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Abstract

It is shown that toroidal magnetic field ripple induced particle flux can

drive poloidal E ×B speed to bifurcate over the local maximum of the non-

linear poloidal (or parallel) viscosity. Here, E is the electric field and B is the

magnetic field. This mechansim, together with the turbulence suppression

due to the radial gradient of the E ×B and diamagnetic angular velocity,

is employed to explain enhanced reversed shear mode observed in the core

region of tokamaks.
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Improved plasma confinement regime (H-mode) has been observed in the edge region of

many tokamaks and stellarators [1]– [6]. It is initiated by a sudden increase in the magnitude

of the poloidal E ×B speed and followed by the turbulence suppression which leads to

better plasma confinement [2,4]. Here E is the electric field and B is the magnetic field.

A quantitative theory based on the bifurcation of the poloidal E ×B Mach number Upm

over the local maximum of the nonlinear plasma viscosity and the subsequent turbulence

suppression due to the radial gradient of the E ×B and diamagnetic angular velocity is in

good agreement with both electrode induced and naturally occurred H-mode [7,8]. Here, we

extend the H-mode theory to explain the improved plasma confinement regime—enhanced

reversed shear (ERS) mode—in the core region [9,10]. Indeed, it is observed in TFTR that

there is a sudden jump in radial electric field prior to the onset of ERS mode [11]. The

corresponding value of Upm is greater than unity. This phenomenon is the same as that

in H-mode. Furthermore, because the slope of the radial electric field changes sign in the

bifurcation layer, the appropriate bifurcation quantity is the radial electric field and not

the gradient of the radial electric field. Confinement improvement theory based on the

bifurcation of Upm is consistent with this observation.

It is obvious that ion orbit loss mechanism which is responsible for the bifurcation of

the poloidal E ×B speed in naturally occurred H-mode is not effective in the core region

because the number of particles that intersect plasma boundary is small. One therefore has

to find a different mechanism to drive Upm ≡ V‖i/vti − cEr/vtiBp over the local maximum

of the parallel (or poloidal) viscosity. Here, V‖i is the ion parallel flow, c is the speed of

light, Er is the radial electric field, Bp is the poloidal magnetic field strength, and vti is the

ion thermal speed. There are such mechanisms. One possible mechanism is the momentum

input associated with the injected neutral particle beam. The other is the toroidal magnetic

field ripple induced particle flux. Because enhanced reversed shear mode exists even in the

balanced neutral particle beam injection operations, we focus on the bifurcation of Upm

driven by the ripple induced particle flux. Note that ripple trapped particle flux can drive

bifurcation is already demonstrated in Refs. [12] and [13]. In Ref. [12], it is shown that
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electron 1/ν flux can cause radial electric field to bifurcate to a more positive value. In

Ref. [13], ion 1/ν flux is used to drive radial electric field to bifurcation in the stellarator

H-mode theory.

There are two types of ripple induced particle flux. One is due to ripple trapping [14]. In

the relatively collisional regime, it contributes to the 1/ν flux [15]. The other is due to the

modification of the trajectories of the toroidally trapped particles (i.e. bananas) and barely

toroidally trapped or circulating particles by the magnetic field ripple. This class of orbits

is not trapped in the ripple well. In the low collisionality regime, it contributes to the ripple

plateau flux [16,17]. The constitutive relations between ripple induced particle flux and the

components of the viscous tensor are adequately understood. We employ these constitutive

relations in momentum equation.

The momentum equation is

∑
a

nama
dV a

dt
=

1

c
J ×B −∇

(∑
a

pa

)
−∇ ·

(∑
a

πa

)
+

(∑
a

Sma −
∑
a

maV aSna

)
, (1)

where the subscript a indicates plasma species, na is plasma density, ma is the mass, V a

is the flow velocity, J is plasma current, pa is plasma pressure, πa is the viscous tensor,

Sma is the momentum source, and Sna is the particle source. Note that particle source

associated with gas puffing or pellet injection reduces velocity. The d/dt operator in Eq. (1)

is d/dt = ∂/∂t+ V a ·∇. The steady state parallel component of Eq. (1) is〈
B ·∇ ·

∑
a

πa

〉
=

〈
B ·

∑
a

Sma

〉
−
〈
B ·

∑
a

ma V aSna

〉
, (2)

where the angular brackets denote flux surface averaging. Because we are interested in the

case where Upm ∼ 1 but |V a|/vta < 1, the convective term V a ·∇V a can be neglected.

Here, vta is the thermal speed of species a. The steady state toroidal component of Eq. (1)

is 〈
Bt ·∇ ·

∑
a

πa

〉
=

〈
Bt ·

∑
a

Sma

〉
−
〈
Bt ·

∑
a

ma V aSna

〉
. (3)

We employ here Hamada coordinates: B = Bt+Bp = ψ′∇V ×∇θ−χ′∇V ×∇ζ where Bt

is the toroidal magnetic field, Bp is the poloidal magnetic field, ψ′ = B · ∇ζ, χ′ = B · ∇θ,
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θ is the poloidal angle, ζ is the toroidal angle, and V is the volume enclosed in the flux

surface [18]. Note that 〈Bt · J ×B〉 is related to ∂ 〈E · ∇V 〉 /∂t through Amperé’s law and

vanishes at the steady state. Equations (2) and (3) completely determine the flow velocity

V a within the flux surface. To the leading order of gyroradius expansion V a = V‖an̂+V ⊥a,

and V ⊥a = cB ×∇Φ/B2 + cB ×∇pa/naeaB2), where n̂ = B/B, Φ is the electrostatic

potential, and ea is the electric charge. Because Φ = Φ(V ) and pa = pa(V ), V a ·∇V = 0.

Thus, there are two unknowns: parallel flow V‖a and∇Φ·∇V to be determined from Eqs. (2)

and (3). For simplicity, we only consider electron-ion plasmas. Because electron friction is

much larger than electron viscous force in a large aspect ratio tokamaks, V‖i ≈ V‖e to the

leading order of the ratio of electron viscous force to the electron friction force.

From the general expressions for the plasma viscosity in the plateau regime, we can

evaluate ripple plateau viscosity for a model rippled tokamak B = B0(1− ε cos θ− δ cosNζ)

where B0 is B on the magnetic axis, N is the number of toroidal magnetic field coils, ε is

the inverse aspect ratio and δ is the ripple amplitude to obtain [19]

〈Bt ·∇ · πa〉rp = 〈B · ∇ · πa〉rp =

√
π

4
nama

v2
ta

Rq
C1B0(Nqδ

2)

(
B2
p

B

)2 [
V‖a
vta

(
B

Bp

)2

+

(
cEr
Bpvta

− cp′a
neBpvta

)
+

1

5

 q‖a
pavta

(
B

Bp

)2

− 5

2

cT ′a
eaBpvta

], (4)

where prime denotes d/dr, R is the major radius, r is the local minor radius, C1 = 2,

q is the safety factor, q‖a is the parallel heat flow, Ta is the temperature, and subscript rp

indicates ripple plateau regime. We have approximated Hamada coordinates with cylindrical

coordinates in Eq. (4). Note that electron ripple plateau viscosity is much smaller than that

of ions and can be neglected. Because we are interested in the case Upm ∼ 1 and Bp/B ¿ 1,

we conclude ripple plateau viscosity mainly damps toroidal flow. Indeed, for Ti = 5 keV,

R = 2.6 m, q = 2.5, N = 20, and δ = 1.3×10−3, the toroidal momentum damping time τM is

τ−1
M = (

√
π/2)C1(vti/Rq) (Nqδ2/2) ' 11.6 s−1 or τM = 0.086 s. Because this damping time

is much shorter than the diffusive neoclassical toroidal viscosity [20], we neglect the latter

contribution here. Note that the contribution from the ε cos θ variation of B to 〈B · ∇ · π〉
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is ignored in Eq. (4) because we assume that toroidally trapped particles are in the banana

regime which contributes to the nonlinear viscosity.

Ripple trapping induced particle flux has several collisionality regimes. Here, we only

employ the 1/ν flux Γ1/ν calculated in Refs. [15] and [21] to demonstrate the fundamental

bifurcation physics. The corresponding viscosity is [13]

〈Bp ·∇ · πi〉1/ν = −〈Bt ·∇ · πi〉1/ν = −e
c
BpBΓ1/ν

= − 64G(α)

9(2π)3/2
niε

2δ3/2
(
cTi
eBr

)2 27.4

νi

[(
p′i
pi
− eEr

Ti

)
+ 2.37

T ′i
Ti

] (
eBBp

c

)
, (5)

where α = ε/(Nqδ), and νi is ion-ion-collision frequency. Note that G(α) is a function that

accounts for the variation of the local ripple well depth, and for α À 1, G(α) ' 0.02/α3

[15]. It is obvious from Eq. (5) 〈B · ∇ · πi〉1/ν = 0. Because electron 1/ν flux is smaller

than that of ions, it is neglected.

The nonlinear resonant plasma viscosity due to banana and circulating particles is [22,23]

〈B · ∇ · π〉n = namaB
2

(
µ1aUθa +

2

5
µ2a

qθa
pa

)
(6)

where the subscript n indicates nonlinear viscosity, Uθa = (vta/B)[V‖a/vta − cEr/(Bpvta) +

cp′a/(naeavtaBp)], and qθa/pa = (vta/B)
[
q‖a/(pavta) + (5/2)cT ′a/(eavtaBp)

]
. Because V‖e ≈

V‖i ¿ vte, and cEr/(Bpvte) ¿ 1, electron viscosity is not affected in the regime where

Upm ∼ 1, standard electron viscosity coefficients [24] apply. The ion nonlinear resonant

viscosity coefficients are [22,23] (µ1i, µ2i) =

∞∫
|Upm|

dx x4e−x
2 κBκps
κB + κps

(1, x2 − 5/2), where

κps(x) = (νiε
2/2
√
π)

1∫
−1

dy(1− 3y2) (ν∗x/νi)×
{
(y + Upm/x)

2 +
(
ν∗ε

3/2νT (x)/νix
)2
}−1

, ν∗ =

νiRq/(ε
3/2vti), νT = 3νD(x) + νE(x) is the anisotropy relaxation frequency, κB(x) = 1.46

√
ε

νD(8/3
√
π)
(
1− 3U2

pm/x
2)IF(1 + Upm/x

2
)−3/2

, IF = (1 − U2
pm/x

2) + (ν‖/νD)U2
pm/x

2, νD, νE,

and ν‖ are defined in Ref. [24]. In the limit of |Upm| → 0, Eq. (6) reproduces standard

viscosity coefficients that connect smoothly all collisionality regimes.

The nonlinearity in Eqs. (2) and (3) is in nonlinear viscosity shown in Eq. (6). Because

of this nonlinearity, Upm can have bifurcated solutions. To show this, for simplicity, we
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assume particle source Sna vanishes. The momentum source can be eliminated by assuming

〈B ·∑a Sma〉 ≈ 〈Bt ·
∑
a Sma〉 and subtracting Eq. (3) from Eq. (2) to obtain〈

Bp ·∇ ·
∑
a

πa

〉
= 0, (7)

which is basically the poloidal momentum balance equation. Because 〈B · ∇ · πa〉n =

〈Bp ·∇ · πa〉n in Hamada coordinates, the explicity expression for Eq. (7) is

〈Bp ·∇ ·
∑
a πa〉n + 〈Bp ·∇ ·

∑
a πa〉1/ν = 0. Substituting Eqs. (5) and (6) into (7), we

obtain a dimensionless bifurcation equation

Miµ1i

Meµ1e

(
Upm − A

)
= −Upm −B

− 1

Nq

32G(α)

9(2π)3/2

1

ν∗eν∗δ

(
νe
√
ε

µ1e

)
27.4

(
Upm −

V‖i
vti
− C

)
, (8)

where ν∗e = νeRq/(vteε
3/2), νe is the electron-electron collision frequency, ν∗δ =

νiR/(vtiNδ
3/2), A = −[c/(evtiBp)](p

′
i/ni +µ2iT

′
i/µ1i), B = −[c/(evtiBp)](p

′
e/ni +µ2eT

′
e/µ1e),

and C = −[c/(eBpvti)](p
′
i/ni + 2.37T ′i ). Parallel heat flows are ignored in Eq. (8) because

heat frictions are larger than heat viscosities in a large aspect ratio tokamak and to the

leading order q‖i ≈ q‖e ≈ 0. Note that
(
V‖i/vti

)
in Eq. (8) denotes the coupling between

Eq. (8) and Eq. (3). However, because |Upm| ∼ 1 and |V‖i/vti| < 1, we ignore
(
V‖i/vti

)
in

Eq. (8) and thus decouple Eqs. (3) and (8).

Equation (8) is a nonlinear equation for Upm. The solution is found graphically by

plotting the right side and left side of the equation versus Upm as shown in Figs. 1–3. The

parameters used are ne = 3× 1019 cm−3, A = B = 0.2, Te = 5.5 keV, B = 4.6 T, R = 2.6 m,

a = 0.8 m, ε = 0.1, N = 20, q = 2.5, δ = 1.3 × 10−3, and V‖i/vti = 0. In Fig. 1, for

Ti = 5.5 keV and C = 0.8, there is only one solution and Upm < 1. This is the conventional

solution. As C and Ti increase to C = 2.75 and Ti = 6.5 keV, there can be three solutions

as shown in Fig. 2. One of the new solutions, the one in the middle, is unstable. The other

stable new solution is in the Upm > 1 regime. When C and Ti increase further to C = 3.0

and Ti = 7.5 keV, the conventional solution disappears and only the stable Upm > 1 solution

exists. Note that the most effective way to increase C is to increase ion temperature gradient
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because the numerical coefficient in front of dTi/dr is larger than that of dne/dr. When the

heating power increases, both Ti and C increase. As Ti and C increase, Upm increases and

eventually bifurcates from Upm < 1 to Upm > 1 regime. This sudden increase of Upm is

similar to the observed abrupt jump of Er in ERS mode in TFTR. The bifurcated value of

Upm is about 2 in this example. The observed Upm is greater than unity [11].

After bifurcation, turbulence fluctuation level is reduced by a factor of 1/[1 + κ(ω′)2],

where ω′ is the radial gradient of the E ×B and diamagnetic angular velocity, and κ is a

normalization constant, and plasma confinement improves [25]– [27].

The fact that magnetic shear is reversed is not employed explicitly in the theory. It could

be that reversed magnetic shear stabilizes magnetohydrodynamic (MHD) activities, such as

sawteeth, and therefore reduces magnetic stress associated with the perturbed J ×B force.

Magnetic stress increases non-ambipolar electron loss and may prevent bifurcation of Upm. It

could also be that turbulence fluctuation levels are lower inside the qmin radius [28], therefore

it is easier to increase Ti and dTi/dr with heating power inside qmin radius, which in turn

facilitate the bifurcation. Here qmin is the minimum value of q.

The plasma parameters in Figs. 1–3 are at the tail-end of 1/ν regime. If Ti increase

further, ripple trapping viscosity will move into the ν regime [14] and its magnitude will

decrease as ν decreases. This is the likely cause for the ultimate relaxation of Upm. The

other possible cause is the magnetic stress associated with the MHD activity observed after

bifurcation. The effect of neutral change exchange momentum loss [29] on the value of Upm

can be important because for high temperature plasmas, nonlinear viscosity is weak. These

issues will be addressed separately.

In summary, we develop a theory for enhanced reversed shear mode [30]. The physical

process is as follows: (1) Reversed magnetic shear stabilizes MHD activities which reduces

magnetic stress and reduces the turbulence fluctuations inside qmin radius; (2) When the

heating power increases, both Ti and dTi/dr increase. This leads to bifurcation of Upm;

(3) After Upm bifurcation, turbulence fluctuation level reduces by a factor of 1/[1 + κ(ω′)2];

(4) Evolution of the plasma profiles relaxes Upm; (5) However, (ω′)2 is still substantial to
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suppress turbulence fluctuations and improve plasma confinement.
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FIGURE CAPTIONS

FIG. 1. Right side (RHS) and left side (LHS) of Eq. (8) versus Upm. There is one solution

which corresponds to the conventional confinement mode.

FIG. 2. As Ti and C increase, the value of Upm increases. Here, there are three solutions.

The one in the middle is unstable. The solution with the longest value of Upm is

the new stable solution, which corresponds to the ERS mode.

FIG. 3. When Ti and C increase further, only the ERS mode solution exists.
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