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Theory of exciton transport with quadratic exciton-phonon 
coupling8
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The coupling of excitons with phonons is an important process determining the mechanism of exciton 

transport in molecular crystals. Although linear exciton-phonon coupling has been extensively treated 

before, there has been little work on quadratic coupling. In this paper the theory of exciton transport is 

extended to take weak quadratic coupling into account, and the diffusion constant computed for a simple 

model. The results are qualitatively similar to those obtained from other treatments of linear and 

quadratic coupling, and may show a rather weak temperature dependence. 

I. INTRODUCTION 

Exciton transport in molecular solids depends strongly 

on the coupling of excitons to phonons. In recent years 

there has been a number of theoretical papers dealing 
with subject from a variety of viewpoints. I-a The later 

papers 4
-

a attempt to derive an equation for the trans

port of excitons from a model Hamiltonian without as
suming a transport mechanism (i. e., hopping or band

like) and then finding the mean square displacement and 

diffusion constant. In some of these6
-

a the exciton

phonon coupling is assumed to be a Gaussian stochastic 

process which allows an exact equation to be found. 

However, in order for the strength of the coupling to be 
related to the parameters of the crystal in some way, 

a particular form of the exciton-phonon coupling must 
be assumed. In other papers3

-
5 such a form is as

sumed from the outset and an approximate equation 

derived using some variant of time dependent perturba

tion theory. Kenkre and Knox5 use a form which leads 

them to a generalized master equation, while Grover and 
Silbey's treatment4

(a) leads to an equation similar to 

that of Haken et al. 6 

Grover and Silbey 4(a) assume a linear phonon-exciton 

coupling, i. e., one which assumes that the frequency 
of the mode is unchanged while the equilibrium position 

is changed upon electronic excitation. This approach is 

similar in spirit to the work on the small polaron. 9 In 

contrast, Munn and Siebrand3 assume quadratic cou

pling, i. e., that the frequency changes while the equi
librium position does not. If the mode we are speaking 
of is a symmetric intramolecular mode, then usually 

the linear coupling dominates; however, for modes of 
certain symmetries (e. g., out of plane bending modes 

in aromatic hydrocarbons) the linear term vanishes and 
quadratic coupling then dominates. 10 Certain aspects 

of the Munn-Siebrand treatment were criticized recently 
by Druger ll because they had not been derived from the 
Hamiltonian directly, but instead were assumed ''heuris
tically." In the present paper we investigate exciton 
transport for a model Hamiltonian with both linear and 
quadratic coupling. The results are broadly consistent 
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with earlier treatments3
-

6 and with the experimental re

sults. 

In addition to its effect on exciton transport, quadratic 

exciton-phonon coupling has a marked effect on spectral 
properties. 12

,13 In fact, one of the principal reasons for 

treating quadratic coupling is that it is the dominant 

mechanism for broadening the zero phonon line for a 

single impurity14 and for an exciton. 6 In the theory to 

be presented here, which is valid for the case of an 

exciton bandwidth much smaller than the vibrational fre

quency, the local scattering term6 arises entirely from 

quadratic terms. 15 This theory treats relaxed exciton 

transport and so neglects relaxation effects which may 
also contribute to the local scattering. 

In the present paper we assume a model exciton
phonon Hamiltonian containing both linear and quadratic 

coupling terms; after some transformations an equa

tion of motion for the denSity matrix is derived, which 

is solved to give the diffusion constant. Various limit
ing cases are discussed. 

There is a major difference between the treatment of 
linear and quadratic coupling terms: All (local) linear 

terms can be removed by a unitary transformation, 
while this is impossible for quadratic terms. It is this 

which gives rise to the local scattering terms as well 
as to bound multiple particle states. 12,16 This can cause 

trouble for the perturbation theory we use if the quadrat

ic coupling is too large. In the present paper we deal 

with weak quadratic coupling, reserving the treatment 
of strong coupling to a later paper. 

II. MODEL HAMILTONIAN AND 

TRANSFORMATION 

The Hamiltonian we consider for an exciton interact
ing both linearly and quadratically with phonons (for 
one exciton band and one phonon band) is given in site 
space by 

H = L: €a~an + L: Jnma~am + L: w(b~bn + t) 
" ".m n 

+ L: Knm b~bm + g L: a~an(bn + b~)2 + L: Gnm a~an(bm + b;') 
mn n nm 

(2.1) 
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2440 R. W. Munn and R. Silbey: Theory of exciton transport 

and in wave vector space by 

(2.2) 
where 

(2.3a) 

w = w + '" K e'~' (II-m) 
~ L.J nm , (2.3b) 

n 

(2.3c) 

and Jnm and Gnm are functions of n - m only. In these 

equations a~(an) represents the creation (destruction) 

operator for an exciton on site n, while b~(bn) is a crea

tion (destruction) operator of a phonon on site n. Note 

that we have neglected nonlocal contributions (i. e., 

- a~ am) to the exciton-phonon coupling. Many of these 

can be handled by the present treatment; however, inor

der to avoid unnecessary complications we have left 

them out. 

The linear coupling constant Gn-m is proportional to 
the change of the energy of an exciton on site n when the 

phonon coordinate on site m is changed. It is therefore 

directly related to the change in equilibrium position 

of the mode upon electronic excitation. If the mode 

we are considering is a molecular vibration, then Go 

may be large, while Gn(n '" 0) will usually be quite small. 
In this case the "polaron" binding energy (difference be

tween the energy of the excited molecule in the equi

librium positions of the ground and excited states) will 

be G~/ w. In the case of extended modes the polaron 

binding energy will be Lq(G~/Wq). The quadratic cou

pling constant g is related to the change in frequency of 

the oscillator upon electronic excitation. 

In order to make these statements clearer as well 

as motivate the transformations to follow, w~ will con

sider a simplified Hamiltonian-that of a single mole

cule: 

h= Ea+a + w(b'b +i) +ga+a(b + b+)2 + Ga+a(b + b+). (2.4) 

If g=O, then a transformation of the phonon co

ordinate will diagonalize h [under the condition that 

(a+ a)2 = a+ a which is obeyed for excitons]. The trans

formation is given by the following: 

h j = eUjhe-Uj = (E - G2/w)a+a + w(b+b +i) , (2.5) 

Uj(G)=-(G/w)a+a(b-b+) , (2.6) 

so that 

(2.7) 

If G = 0, then in order to bring h into a simple form 

the required transformation is given by 

h2= eU2he-u2 = E(a+a) + (w' - w)a+a(b+b+i) + w(b+b +i) , 

(2.8) 

U2 = ya+ a(b2 - b+2) , 

eU2 be-u2 = b cosh2y + b+ sinh2y , 

(2.9) 

(2.10) 

1'= -tlog(1 + 4g/w) = -~log(w'/w) , (2.11) 

where w' is the frequency of the mode in the excited 

electronic state and w is the frequency in the ground 

state. Note that h2 still contains terms which couple 

exciton operators and phonon operators, so that re

moval of the coupling is not possible. However, the 

eigenstates of h2 are still easily found [they are (b+)"1 0), 

and (a+)(b+)nl 0), all n]. 

In the case in which g'" 0 and G '" 0, h can still be 

transformed into a form like h2 by a sequence of trans

formations. The simplest procedure is to remove the 

quadratic terms using u2' This changes the linear cou

pling constant from G to Ge2Y since (b + b+) - e2Y(b + b+) 

under u2' Then apply Uj with G replaced by Ge 2Y w/ w' 
= Ge6Y . Thus, 

h3= eUj(Ge6Yl eU2he-U2e-Uj(Ge6Y) = (E - G2eBY /w)a+a 

+(w' -w)a+a(b'b+i) +w(b+b+i) . (2. 12) 

This may be rewritten as 

h= e-U2e-Uj(Ge6Y)h eUj(Ge6Y)e-U2 
3 (2.13) 

= (E- G:BY)A+A+(W' -w)A+A(B+B+i)+w(B+B+i) , 

where A=e-u2e-Uj(Ge6YlaeUj(Ge6Y)eU2, etc. This transfor

mation could be accomplished in a reverse order, by 

first removing all the linear terms (including those 

produced from the quadratic term when Uj is applied) 

and then removing the quadratic terms. The results 

are, of course, identical. For completeness we pre

sentthe details of this order of performing the trans

formations. Beginning with Eq. (2.4) we transform h 

as in Eq. (2.5) with G/(1 + 4g/ w) = GeBY replacing G; this 

results in a Hamiltonian like Eq. (2.4) except that the 

linear coupling is absent. We then transform as in Eq. 

(2. 8) with I' as given before. 

Thus, the total transformation which brings h [Eq. 

(2.4)] into the form of Eq. (2.13) can be written as 

(2.14) 

These can be combined into one exponential form
j3 

by 

noting that 

[U2' Uj(G)]= -2yuj(G) . (2.15) 

Using standard algebraic manipulations j1 we find 

e-u2 e- Uj (Gl = exp - [U2 + (1 ~:-2Y ) Uj (G)] , (2. 16a) 

e-Uj(G)e-U2=exp-[U2+C2~y_1) Ul(G~, (2. 16b) 

so that both transformations in Eq. (2.14) can be written 

as 

exp [ - y(b
2 

- b+
2
) + (1 2!:~;y ) ; (b - b+)] • (2.17) 

We are now in a position to apply these results to the 

exciton-phonon Hamiltonian of Eq. (2.1). We first 

transform Eq. (2.1) with exp(S), with 

S= - N-1/ 2 '" e-I~'" Q a+a (b - b+ ) L...J Ann A -A 
(2.18) 

n,>' 
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and 

Q~ === Q~~ === G~w~1 _ 4g 

X(N-1 ~ e~, w-~\)/ (1 +4gW
l ~ w;!) , (2.19) 

so that if w~ === w, G~ "" e, all A, Q === e(1 + 4g/ wtt as in the 
simplified case discussed above. Under this transfor

mation we find 

+ L w(b~bn + ~) + L Knmb~bm + L ga~an(bn + b~)2 , 
n n.m n 

(2.20) 

where 

1/Jn= exp [ N-1I2 ~ e-f~'IIQ~(b>. - b:~)J 

(' = f._Wi L le~12w~1 + 4g 
~ 

X(W1 ~ e~w;:l) 2 ~ + 4gW I ~ w;:I)-1 (2.21) 

We now transform HI so as to remove the terms in b~ 

and b~2: 

H2=e THI e-T = L (Ia~an + L Jnma~ e;.eT1/J~1/Jme-Temam + L (w' - w)a~an(b~bn +~) + L w(b~bn +~) 
n nm n n 

+ L: Knmb~bm + (cosh2y -1) L Knmb~bm(a~an + a~am) + sinh2y L: Knma+ mam(b~b~ + bnbm) , 
nm nm nm 

(2. 22) 

with 

(2. 23a) 
n 

(2. 23b) 

Thus, 

+ N-1 L a~an {em ->.' )'1\ b~b~, [w' - w + (cosh2y -1)(K~ + K~.)] + K~ sinh2y(el(>'+'-' )·Ilb~b~. + e-f(~+~' )'lIb~b~.)}, (2.24) 
n~~,t 

where 

(2.25) 

Note that the term eT1/J~1/Jme-T appears to the left of an exciton destruction operator and to the right of an exciton crea

tion operator, so in one exciton space eT1/J~1/Jme-T can be replaced by 1/J;1/Jm' 

With this form of H2 we can now rewrite H in terms of the transformed operators 

An= e-Se-TaneTeS , 

Bn=e-Se-TbneTeS, 

to find 

(2. t6a) 

(2. 26b) 

H = L [(I + (w' - w)/2] A~ An + L JnmA;,e;.1/J~1/Jm emAm + L w~(B; B~ + t) 
n nm ), 

+ -N
1 L A~An[Qu.ef(~->")·IlB~B~, +Kxsinh2y(el(~+~·)·"B~B~. +e-f(~+~·)·"BxB~.)], 

nAA' 

(2.27) 

where QQQ' === w' - w + (cosh2y-l)(K
Q 

+ KQ.). We follow the 

usual procedure of averaging exciton-phonon coupling 

terms over a canonical ensemble of phonons, and add 
and subtract the average to find 

H=Ho+V, (2.28) 

Ho= L [(I + (w' - w)/2]A~An + L j nmA~Am 
" 

(2.29) 

V=== L Jnm«(J~l/!~l/!mem 
11m 

-(e;l/!~l/!mem»A~m + L VnnA~An' (2.30) 
II 

j 

(2.31) 

V N -l "" [Q (1 " ) f(A->" )'11 B+ B 
lin = L.... ~x' - 'Ju, e A A' 

U· 

+ K~ sinh2y(ef(A+A' )'11 B~ B~, + e-f(>.+A· )'11 Bx Bx')] . 

(2.32) 

In the above we have taken the QQQ term into Ho by noting 

that L: II A;; An = 1 in one exciton space. This choice of 

Ho is reasonable on several grounds: (1) the eigenstates 
of Ho are also eigenstates of total wavevector; (2) the 

perturbation V has zero average and will not give rise 

to secular terms in perturbation theory; and (3) this 

procedure i's close in spirit to the modified Rayleigh 

Schrodinger perturbation theory of Rubinstejn and 
Yaris. 18 
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2442 R. W. Munn and R. Silbey: Theory of exciton transport 

Before going on to the approximate exciton transport 

equations, we must mention a problem which restricts 

our results to weak quadratic coupling. In the case of 

strong quadratic coupling the coupled exciton-phonon 

system can have a spectrum which is greatly modified 

from that of Ho. This occurs when the frequency change 

(w' - w) is large enough so that bound exciton-n 
phonon (n?l) bands appear. 12,16 The precursor oc

curs for Jnm == Knm == 0 when the one exciton-one phonon 

levels can have two energies E: + w (N 2 
- N states) and 

E: + w' (N states). When Jnm and Knm are nonzero these 

states broaden into two bands (a bound state band and a 

band of scattering states). If the perturbation (w' - w) 

is large enough, the time dependence of the denSity ma

trix will be very complicated due to the bound state 

band. However, if Wi - w is small, the bound states and 
scattering states will be well mixed, so that the effect 

of the bound states on the time dependence will be small. 

In what follows we assume that the eigenstates of Ho are 

close to those of H, i. e., that bound states are unim

portant. 

III. DERIVATION OF TRANSPORT EQUATIONS 

The equation of motion for the elements of the exciton 

denSity matrix in the site representation was derived by 

Grover and Silbey. 4(a) In the approximation (expiHo,ext)pq 

== opq, valid for weak intersite coupling J, the result can 

be written as 

- st Pnm (t) == - i L [Jnp Ppm (t) - Pnp (t)jpmJ - L dT 
p ~r 0 

x lhnppr(t - T) Prm ( T) + hrppm ( T - t)pnr ( T) 

- hrmnp(t - T)ppr(T) - hrmnp(T - t)Ppr(T)] , (3.1) 

where 

(3.2) 

(The quantities hpqrs differ somewhat from the gpqrs used 
previously. 4(a),19, 20) 

We simplify Eq. (3.1) to the case of a linear chain 

with nearest-neighbor coupling. There are then four 

Significant types of correlation hpqrs : 

ho whenp==q==r==s; 

hi when p== sand q = r= s ± 1 

or p = rand q = s = r ± 1 

h3 whenp=q=r=s±1 

orp±1=q=r=s; 

h5 when p = q = r ± 1 = s ± 1 

Equations of motion involving ho and hi have been pub
lished previously. 4(a), 6, 21 The terms in h3 arise from 

cross coupling between the local and nonlocal parts of 

V, those in h5 from coupling between the local parts at 

adjacent sites. Here h3 turns out to be negligible but 

h5 is comparable with ho (see Sec. IV. B), contrary to 

the usual assumption6 that h5 is negligible compared 

with ho• 

The simplified equation of motion is 

Pnm(t) = - d[ Pn+I,m(t) + P"..I, m(t) - Pn, m+l (t) - Pn, m-l (t)] - 2 {[2h1 + (1 - onm)ho] * Pnm - hi * (Pn-l,n-I + Pn+l, n+l)linm 

- (1 - 0nm)h3 * (Pn+I, m + P"..I,m + Pn,m+l + Pn, m-I) + (lin, m+l + lin,m-l) [h3 * (Pnn + Pmm) - hi *Pmn - h5 *PnmJ} , (3.2) 

where the asterisk denotes a convolution 

f
t t 

j*g= 0 dtj(t - T)g(T) = 50 dtj(T)g(t - T) (3.3) 

The equation of motion (3.2) assumes that hnmmn = hnmnm' 

which is valid at long times, when each is equal to hi' 

However, at short times hnmnm is a different quantity, 

denoted by h4, which replaces hi in the last term of 

Eq. (3.2). This changes the off-diagonal terms, but 
not the diagonal ones. 20 

We now make the conventional assumption4(a),5 that 

vibrational relaxation is fast compared with exciton 

transfer j« K (the "slow-exciton" limit7). This means 

that h(t - T) is Significant only for times T close to ~, 

allowing the separation 

fot h(t-T)p(T)dTo:p(t) fot h(t-T)dT. (3.4) 

Furthermore, the integral of h will have reached its 

asymptotic value for times less than a nanosecond, 

which are short compared with triplet exciton lifetimes. 

We can therefore replace the right-hand side of Eq. 
(3.4) by "Ynp(t) for t?1 ns, where 

(3.5) 

Transport is studied through the exciton mean square 

displacement 

(R
2
(t» = a

2 L n2
Pnn(t) , (3.6) 

n 

where a is the lattice spacing. We are concerned here 

mainly with the diffusion coefficient D, given byl9 

(3.7) 

as t - 00 • Since ho and the new terms h3 and h5 do not 
contribute to Pnm the expression for D is exactly the 

same as derived previously, 19 and can be written as 

D/2a2 
="Yl + ijXI , (3.8) 

where 

(3.9) 

These results arise because the trace of the density 

matrix is unity, and can be derived19 before making the 

assumption (3.4). Differences from the previous re

sults arise from the inclusion of "Yo and "Y5' and, more 
fundamentally, of "Y3' The equation of motion of XI is 
obtained, after relabeling of the summation variable, 

in the form 

(3. 10) 

J. Chern. Phys., Vol. 68, No.5, 1 March 1978 
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As can be seen, Y3 couples XI to the next member of the 
set Xp. The higher members are related through the 
equations for p~ 2: 

Xp = - 2(2Yl + Yo)Xp + 4Y3(Xp_I + Xp+1) • (3.11) 

The coupled equations (3.10) and (3.11) can be solved 
in a straightforward way for small Y3 by Laplace trans
formation, yielding XI as a complicated combination of 
exponential and hyperbolic functions of time. For long 
times the equations are readily soluble for arbitrary 
Y3 by applying the steady-state condition Xp= 0 for all 
p (necessary to obtain a constant diffusion coefficient). 
The equations (3.11) have the solution 

Xp= YZP , 

Z = [1 - (1 - W2)1/2]/W , 

W= 4ys/(2YI +Yo) . 

(3.12) 

(3.13) 

(3.14) 

The value of Y is obtained by substitution in Eq. (3.10), 

with the result 

-ij 
Y - -.,.--------....". 

- 2Z[3YI + Yo - Y5 - 2Y3Z l 
(3.15) 

Finally, XI is found to be 

XI = - U/ {4YI + Yo - 2Y5 + [(2YI + YO)2 _16y~p/2}, (3.16) 

yielding D on substitution in Eq. (3.8). All these re
sults assume W< 1, appropriate for small Y3' In the 

limit h = 0 we obtain 

XI = - U/ [2(3Yt + Yo - Y5)] , (3.17) 

as follows directly from Eq. (3.10) inthis limit. Hence

forth, Y3 will be treated as zero (see Sec. IV.D). 

The diffusion coefficient is found to be 

(3.18) 

an algebraic form similar to that obtained previously. 4(a) 

This expression apparently allows the unphysical result 
that D can be negative if Y5 is large enough, but this is 
not so since Yo and Y5 each arise from the correlation 
hnnmm (with n = m and n = m ± 1 , respectively) in such a 

way that Yo> h. 

Transport at short times is readily treated, because 
the results are the same as for linear coupling. 2o The 

mean square displacement changes at a rate 

(3.19) 

where YI(t) is given by Eq. (3.5) with the upper limit of 
the integral as t instead of 00. For an exciton density 
matrix which is diagonal at t= 0 the right-hand side of 
Eq. (3. 19) is zero at t = 0, so that (R2(t» varies initially 
as t2

• The proportionality constant depends on X I (0) 

=-U and YI(O)=hl(O). Now 

hl(O) =J2«rt,,1/J~1/Jm8mo;,.1/J~1/Jn8n) 

- <rt,,1/J~1/Jm 8m) <o;,.1/J~1/Jn8n» , 

where m=n±l, and since rt,,1/J~1/Jn8n=1, 

h1(0)=J2 _j2 , 

(3.20) 

(3.21) 

a result which is seen to depend on the unitary nature 

of the canonical transformation. Combining these re
sults we find that at short times the exciton moves with 
a constant acceleration 4a2J2 governed by the bare ex

citon transfer integral. Since transfer of the bare ex
citon is involved, the result is the same as for linear 
coupling: The nature of the coupling affects only the 
clothing time and the subsequent clothed transport. 

IV. CALCULATION OF CORRELATION FUNCTIONS 

A. Principles 

Calculating the correlation functions is the core of 
the transport problem. Apart from j, the correlation 
functions are the only place where details of the phonons 
enter and the temperature dependence arises. These 
calculations carry the treatment beyond the phenomeno
logical theory6 and give expreSSion to the formal results 
of the GME treatment. 5 Such advantages are bought at 

the cost of complexity, and we are unable to perform 
the calculations exactly for quadratic coupling, unlike 
linear coupling. 4 A guide to suitable approximations is 
provided by considering what properties the correla

tions must have. In order to make the presentation 
simple we neglect linear coupling from here on; such 
terms can be handled in the same manner as before. 

We have to calculate the correlations hn(t) which are 
then integrated over time from 0 to 00 to give the Yn • It 

is therefore necessary for the hn(t) to decay to zero suf
ficiently rapidly as t_ oo , Le., for the correlations to 
die away. This "ergodicity" arises because of the 
coarse graining or averaging over the phonon distribu
tion, 5 which causes detailed information to be lost and 
ensures irreversibility. A further consequence is that 
the phonon distribution must be continuous. This re
quirement is satisfied by transforming sums over phonon 
states into integrals over a phonon frequency distribu
tion. Although the present treatment has been simplified 
to apply to a linear-chain model of a crystal, a strictly 
one-dimensional phonon frequency distribution is not 

admissible because the infinites at the band edges 
cause the diffusion to diverge. 3,4(a) 

B. Local correlations 

Here we treat the correlations hnnmm(t) which arise 
from the terms 

-sinh2yK~(ef(~+")nB~B:+e-/(~+")n~B,,)], (4.1) 

where 

(4.2) 

The thermal averaging over products of phonon operators 
is straightforward and eliminates terms containing dif
ferent numbers of creation and annihilation operators, 
leaving 

+sinh22y L: K~(K~ +K")[e/(~+")(n-m)ef(w~+w,,)tv~v,, 

~" 
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where 

v). = (e8w
). -1)"1 (4.4) 

is the thermal average number of phonons is a mode of 
frequency w).({3=l/kT). It can be seen that hnnmm(t) de
pends on n - m through the leading exponential in each 

termofEq. (4.3). Whenn=m, i.e., inho, these 
terms are unity; when n == m + 1, i. e., in h5 these terms 
vary like COS(A ± fJ.), so that ho - h5 > 0 as stated earlier. 
The problem now is to transform the sums into integrals 
over the phonon distribution. This causes the oscilla
tory exponentials to decay and permits Yo - Y5 to be 
evaluated. 

Perhaps the most convenient form of frequency dis
tribution for optical phonons is the Lorentzian 

~/rr 
P(W1) == ~2 + wi (4.5) 

where ~ characterizes the width and w1 is the frequency 
measured from the mean frequency w. However, in 
the present case this density of states does not give a 
convergent integral for the terms involving K2 - wi. 
In practice, these terms would be small, varying as 
~2y2 compared with w2y2, and we shall omit them, so 

that we take 

h (t) N -2( I )2"" ej().-")(n-m)e/(w).-w,,lt V,(V .. + 1) . 
nnmm == W - w L.J A ~ 

).~" 

(4.6) 

Alternatively, convergence can be ensured by using the 
Gaussian frequency distribution22 

(4.7) 

although this is mathematically more involved. In ad
dition to P(W1) we need the corresponding dispersion 
law, because the summand in Eq. (4.6) depends ex
plicitly on wave vector as well as on frequency. The 
result, derived in Appendix A, is 

Wt(A) = ± ~ tan%A . (4.8) 

Using standard trigonometric formulae to obtain COSA 
and sinA as functions of w1 we find 

ell. = (~±iwV/(~ 'f iwi) , (4.9) 

which now permits Eq. (4.6) to be evaluated. In order 
to obtain a correlation function which decays as t - 00 

it is necessary to choose the upper sign in Eq. (4.9) 

when m> n and the lower sign when m < n. 

We ignore the small variation of v). with wI. and replace 
it by its value for the central frequency v'" v(w). Then 
the sums in Eq. (4.6) can be expressed as integrals 
which are found to be equal 

hnnmm(t)=v(v + l)(w' -w)2I~_m' 

where for n> m we can express In-m as 

( ~ ) f'''' (~ -iW1)n-m-t Iw t 

In-m == 2rr _'" dW1 (~ + iW1)n-m,l e 1 

(4.10) 

(4.11) 

and P(W1) has been halved because only one branch of the 

dispersion curve has been used. For n = m the disper
sion curve is not needed, P(W1) is not halved, and 10 is 
the Fourier transform of P(W1), i. e. , 

(4.12) 

The other integrals can be evaluated by contour inte
gration, closing the contour in the upper half -plane. As 

a function of u = w1 - i~ the integrand is 

(4.13) 

where r= n - m?- 1. The residue at w1 = i~ is the coeffi
cient of u-1 in the series expansion of Eq. (4.13), which 

is found to be 
T-1 

ite-at(r-l)! L (-2~W/s!(s+1)! (r-l-s)! (4.14) 
s=o 

The integral thus becomes 

1 =(-lr't~te-atf (r-l)!(-2~t)S 
r s=o s!(s+l)!(r-l-s)1 

(4.15) 

which can be expressed in terms of the gamma function 
as 

Using the result23 

r(r)/r(r-s)=(-l)S(-r+l)s, 

where 

(a)s'" a(a + 1) ... (a + s -1) , 

we obtain 

Ir = (_1)',1 M e-M f (- r+ 1)8 (2~,W 
s=o (2)8 s. 

=(-1)"1~te-at1F1(-r+l;2;2~t) , 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

where 1F1(a; (3; z) is the confluent hypergeometric func
tion. But according to one definition24 the associated 
Laguerre polynomials are given by 

a() (n+a)! ( 1) 
Ln x =-,-,- 1F1 -n;a+ ;x , 

n. a. 

so that finally we can write 

IT= (_1),,1 Me-at L!_1(2~t)/r • 

The required correlation functions are 

Ynnmm=v(v+l)(w' _W)2 fa'" [In-m(t)]2dt. 

(4.21) 

(4.22) 

(4.23) 

For Yo the integration with Eq. (4.12) is standard, yield
ing 

(w' - W)2 
Yo = v(v + 1) 2~ (4.24) 

For the other correlation functions the required quantity 

is 

a(T)", [v(v + l)(w' - w)2/8,-2~] fa'" L~_1(X)2X2 e-x ax . 

(4.25) 

But from Ref. 24, Eq. (7.414.10), 
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(4.26) 

where Rea> -t, Reb>O, n is an integer, and 2Ft«(1I, f3; 
y; z) is the hypergeometric function. For the integral 
in Eq. (4.25) we require a= 1 = band n=r-1. This 
makes the argument of the hypergeometric function 
unity, when it is given by (Ref. 23, p. 23) 

The integral in Eq. (4.25) is then equal to 

4rWr(r - t)( - r)r-t 

IT[(r -1)! ya - r)r-t 

(4. 27a) 

(4.27b) 

which with Eq. (4.17) and the result (Ref. 23, p. 17) 

(1 - (11 - n)s = (-1)S«(1I)n /«(1I)n-s (4.28) 

yields 

- 2rr(3/2}r(- t)/1r(r -1)! 

Finally, using r(n + 1) = n r(n) and r(t} = lTt / 2 we 

evaluate Eq. (4.29) as 2rj(r -1)!, which leads to 

In particular, for r= 1 we have 

Y5 = v(v + 1)(w' - W}2j 4.6. = ho , 

(4.29) 

(4.30) 

(4.31) 

so that Yo - Y5> 0 as stated earlier. The next correla
tion function, with r= 2, is only a further factor of 2 

smaller; if included in Eq. (3.2) it would introduce a 
next-nearest-neighbor coupling term which has no ef
fect on transport for Y3 = 0 but otherwise would con
siderably complicate Eqs. (3.10) and (3.11). 

C. Nonlocal correlations 

Here we treat the correlations hnmmn(t) which arise 
from the term for m=n±1: 

Vnm = J(e~em - (If"e"j) , 

which leads to 

(4.32) 

Evaluation of this quantity also entails evaluating the re
normalized transfer integral 

(4.34) 

Because en is an exponential operator in the site repre
sentation, evaluating the thermal averages over the 
phonon distribution in the momentum representation 
proves to be difficult, particularly since the exponent 
is quadratic in the phonon operators. In the evaluation 
we have used both operator disentangling and coordinate
momentum representation techniques, which are de
scribed elsewhere. 25 We proceed through successively 
more complicated averages, aided by arguments from 
analogy and comparison with the results for linear cou
pling. 

For Einstein phonons the thermal averages decouple 

into averages for individual sites which are independent 

of site. We find 

W)E= (e)E={1 +2 sinh2(2y)[v2 + (v + 1)2]}-t/2 , 

(4.35) 

so that in this limit jjJ is the square of Eq. (4.35). 
Similarly, after lengthier algebra we obtain 

(e+(t)e)E = (e(t)e') E ={1 + [v 2 + (v + 1)2 

- v2e2iwt _ (v + 1}2e-21wt 1 sinh22y}-1I2 , (4.36) 

from which h(t) follows. Without dispersion the corre
lations do not decay, but with the ad hoc assumption that 
the time-dependent terms in Eq. (4. 36) decay to zero, 
ht(t) given by Eq. (4.33) tends to zero to second order 

in y. 

Once vibrational coupling is introduced, and the fre
quencies are not equal, the algebra becomes extremely 
complicated since the exponent in If"em contains terms 
coupling different momentum states. We proceed as 
follows: For a dimer the calculation of (e; (2 ) and 
(e~(t)e2(t)e; e t ) can be done exactly, but for an N

mer we have not succeeded in doing the calculation ex
actly. We therefore rely on the fact that in the limit 
that N is large the phonon coordinates are distributed 
in a Gaussian way and perform an approximate calcula

tion of the necessary correlation functions. To low 
order in y2 our results agree with the exact answers 
where they are known. 

For a dimer with frequencies w+ and w_ we find 

(4.37) 

which reduces to (8)2 in the Einstein limit. In addition, 
we find 

(B;(t)82(t) e; 8t ) = [1 + sinh22y(v.v_ + (v. + 1)(v_ + 1) 

- v.v_eHw+.w-)t _ (v. + 1)(v_ + 1)e- Hw.+w_)t tt. (4.38) 

For N coupled oscillators we use the fact that as N 

- 00 the phonons are Gaussian distributed, so that 
averages of products of phonon operators break up into 
pairs. For example, 

(e~ en+t) = (exp( - yC» 

=1 +y2(C 2 )j2! +y4(C 4)j4! + ... , 

(4.39) 

(4.40) 

where C= (B ~ - B~2 + B~ + t - B~t) and averages of odd 
powers of C are zero. Now C 4 can be broken into three 
pairs of averages (c2) because of the Gaussian property, 
leaving 

(4.41) 

Similarly, 

(4.42) 

= 1 + y2j2! [(C)2 - 2(C(t)C) + (C(t})2) +y4/4![(C 4) 

- 4( C(t}C 3
) + 6 (C(t)2C 2

) - 4 (C(t)3C) + (C(t)4) 1 + ... , 

(4.43) 
which yields eventually 
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1 + y2 [<e 2) - (e(t)e(o)] +-h4[(e 2) - (e(t)e(O)j2 + ... , 

(4.44) 
where we have used (e(t)2)=(e 2). Equation (4.44) 

correctly reduces to 1 as t - O. 

We can now proceed to construct functions for which 
Eqs. (4.41) and (4.4) are the leading terms in the 

series expansion in powers of y2. Because the results 

are not valid to all orders in y, more than one function 

may be admissible. For example, by analogy with the 

results for Einstein phonons Eqs. (4.35) and (4.36) we 

may equate equations. (4.41) and (4.44) to the leading 

terms in the expansion of the inverse square root of a 

biquadratic function of y. This yields 

(l1nen+l)::=[1-y2(e 2) +tl(e 2)2rI/2, (4.45) 

(e~(t) en+1(t)e;"1 en) ::= [1 - 2y2 D(t) + 2y4d(t)r 1 I 2 , (4.46) 

where 

(4.47) 

Alternatively, we can recognize Eqs. (4.41) and (4.44) 

as the leading terms in exponential series, so that 

(e~en+t) ::=exp[h2(e2) ] , 

(e~{t)en+l{t)e~+ten) ::=exp{y2 [(e 2
) - (e{t)e)]} . 

(4.48) 

(4.49) 

Although the forms (4.45) and (4.46) have perhaps better 

a priori justification, the exponential forms are equally 

good to O(y4), and have the advantage of being mathe

matically more tractable. Moreover, the exponential 
forms constructed in a similar way for linear coupling 

happen to give the exact result in that case. We there
fore use Eqs. (4.48) and (4.49) from now on. 

The averages (e 2
) and D(t) areevaluatedbygeneraliz

ing the results for the dimer expressed as double sums 

over the two momentum states. This procedure yields 

(e 2) = - (4/ N 2) L:[v~v" + (v~ + 1){v" + 1)][1 - cos(i\. + i.d] 
~" 

(4.50a) 

~-(4/N2)L:[V~V,,+(v~+1){v,,+1)] , (4.50b) 
A" 

where, in the last equation, we have assumed that the 
phonon frequencies are close enough to an Einstein dis

tribution so that the cos term is small. In addition, 

within this approximation 

D(t) = - (4/N 2) L: {v~v/L(1 - ej(w~+w/L)t) 
~" 

(4.51) 

We now replace the sums by integrals over frequency 

as in Sec. IV. B, setting v~::= V and introducing the 
Lorentzian density of states (4.5). Then we obtain 

(4.52) 

IXt) = - 4{v2 + (v + 1)2 - e-2t. t[v2e2lwt + (v + 1)2e-21wt ]} , 

(4.53) 

so that as t - 00, D(t) becomes constant. With this as
sumption we finally find 

j=Jexp{_2y2[v2+(v+1)2]} , (4.54) 

ht(t) = j2(exp{4y2 [v2e21 wt + (v + 1)2e- 12wt ] e-nt } -1) , 

(4.55) 
where it can be seen that h1(t) - 0 as t- 00, so that 
ergodic behavior is ensured. 

The correlation function Yl required for transport is 
given by 

Yl = ('" dt ht{t) 

=j2 fa'" dt{exp[j(t)]-1}. 

Now f (t) can be written as 

f(t)=4y2 e-2t.tv(V+1)(_v- e21wt+ v+1 e-2iwt ) 
v+1 v 

(4.56) 

(4.57) 

(4.58) 
where the two terms in the parentheses are inverse to 

one another. But the generating function for the modified 
Bessel functions is24 

+'" 

exp[ta(z+z-t)]= L: zklk(a) , (4.59) 
k;::"oo 

so that we have 

+'" k 

exp[j(t)]= L: (_V_) e2Ikwtlk[8y2v(v+1)e-2I!.t]. 
k=-'" v + 1 

(4.60) 
We assume as before4

(a) that the oscillating terms can 

be discarded, leaving 

(4.61) 

Since y2« 1, we approximate the modified 'Bessel func

tion by the first two terms in its series expansion, when 

Eq. (4.57) is readily evaluated to give 

Yl=4j2y4V2(V+1)2/~ . (4.62) 

As this result has been evaluated only to lowest order 

in y, the same result is obtained to the same order if the 
square-root forms for the thermal averages are used 

[Eqs. (4.45) and (4.46)], but more manipulation is re
quired. 

The relative sizes of Yl and Yo can now be examined. 
From Eq. (4.24) for Yo with the result (w' - W)2 = 16iw2 

valid for small y we find that 

YliYO=J2 y2V(V+O/2w2 , (4.63) 

since j2 « w2 and y2« 1, and we see that the nonlocal 

scattering described by Yl is much weaker than the local 
scattering described by Yo (except at very high tempera

tures where molecular crystals would certainly have 
melted and the preceding teatment would be invalid). 

This conclusion accords with deductions from spectra 
and diffusion measurements for triplet excitons in an
thracene. 2 

D. Cross correlations 

For the cross correlations hnnnm(t) we take only the 
leading term in Vnn which gave the dominant contribution 

to Yo. Then we have, with m = n ± 1, 
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or, on transformation to the site representation in the 

average, 

(4.65) 

Note that because the time-dependent factor involves 

w~ - w,.., the required average is not just (B ~Bn 8 ~ 8m ). 

In the Einstein limit the average in Eq. (4.65) is zero 
unless p=q, because 8~ and 8m create an annihilate 
pairs of phonons at different sites. The average when 
p= q is independent of p except when p= nor m, i. e., 
two cases in N. Then the second double sum in Eq. 
(4.65), ignoring the cases p= nor m, becomes propor
tional to 

L e/(~-"')P=N{j~,.. • 
P 

(4.66) 

This is nonzero only if A = /J., but this term is excluded 
from the first double sum, leaving hnnnm{t} zero. The 
same result follows directly from Eq. (4.64) if one 
argues that the averages over 8~ and 8m can be per
formed separately. Similar results follow for the 
other terms in Vnn involving B 2 and B+2; they end up 

proportional to Kpq with P = q, which is zero. 

v. RESULTS AND DISCUSSION 

A. Applicability of treatment 

Before discussing our results for the diffusion coef
ficient we review the basic assumptions of the calcula
tion, the systems in which they may be valid, and the 
appropriate order of magnitude of the various parame
ters. 

The basic assumptions are as follows: 

(i) the exciton-phonon coupling is pure quadratic; 

(ii) the frequency shift upon excitation w' - w is the 

main term responsible for the exciton-phonon scatter
ing, but is not large enough to produce bound states 
whose time dependence would invalidate our perturba
tion theory; 

(iii) the exciton bandwidth is smaller than the phonon 
bandwidth (vibrational relaxation fast compared to 
transport) and the phonon bandwidth is small compared 
to the frequency, i. e., J< 6.« w. 

Assumption (i) can be relaxed rather easily, as outlined 
in Sec. V.D. Assumptions (ii) and (iii) are crucial to 
our calculations: without (ii) the theory would have to 
take account of the bound states, while without (iii) the 
calculations would have to be performed in momentum 
space so that proper account could be taken of the ex
citon bandwidth in the correlation functions. 

As already noted, pure quadratiC coupling is expected 
to occur in certain intramolecular modes of vibration, 
such as the out-of -plane bending modes in aromatic 
hydrocarbons, which also have rather low frequencies. 
Such coupling is estimated to be of importance in ex
citon transport but probably not in charge-carrier trans-

port, 26 where polarization fluctuations have to be con

sidered. The precise conditions under which assump
tion (ii) is valid cannot be quantified, but it is clear that 

the frequency shift must not be too large a fraction of 

the frequency itself. Normally, the frequency falls on 
excitation; a fall not exceeding a third of w requires 

1'< O.l. 

The phonon bandwidth 6. for molecular modes in the 
crystal environment can be estimated from calculations 
for naphthalene. 27 These show widths of up to 16 cm-! 

for out-of -plane modes, corresponding to 6./ w of 3%-6% 

for the lower frequencies. These are lower 1.imits, 
since they refer only to wave vectors parallel to the 
crystal b axis, and would be further increased for 
larger molecules with weaker force fields and lower 

frequencies, so that 6./ w could easily reach 0.1. These 
estimates confirm that 6./ w is likely to be consistent 
with assumption (iii), and require J to be less than about 
10 cm-!. For singlet excitations the transfer interac

tions are too long range and strong, but for triplet ex
citons in anthracene J is calculated28 to be 10 cm-! or 
less and measured2

(b) to be about 2.5 cm-! (including a 

Franck-Condon factor). Our assumptions should thus 
be valid for triplet excitons in aromatic hydrocarbon 

crystals. 

B. Diffusion coefficient 

The diffusion coefficient is given by Eq. (3.18). Sub
stituting Eqs. (4.24), (4.31), (4.54), and (4.62) we find, 

to leading order in 1', 

D/2a2 = (j2/6.)(y2 + 6.2/4yw 2) 

= (J2/ 6.)e-4y2e-4Y(y2 + 6.2/4yw) , 

where 

y = 2y2v(v + 1) • 

(5.1) 

(5.2) 

(5.3) 

As T - 0, v and y - 0, and D diverges because there is 
no scattering. As T increases, D goes through a mini
mum near y = i{6./w)2/3. It then increases slowly to 

reach a maximum near y == -!, finally falling to zero as 
T_oo. 

Figure 1 shows D/(2a2J 2/6.) for (6./w)2=0.005 and 

various values of I' plotted as a function of 1/ {3w (which 
is proportional to T). Apart from the factor e-

4y2
, which 

is nearly constant for y:=; 0.1, D depends on I' only 

through y. DecreaSing I' increases the value of' 1/ (3w 

required to give the same y, so that the curves are 
stretched to higher temperatures while retaining the 
same maximum and minimum values. 

Figure 2 shows D/(2a2J2/6.) as a function of l/{3w for 
1'2 = O. 01 and various values of (6./ w)2. Increasing (6./ 

w)2 makes the term in l/y larger compared wity y2, 

causing the minimum between the falloff of l/y and the 
rise of y2 to become shallower and move to higher tem
peratures (eventually disappearing completely, although 
this is not shown). At the highest values of 1/ {3w, l/y 

becomes so small that the curves become independent 
of (6./ W)2. 

H we loosely associate the low-temperature divergent 
part of .these curves with "coherent" or band motion 
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D 

I/{3w 

FIG 1 Reduced diffusion coefficient D /(2a2J l / A) as a function 
• • 2 2 

of l//3w for (A/w)2 = O. 005 and various values of'Y. As 'Y de-

creases, the curves remain similar in shape but are stretched 

towards higher temperatures. 

dominated by Yo, and the higher-temperature slowly 

rising part with "incoherent" or hopping motion dominated 

by Yt. then we see that the smaller y and the larger A, 
the more coherent the low-temperature motion. For 

some parameter values D may be relatively constant 

over a wide temperature range. Note that organic crys

tals melt well below 11 (3w = 5 for any reasonable molec
ular frequency w. 

The scaling factor 2a2 J2 I A is found to be 2 x 10-3 

cm2 s-1 for a=6 A and J=A=10 cm-1
• With the curves 

in Figs. 1 and 2 lying around 10-2 cm2 
S-1 or above, the 

resultant diffusion coefficients are compatible with mea
sured values 2

(b) when allowance is made for the extra 

contributions to transport in a three-dimensional lattice 

as opposed to our one-dimensional model. These mea
surements 2

(b) also indicate that for triplet excitons in 

anthracene the aa component of the diffusion tensor de

creases by a factor to 2-3 between 120 and 300 K, re
maining constant or increasing slightly at higher tem

peratures. Our results are also compatible with this 

temperature dependence for suitable parameter values, 

but we do not think it profitable to obtain any "best" set 
of parameters. 

C. Comparison with previous work 

For linear exciton-phonon coupling the diffusion co
efficient is found4

(a) to depend on temperature in a way 

qualitatively similar to that found here: From an infinite 
value at T= 0, D decreases as T increases, goes through 
a minimum and a maximum, and eventually falls to zero 
as T - 00. Closer examination reveals significant dif
ferences. The temperature dependence of D for linear 

coupling arises through the parameter 

(5.4) 

as opposed to y in Eq. (5.3) which is related to Z2, al

though this difference is partly offset by the fact that 
Glw-1 while we take y::OO.1. With linear coupling 

there is no local scattering Yo, whereas this term domi
nates the "coherent" contribution to D for quadratic 

coupling. As a result, the importance of the coherent 

contribution relative to the "incoherent" one depends 
on (AI J)2 for linear coupling but (AI W)2 for quadratic 

coupling, with other important differences between the 

relative temperature dependences of the contributions. 

As noted in the Introduction, a treatment of quadratic 

coupling was given by Munn and Siebrand3 with the help 

of various ad hoc assumptions, some of which give rise 
to interesting features of the results. 11 This treatment 

assumed that the coupling was strong enough to produce 

the bound states which we have excluded here by as

sumption (ii). It also assumed a prior that coherent 

transport would prevail at low temperatures and hopping 
transport at higher temperatures. This automatically 
gives a temperature dependence resembling that in the 

first two portions of the curves for D obtained here (or 
for linear coupling4(a»). In the slow-exciton limit, cor

responding to our assumption (ii), the diffusion coeffi
cient falls rather rapidly as the temperature rises from 

T = 0, but once hopping sets in the diffusion coefficient 

increases only slowly with increasing temperature. 

Clearly, there is only a broad correspondence between 

these results and the present ones, but it is not possible 
to attribute the difference definitely to the empirical 

assumptions in the light of the other assumption that 

bound states are formed. 

D 

-I 
10 

0.001 

y2 = 0.01 

2 3 4 5 
I/{3w 

FIG. 2. Reduced diffusion coefficientD/(2a
2

J
2
/A) as a function 

of 1//3w for 'Y2 = O. 01 and various values of (A/wf. As (A/w)2 

increases, the depth of the minimum decreases but the high

temperature behavior is unchanged. 

J. Chern. Phys., Vol. 68, No.5, 1 March 1978 

Downloaded 21 Oct 2012 to 18.189.110.229. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



R. W. Munn and R. Silbey: Theory of exciton transport 2449 

A treatment of carrier transport including quadratic 
interactions with lattice (intermolecular) vibrations has 
recently been given, 29 using methods similar to those 
of Gosar. 30 Including quadratic coupling decreases the 

carrier mobility significantly, but the two-phonon pro
cesses have rather a weak temperature dependence and 
hence do not affect the total temperature dependence. 
As a result, the inclusion of this quadratic coupling can
not yield a weakly temperature-dependent mobility (or 
diffusion coefficient); such coupling has only a quantita
tive effect. Apart from the method used, which involves 
resummation of a selected class of diagrams for the 
carrier Green function, this work differs from the pre
sent work in treating all nonlocal couplings rather than 
the strictly local quadratic coupling of our Eq. (2.1). 

D. Further work 

Our assumption (ii) is that the exciton-phonon cou
pling is pure quadratic. Perhaps the most straight
forward approach to relaxing this assumption is to 
postUlate that two phonon bands are coupled to the ex
citon, one linearly, the other quadratically. Then ap
plying the theory outlined here we would find the same 

Yo and 1'5 but a new 1'j: 

yfEW = (" j2(e fj (t) e f 2(t) -1) dt , 

where 

(5.4) 

ft(t) = 41'2 [v~e2/Wtt + (Vt + 1)2e-2fWtt ] , (5.5) 

f2(t)=2(G/w)2[v2elw2t+(v2+'1)e-lw2t] , (5.6) 

.J =J<(}~ (}n.t)I<1/!~1/!n+1)2 , (5.7) 

=Je-2y2e-4y2I1t(lIt+1Je-(CIW)2(2112+1J, (5.8) 

VI = (~WI -Itt, (5.9) 

and the mode of frequency WI is coupled quadratically 

and that of frequency W2 linearly to the exciton. Since 
1'2 is usually very small, the Bessel function expansion 

ot expft(t) can be truncated at the n=O term. Keeping 
only the nonoscillating part of the integral we find 

yfEW =]2 fo~ dt{Io [8y2Vt (Vj + 1) e-26t t] 

X10 [4(G/ w)2 V~/2(V2 + 1)t/2 e-62t ]-1} (5.10) 

=]2 fo~ dt{Io [4(G/ w)2 VV 2(V2 + 1)1/2 e-62t ]-1 + Q(y4)} 

(5.11) 

(5.12) 

where yf is the Yj for pure linear coupling. For low to 
moderate temperatures yfEW '" yf, and the theory re
duces to linear coupling for 1'1 and quadratic for Yo and 
i'5' However, if 1'2 or yare large enough, then yfEW is 
changed from the pure linear coupling result. As can 
be seen, in unfavorable cases the transport is a very 
complicated function of the two phonon frequencies and 
bandwidths and the two coupling strengths. 

In future studies we plan to relax the other assump
tions to permit the study of band states and wider ex
citon bands, so extending the range of validity of the 

theory. For the present it is apparent that our results 
are qualitatively similar to those of earlier theories and 

to the rather meager experimental results, so that 
quadratic coupling with molecular vibrations must be 
taken into account in proper theories. 
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APPENDIX A. PHONON DISPERSION LAW 

The Lorentzion frequency distribution normalized to 
unity is given by Eq. (4. 5): 

p(wI)=(~/7T)/(~2+wD. (AI) 

Let wt = WI (A) = WI(27Tl/ N), where the integers 1 = 1, .. " N 

enumerate the modes in a crystal of N sites. Then 

P(Wj)=N/\ ~ I 

=(27T1~ If ' 
so that 

~ fA 
~=±2~ 

Integration with the condition w(O) = 0 yields 

Wt(A) = ± ~ taniA, 

(A2) 

(A3) 

(A4) 

(A5) 

where both signs must be retained to make Wj(A) sym

metric about A = 0 and WI = O. This result is equivalent 
to 

wi=w±Atanh. (A6) 

For the Gaussian frequency distribution, given by Eq. 
(4.7), a similar procedure yields 

erf(Wj/ A) = ±A/rr , (A7) 

which is not readily inverted. 
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