this as the reason why local coupling ultimate­
ly leads to a decreasing diffusion coefficient at high tempera­
tures whereas nonlocal coupling leads to a constant diffusion 
coefficient. This in tum is why the nonlocal coupling even­
tually dominates. 

Only linear coupling has been treated here. Quadratic 
local coupling associated with frequency changes in lattice 
or molecular phonon modes is known to be significant in 
some cases. If weak, it can be treated by methods like those 
here,25 but if strong it is difficult to treat because bound 
states can form. For nonlocal coupling, the roughly expo­
nential dependence of molecular overlap on molecular sepa­
ration and perhaps orientation implies an important role for 
quadratic and higher terms. 17.18 However, bound-state for­
mation is not a problem, and it has proved possible to treat 
transport for an exponential dependence of transfer integral 
on the phonon displacement operator. 18 

It may also be remarked that the approximate form [Eq. 
(2.1S)] for the electron-phonon coupling coefficients yields 
zero nonlocal coupling at the zone center q = O. This form 
might thus seem more suited to acoustic modes. However, 
our treatment implies only one molecule per unit cell. In this 
case, the optic modes at q = 0 correspond to all molecules 
rotating in phase, and the linear electron-phonon coupling 
vanishes. The effects of having more than one molecule in 
the unit cell have been little explored in the context of trans­
port theory, except in band structure calculations. 

D. CONCLUSIONS 

Nonlocal electron-phonon coupling decreases diffu­
sion coefficients at low temperatures and increases them at 
high enough temperatures through a phonon-assisted con­
tribution which becomes constant. The present results com­
plement and extend previous work on nonlocal coupling. By 
not yielding a constant mobility at high temperatures, they 
support the idea that such behavior requires special explana­
tion associated with a layer-like structure in which non local 
coupling is important. 

Extensions of the present work to include different 
phonon branches with different couplings in a realistic struc­
ture are possible. The problem is that such extensions would 
be very complicated without some indication of the domi­
nant interactions. This argues the need for further funda­
mental work on electron-phonon coupling now that there 
are theories to incorporate it. Further systematic study of 
exciton diffusion coefficients and charge-carrier mobilities 
would also define better the range of behavior theory must 
explain. 
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APPENDIX A: CORRELATION FUNCTIONS 

1. Structure 

The correlation functions depend on thermal averages 
involving T defined by Eq. (2.11) and u defined by 

u = ~(Tt,b + t,bT) (AI) 

as in Eq. (2.12). We write T = F - (F), where 

F = e + e = exp(Ab + + I1-b) exp Z , 

and similarly 

G= ~(Ft,b+ t,bF). 

The required averages are then 

(A2) 

(A3) 

(T IT2 ) = (F IF2) - (FI ) (F2) , (A4) 

(TIU2) = (F I G2 ) - (Ftt,b2) (F2 ) - (F/)(G2) , (AS) 

(u IT2 ) = (GtF2) - (Ft )(t,b/F2) - (G t ) (F2 ) , (A6) 

(U I U 2 ) = (G I G2 ) - (F1) (t,b I G2 ) 

- (G/t,b2)(F2) + (Ft) (F2 ) (t,bt)(t,b2) , (A7) 

where (t,b) = 0 has been used. 
We use the resule that for exponents Zt and Z2 which 

commute with their commutator: 

We also have7
•
8 

(F) = exp[ ~(2n + l)Ap] , 

which with Eq. (AS) yields 

(F1F2) = exp [!(2n + 1)(,.1, / + ,.1,2)( 11-1 + 11-2) 

+ !(A2I1-t- AI11-2)]' 

(AS) 

(A9) 

(A 10) 
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The averages involving rP are obtained by applying Eq. (3.8) 
to Eq. (3.2) to show that 

aFlaA=(b++ ~p)F=F(b+-~p), (All) 

aFlap=(b- ~A)F=F(b + ~A) (A12) 

so that in particular 

(A13) 

Then differentiation of Eqs. (A9) and (A1O) gives the 
results 

(G) = q(ZrP+ rPZ)(F)-(R )(F), (A14) 

(FI r(2) = (ZI r(2) (FI ) , (A15) 

(FIG2) = [(ZI r(2) + (R2)] (FI F2) , 

( rPIF2) = ( rPI Z2) (F2) , 

(GI F2) = [(R I ) + ( rPI Z2) ])FI F2) , 

(FIG2) = ! [(ZI r(2) + (R2)] (R I ) + ( rPI Z2)] 

(A16) 

(A17) 

(A18) 

+ ( rPI r(2) J (FI F2) . (A19) 

Substitution in Eqs. (A4)-(A 7) yields the various thermal 
averages. Now the form of V in Sec. II uses the result that 
because Z is anti-Hermitian, the contribution of (G ) is zero, 
as it must be to make (V) zero. Then the thermal averages 
simplify to 

(T l u2 ) = (ZI r(2)(T IT2), (A20) 

(u l T2) = (rPI Z2)(TIT2 ) , (A21) 

(U IU2) = [(ZI r(2)( rPI Z2) + (rPlrP2)] (TIT2) . (A22) 

2. Detailed evaluation of averages 

We now take account of the matrix nature of Z and the 
time dependence of F2 and rP2 obtained by replacing b + by 
b + eiw' everywhere. The average of the phonon displacement 
operators is thus 

(rPQ rPQ·(/) = [nQe-iWQ' + (nQ + l)eiw
Q']DQ';_Q (A23) 

(A24) 

so that PQ(O) = 2nQ + 1. 
The remaining average (FI F2 ) is evaluated from Eq. 

(A1O) using the techniques developed in Paper II (but with a 
slightly different notation). The exponent S which appears in 
each factor () + or () is written in tum as T + - T, U + - U, 
X + - X, and Y + - Y, so that ZI = T + + U + - T - U 
and Z2 = X + + Y + - X - Y. The different symbols allow 
different matrix elements to be assigned. The terms in Al PI 
and A2 P2 from Eq. (A 10) contribute factors «() + () which 
form matrix products with other contributions arising from 
the cross terms between ZI and Z2: 

«() :'k, ()k, k, () q~q, (I )()q,q, (I) 

= L «() p~ k, ()k, p, )[ exp - (T + X + TX + ) ] p, p,;q, p, 
Pt···PH 

x [exp(T+ Y + TY+) ]p, k,;q,p, 

X [exp ( U + X + UX + ) ] p, P6;P, p, 

X [exp - (U+ Y + UY+) ]P6 k,;P,P, «() q~p,()p,q,> . 
(A25) 

The exponentials are given by, for example, 

[exp - (T+ X + TX +) ]k,k,;q,q, 

= [exp -Ek,-q'(t)]_q._qDk +q'k +q , 
2, I I h 2 '2 

where 

(A26) 

E'k, k, (t) = N -IPk, _ k, (t)(A Z: =;')*A Z: - k" (A27) 

which reduces to E'k, k, of Eq. (2.16) for t = O. 
Exponents containing factors P (t ) are characteristic of 

correlation functions for linear electron-phonon cou­
piing. 1.9 Substitution ofEq. (A26) in Eq. (A25), making use of 
the momentum conservation required by Eq. (2.27) for 
«() + () ), yields 

XDk,+q,+k,+q.,k,+q,+k,+q, . (A28) 

In Paper II, an expression was derived relating «() + () ) 
to exp P. With the simplified form [Eq. (2.27)] for «() +(), 
this expression yields 

[exp P] _ k,. _ k, = Dk, k, + N -1(7]-1 - 1) . (A29) 

The corresponding expression for exp Eq(t) is derived by re­
placing 2nQ + 1 =PQ(O) in 7] by PQ(t), while exp Eq(t) is 
obtained by matrix inversion. For proper decaying correla­
tions, previous results 1.9 show that N -I ~Q P Q(t) should be 
replaced by P (t )A (t ), whereP (t ) refers to the mean frequency 
liJ and A (t) is the Fourier transform of the phonon density of 
states. Then it is found that 

[exp ± P(t )]k, k, = Dk, k, + N-I(H ± 1_ 1), (A30) 

where 

H = exp[( i + 7]2¢ 2)P(t)A (t)] . (A31) 

As t--+oo, A (t)--+O and H--+1, so that the exponentials in Eq. 
(A28) reduce to Kronecker deltas. The average then breaks 
up into the product of the separate averages «() k~ k, ()k, k) 
and «()q~q,()q,q.), making (T I T2 ) zero as required at long 
times for irreversibility. 

Using Eq. (A30) in Eq. (A28) with Eq. (2.27) leads eventually 
to 

(T k,k,;k,k, T q,q,;q,q4 (t) 

= N -27]2 [(H - 1)2Dk, + q4,k, + q, 

where 

+ (H-I l)D ] 
- k.+QI.k2 +Q2 

+ N(H - l)(Dk, k,Dq,q. + Dk,k4Dq,q,) 

+N(H- I -1)(Dk,k,Dq,q, + Dk,k.Dq,q.)] 

(A32) 

(A33) 

This expression for the correlation function agrees with that 
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for local coupling in Paper I, with H 2 - I corresponding to 
YI' H - I to Y2' H -I - I to Y3' and H -2 - I to Y4' 

As before, we take for A (t) the Gaussian form 

A (t) = exp( -..1 2t 2/4), (A34) 

where..1 is the phonon bandwidth, assumed much less than 
w. Then by analogy with Paper I we obtain 

00 

H r -1;:::::exp(-r 2t 2/4) I 
m= - 00 

where 

y = 4(g 2 + 1J2tP 2)[n(n + I)] 1/2 

and 

r=..1 (~\r\y<l) 

= [..1 !(\rl y)1/2] (!Ir\ y> I) 

(A35) 

(A36) 

(A37) 

(A38) 

with 1m (Z ) the modified Bessel function of order m. Except 
for small y (low temperature and both local and nonlocal 
coupling weak), Y2 and Y3 with r = ± I are much smaller 
than YI and Y4 with r = ± 2, and will be neglected as pre­
viously. 

3. Evaluation of sums 

The interaction V consists of three types of term, inJT, 
wfT and wfu. These give rise to six types of cross term in 
( Vk, + q.kq Vkk , (t ) . We consider these in tum. 

First we get 

N-
2
[YI ~JK JK_ q + Y4 ~JK Jr _K] 

=! N- IJ2(YI cos q + Y4 cos r), (A39) 

where r = k + k ' + q recurs frequently. This term is as for 
local coupling except that the renormalization now depends 
on tP as well as g. 

Next we get 

- N- 3 I W Q1J2JK [(h ~·k - h ~k' )(ylh ~K+q + Y4h ~- r) 
KQ 

where h ~ = f~ - g. The real parts g are removed by the 
term - N -I in Dk k and by the occurrence of differences 
such as A ~ - A S'. P~rforming the summations yields 

-IN-IJC {(YI + Y4)[COS k + cos k' 

+ cos(k + q) + cos(k' + q)) 

+ 2(YI sin q + Y4 sin r)[sin(k + q) + sin(k' + q)] 

+ 2(YI sin q - Y4 sin r)[sin k + sin k'] , (A41) 

where from Eq. (2.26) C = W1JtP 2. 
The remaining term not involving u is 

N - 4 ~ 4(hQ h Q* )(h Q' h Q'*) ~ wQ wQ '1J -k-q - -k'-q -k' - -k 
KQQ' 

Q h Q' Q h Q' X(ylh -K -K+q + Y4h -K K-r)' (A42) 

where terms involving g cancel as before. This leads to 

l N -IC 2((YI + Y4){ 1+ cos(k - k') + (sin k + sin k ')2 

+ [sin(k + q) + sin(k' + qW..1 ) 

+ 2(YI cos q - Y4 cos r)(sin k + sin k') 

X [sin(k + q) + sin(k' + q)]) . (A43) 

The term in (t/Jt/J(t) is 

N -3W 21J2 I PQ(t)h ~K(Ylh ~*K-q + Y4h K--QT) 
KQ 

= N -2wCI P Q(t )(1 - cos Q )(YI cos q + Y4 cos r) . 
Q 

(A44) 

To be consistent with the earlier derivation of H, we should 
take N -I ~Q P Q (t )asP (t )A (t ).However,including A (t )here 
is no longer physically necessary to ensure decaying correla­
tions, these being already ensured by its inclusion in YI and 
Y4' and is mathematically inconvenient as it yields terms de­
caying at a rate r /21 12 in addition to those decaying at a rate 
r /2. We therefore set PQ(t );:::::P(t) to obtain this term as 

N -IWCP (t )(YI cos q + Y4 cos r) . (A45) 

The terms involving combinations of T with u all de­
pend on the quantity 

DQ(t) = (nQ + I )iWcf 
- nQe - iWQ I, (A46) 

while those involving u combined with u depend on DQ(t) 
DQ,(t). Although these terms are nonzero, their contribu­
tion to W vanishes as we explain later, and they will not be 
treated in detail. 

APPENDIX B: SCATTERING AND HOPPING RATES 

1. Calculation of W 

Only the real part ofEq. (1.4) for Wis required, and this 
can be calculated essentially as in Paper I. The contributions 
of Eqs. (A39), (A41), and (A43) to (VV(t) are of the form 
PY I + 0'Y4' where the prefactors P and 0' do not depend on t. 
These yield contributions to Wof the form 

00 

1T J/2 I [p+(-ltO']emPw/2[Im(y)-DmO] 
m= - 00 

X [G(Ek'+q - Ek+q + mw; r) 

+ G(Ek' - Ek + mw; r)] , 

where 

G(x;b) = b -I exp( _x2/b 2). 

(BI) 

(B2) 

The contribution (A45) to (VV(t) is of the form 
(PYJ + 0'Y4)P(t), and yields a contribution to Wofthe form 

00 

1TI/2 I [p+(-ltO']emPw/2[Im(y)-Dmo] 
m= - 00 

X {In + l){G [Ek'H - EkH + (m + l)w;r] 

+ G [Ek' - Ek + (m + I)w; r]) 

+ n{G [Ek'H -Ek+q + (m - I)w;r] 

+ G [Ek' - Ek + (m - l)w;r ] I) . (B3) 

Since r -..1 -(w, the dominant contributions to the sums 
in (BI) and (B3) occur when the energy numerators in the 
Gaussian exponents are small compared with w. For narrow 
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polaron bands where 2J and C fall well below lU, the domi­
nant contributions occur when the energy numerators con­
tain zero multiples of lU. Then the dominant contribution 
frompy, + ar4 is 

1TI/Z( P + u)[Io( y) - 1] 

x I G(Ek'+q -Ek+q;F) + G(Ek' - Ek;F)J 

and that from (PYI + ar4)P(t) is 

1TI/Z( P - u)2[n(n + 1)] '/ZI,( y) 

(B4) 

XIG(Ek'+q -Ek+q;F)+G(Ek, -Ek;F)J. (B5) 

Other contributions will henceforth be neglected. 
In Eq. (B5) the factor [n(n + 1)] lIZ is the value common 

to the quantities ne (3w/Z and (n + l)e - (1/2) (3w. This is why the 
contribution from DQ(t) vanishes: it leads to the difference 
between these quantities. The same reasoning applies to the 
contribution fromDQ(t )DQ,(t), except for Q = Q' when it is 
nonzero but a factor N - I smaller than the others and hence 
negligible. It also happens that the q dependence of terms 
depending onD (t ) would ultimately give zero contribution to 
Fkk and Ykk anyway. 

The factors denoted P and u above are complicated fac­
tors of k, k', and q. They can be carried farther through the 
analysis which follows, at the cost of much algebra and com­
plexity, but eventually approximations prove necessary. It is 
therefore convenient to make at this stage the simplifying 
assumption that the prefactors can be replaced by their aver­
ages over k and k '. This is in the spirit of the approximations 
previously usedz in deriving 'Tj, and yields results which re­
duce to those in Paper I for C = O. With this assumption we 
obtain 

Wk,k+q;k',k'+q 

= (1TI/Z/Nl! [ ! jZ cos q +! C 2(4 + cosz q)] 

X [Io(Y) - 1] + 2wC cos q[n(n + 1)] '/2I ,(y) J 

xIG(Ek'+q -Ek+q;F)+G(Ek, -Ek;F)J. (B6) 

2. Sum over states 

We now have to sum (B6) over states k. This is done by 
transforming to an integral over the density of states, as in 
Paper I. Because of the nonlocal coupling, the energies now 
contain two k-dependent terms. We therefore represent the 
density of states N (E) at energy E' + E by the sum of two 
Gaussians, one for each term: 

N(E) = [BG(E;B) + CG(E + ! C;C)]l1T1/2(B + C). 
(B7) 

Here B is that part of the bandwidth due to the transfer 
integral, which can be taken as 2J (this corresponds to B in 
Paper I). The second term in N (E), centered at E = -! C, 
represents the increased density of states at the bottom of the 
band and the eventual increase in bandwidth above B as C 
increases for fixed J. Although our formalism is essentially 
one dimensional, the use of Gaussians in the density of states 
simulates the form expected in a three-dimensional crystal 
without marked anisotropy. 

Using Eq. (B7) with (B6), we obtain 

xl[ !Jzcosq+ ~CZ(4+cos2q)][Io(y)-1] 

+ 2wC cos q[n(n + 1)] '/zI,( ylJ 
x IBG [Ek,;(B + FZ)1/2] 

+ BG [Ek' +q;(B 2 + F2)I/Z] 

+ CG [Ek' +! C;(C 2 + FZ)1/2] 

+CG[Ek'+q +!C;(C Z+F2)1/2]J. (B8) 

For the scattering rate Fk'k" the term k = k' is to be ex­
cluded from the sum over k [see Eq. (1.2)] but is of order 1/ N 
and hence negligible. 

3. Scattering and hopping rates 

The scattering rate is obtained by setting q = 0 in (B8): 

rk'k' = l(j2 + 5C 2) [Io(y) - 1)] + 4wC [n(n + 1)] '/2I,(y)J 

X [1TI/Z/(B + C)HBG [Ek' ;(B 2 + F2)I/Z] 

+CG[Ek' +!C;(C 2
+F2)1/2]J. (B9) 

From Eq. (1.3), the first part of the hopping rate can be 
obtained by differentiating Fk'k' twice with respect to k', 
and the second part can be obtained by differentiating Eq. 
(B8) twice with respect to q and setting q-o. Now the first 
derivative ofG (x;b ) with respect tox is proportional tox, and 
the second derivative consists of terms proportional to x 2 

and x plus a term independent of x. Since G (x;b ) is largest 
where x is zero, the terms in x and x2 can be neglected to a 
first approximation; their contribution was similarly ne­
glected in Paper I. Hence we take 

(BlO) 

v~ G (x;b )::::: - (2/b 2)(dx/ dq)zG (x;b ) . (B11) 

The hopping rate is then found to be 

Yk'k' = I[J 2(1 + z) + C 2(2 + 5z)][Io(Y) - 1] 

+ 4wC(l + z)[n(n + 1)] '/2I ,(y)J [1T'/Z/2(B + C)] 

X IBG [Ek,;(B 2 +F2)1/2] 

(B12) 

where z = v~,/(B 2 + F 2). 
As in Paper I we find that Y k' k' is roughly proportional 

to Fk'k" the part proportional to z being exactly !zFk'k' 
because of the approximations (BlO) and (B11). (Note that 
compared with Paper I we have extracted a factor aZ to give 
each rate the same dimensions and have inserted a factor 1/2 
previously omitted). Since the numerical coefficients depend 
on our previous approximations, it is convenient to force 
total proportionality by taking 

Yk'k' =!(1 +z)Fk'k" (B13) 

The only factors not so related are the coefficients of C Z mul­
tiplying Io( y) - 1, which we replace by the value 4 interme­
diate between the 5 in Fk'k' and the 2 in Yk'k': 
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rk'k' =ro!BG[Ek,;(B2+r2)1/2] 

+CG[Ek' +!C;(C 2 +r2)1/2]) 

ro = 1T1/2!(j2 + 4C 2)[Io(Y) - I] 

+ 4uJC [n(n + I)] 1/2II (y) )/(B + C). (BI4) 

A factor smaller than 5 in rk'k' is also compatible with the 
results obtained if the prefactorsp and (7 are not averaged as 
in Eq. (B6), though the rate remains positive as expected. 
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