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ABSTRACT -
The theory of far-infrared generainn by opticai mixing of focuse& |
" Gaussian beams is‘deveibped, taking into'accountzthe effeets-of dif-
‘fraction, absorption, double refraction,,and mnlfiple'reflections and’
tbtal refleetion at the boundary snifaces Results‘of numerical caleu-
. lations are presented It 1s shown that focu51ng of the pump beams
apprec1ab1y enhances the far ‘infrared output desplte of ‘the strong far-
‘ 1nfrared dlffractlon In a 1-cm long crystal the optlmum focal spot
size iS'approximately equal to or smaller than the far-lnfrared wave-
1ength-for an output at frequencylleSS than 100 cmfl; Double refracinn.e
of the pump beams is relatively unlmportant Both far- infrared absorptlon .

and boundary reflectlons have maJor effects on the far 1nfrared output
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and its angular dlstrlbutlon The former 1s often the factor whlch limits
the output power. we show that a simple model treating ‘the non- 11near
polarization as a constant.l/e radius Gaussian dlstrlbutlon of radiating
dipoles is a good apprOXimation to the problem. We also comparerthe re-

sults of our calculations with those for second-harmonic generation.

Present address: Theoretlcal Division
Lawrence Livermore Laboratory
P.0. Box 808
Livermore, CA 94550
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I; IntrOdUCtion

Far 1nfrared generatlon by opt1ca1 m1x1ng has recently rece1ved
1ncrea51ng attentlonZLIt has the potent1al of prov1d1ng a coherent
"tunable far-lnfrared source Wthh compllments far-1nfrared molecular
lasers. The most commonly used scheme is that of d1fference frequency

generation (DFG) by m1x1ng of two laser beams in a non- centrosymmetrlc

2-3 4-16

crystal With dye 1asers, CO2 lasers, or spin- f11p Raman

17-20

lasers as the pump beams, DFG can provide a far- 1nfrared source

-1 to 200 cm -1 or more. The

-1

d1screte1y or contlnuously tunable from 1 cm
output 11new1dth can ea51ly be less than 0. l cm © as determlned by the
pump laser linewidths. In most cases, the output is ‘in pulses with v
l _pulsew1dths ‘between 10 nsec and 10 usec, but CW operatlon has recently'_
been ach1eved | | | | | - _ »
| A serious 11m1tat1on of far- 1nfrared generation by optical m1x1ng
~has been the atta1nable average power, although so far as spectral power '
per unit SOlld angle is concerned 1t is already better than a blackbody
source at SOOQ K', While focusing of the pump beams may increase the
far-infrared output, it is not clear how tight the'focusing_can be ‘before

the detrimental effect of far—infrareddiffracthnlsetsin. Noadequatetheoret-
ical calculation'of nonlinear far-infrared generation withrfocusing and'
dlffractlon properly taken into account has been reported Experlmentally,

on the other hand a tlght focusing geometry has so far been avo1ded As a
result, the full potentlal of nonlinear far 1nfrared generatlon has not

been assessed |

In the 11terature the plane wave: theory was often used to in-

~ terprete the results of far 1nfrared generat1on exper1ments 2,6, 7 ,11,12,21-25



“The theory assumes a single spatial Fourier:component for'each nonochromatic
wave so that the nonlinear process is characterized by a single phase'
matching relation. However, when the pump heams are focused to a spothtom-
parable in 51ze to the far-infrared wavelength far- 1nfrared d1ffract1on 1s
important and the spatlal Fourler components of the output extend over a
1arge cone. Each Fourier component now has its own phase matchlng rcldt1on
with respect to the pump beams. Since it is not possible to phase match
all the Fourler components 51multaneously focusing of the pump beams does
- not improve the far-infrared output' power as much as the_plane wave theory
predicts | |
The plane wave theory also assumes a 51ngle transm1551on coefficient

for the far- 1nfrared output across the boundary surface Actually, with the
far 1nfrared output extendlng over a large cone, the transmlss1on coefficient
is different for each Fourler component and falls to zero at the total re-
flectlon angle Thus, the real output can.be con51derably 1ess than what
- ‘the plane wave theory predicts. Finally, the plane wave theory often .ignores
the reduction in'output power due to double refraction which can be‘signif~
icant for’small spot siies‘ln crystalline media. |

’ Improvement in the Calculations of far-infrared generatiOn\by optieal

26

mixing has been achleved by Farles et al using the far-field diffraction_

theory for a d15tr1but1on of osc1llat1ng dlpoles induced by the pump

beams;26 28

They used an average transmission coefficient for the far- -
infrared output across the Boundary and excluded the contribution from the
totally reflected modes. The effect of double refraction was howeyer -

ignored. As we shall see later, in the absence of'double_refraction, this

approach in fact gives.a remarkably good estimate of the far-infrared output.



ln this paper, we present a more Trigorous calCulation;of.far-infrared
generation By optical mixing. It'proceeds by first calculating separately
each Fouriervcomponent of the output field'and~thenvevaluating the output
power by summlng over the Fourier components.'The effects of-focusing,
absorption, phase matching,vand double refraction can all be
properly taken into account. For the sake of simplicity, the pumpibeams
are assumed to be of s1ng1e mode w1th Gau551an profiles. Our approach is

| essent1a11y the same as that used by BJorkholm 29. 30

and by K1e1nman et al
for second- harmonic generatlon by focused beams o

The main d1fference between second harmon1c (or sum-frequency)
generatlon in the visible or near infrared and d1fference frequency gen-
eration in the far-lnfrared is dlffraCt10n Validity of the scalar
Fresnel approxxmatlon for the pump beams guarantees 1ts va11d1ty for the
sum frequency but not for ‘the dlfference frequency Because of its much
longer wavelength and hence stronger d1ffract10n, the far- 1nfrared output
extends over a much ‘broader. cone. Thus, the phase matchlng cond1t10n varies
much more apprec1ably among the output Fourler components in dlfference
frequency generatlon (DFG) than in sum—frequency generatlon (SFG) A1l the
Fourier components can often be nearly 51mu1taneously phase_matched for -
SFG but not for DFG. An'accurate description‘ovaFG also’requires
knowledge of the difference-frequency tranSmission coefficients over a very
-sbroad output cone. | B |

The body of the paper is organ1zed into the follow1ng sections:
'Sectlon 11 descr1bes the theory of DFG by monochromatrc.Gauss1an laser

beams which is valid even when the pump focal spot size is smaller than a
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far-infrared'anelength. This theory is developed,from a genera1ization of
the non-linear polarization used by Boyd and Kleinmaﬁ31 and by Far_ies.z8 |
Section III.contains the results of numerical calculations obtained from -
this theory. First, we‘present the results for the ideal case of no
double refraction. Then, we discuss briefly the reductionS'in attain-
able power due to far infrared absorptioﬁ and doﬁble refraction.
Finally, in Section. IV, we compare our resuifs with the results of
three ether calculations: a simple plane‘wave calculation, a far-field
diffraction calculation assuming a constant 1/e radiﬁs Gaussian distri-
‘bution of induced dipoles, and the second ﬁermonic generationecalculations
of Boyd and Kleinman.31 -
II. Theory .

A. Nonllnear Polarlzation _

We assume that the pump beams are monochromatic w1th Gau551an TTW%O

mode If focu51ng and diffraction of the pump beams are not too strong the

focused punp fields in an slab medium can be written a528 31
. : - 2 ,..2
& (x-a, - 0;2)0 +y
_ i i i N -
E@Y =gy o [ — 75— +ikz -w.t) (1)
_ i wi(1+1gi)

for 0 <z < % , where the subindex i denotes the i-th beam; w, is the
2 beam radius in the focal plane which is located at z = zy;; the beam

axis intersects the front surface of the medium at x =a, and‘y = (0; the

quantity &, is defined by £, - 2(z-in)/kiW'iz with k; =w.n./c, n;

being the refractive index; finally Ls is the walk—off'angle given by

z. = 7-51n(26 ) n (n ) if the beam is an extraordlnary ray prop-

1. le 01

‘agating in a un1ax1a1 med1um along a dlrectlon at an angle 9 w1th respect



to the optlcal axis where nO,l and nem;i are‘reSpectively_the ordinary ?nd.
extra-ordinary refractlve 1nd1ceslat' 8 = 90:-The derivation of Eq. (i)
involves some apprbximétions which“cah easily be justifie& as shown in
Appendix A. In therfollowing, to éimplify thé,taléulatiohs in practical
céses, we can assume that the largely dverlapping pump beams'are fbcuéed
to the same spot size at the same point with- w1==‘w, gl = £ and
iOi z‘ . This is a good ‘approximation when the refractive indices of |

the pump beams are not very dlfferent, as is true in all practical cases

' which have been investigated.

The pump fields an induce a nonlinear polarization at the far-.
infrared frequency in'the.medium. We consider here only'thefcase.bf DFG
in'avuniaXial crystai as an example although the formalism: can be easily
extended to more general cases of optical miiing. The nonlinear polari-'

zation at the differenceﬁfrequency w is then given by

3(2)(?»“) =@ (- wy - y) :_.fl(?, wl)ﬁz(?,az) @
Where '++(2) is the sécond order nonlineér Susceptibility tensor We.assumé"
that f is an ordlnary ray and ﬁ is extraordlnary The nonlinear polarlzatlon
ﬁ(z)(r) can be readily found by substltutlng the expression of E of
Eq. (1) 1nto Eq. (2). For convenience of solv1ng the wave equation 1ater,.we
are however‘interested in the trathefse Fourier componéntvaf ﬁ(Z)(?).

The transverse Fourier transform gives
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P25 [ ady 3P @ exp (-ik x- 1k y)

-00

- 5@, /g _w exp{l[(k kz)z kx(a ;z)/zl}

(31‘“) 1.22 1
exp [‘ 7 gk 2(1+€%) - —'k CH CZ)EJn (3)
0. s

where ﬁf = %kx + ?ky and we set a, = 0. For economy-of notation, we omit

eXplicit mention of the argument'w.

B. Solutlon of Wave Equations
Far-infrared generation by opt1ca1 m1x1ng is descrlbed by the set

of wave equations

[ x 00 - @A CREw = ar WHAHPEEw C(a)
TR 30) IST R L S S

wﬁeré the nonlinear bqlarization_PNL acts as a driVing soufce for the
nonlinear process. For DFG in a uniaxiél medium PNL =:P(2) given by Eq.. (2).
Since the normal to slab boundary planes is Z, the easiest - |
method is to Fourier transform the x and y variables in Eq. (4) and to |
solve for each Fourier component'ﬁ(iT z) separately The corresponding ‘ o
source term for ﬁ(kT z) is 4ﬂ(w /c ) 3(2)(kT z) w1th 3(2)(kT z) glven by
“Eq. (3).

The general solution for ﬁ(ﬁf,z) consists of two parts, the homog- -
eneous solution and the particular solution respecfivelY; Tﬁe homog- |
eneous solution is well known. For ordinafy and extraordinary polariza-

tions respectively, it can be written as



%};i-(ir,z) - &5, e '(ik;’ i7)

Berllp?) = @ 0 0 (kg D) : (5)
where the subindices + and - denote forward and backward propagating
waves respectively w1th the same iT and\ ‘ox = ﬁihuno/cbzi- kTZ]]/2

with a sxmllar expression for ke+ .

.To flnd the particular solution, let
- . :

.ué f@rst assuﬁe that the nonlinear slab is imbedded in a linear médium
with an equ31 1inear-die1ectric constant. Thﬁs, reflection and re-
fraction at the crystal boundériés canAbe ignored The boundary effects
w111 be taken 1nto account 1ater As shown in Appendlx B, the -

partlcular solutlon for E(iT,z) is then glven by

EP(Tgrz) EP (}Tz)o +Ep(-f,1.z)o + B &T,z)e

+ B (k-r z) & - (ann’/ninl ) 2 P(Z) U“r,Z)

(6)

where nemv is the refract1ve index for extraordlnary ray propagatlng

perpendicular to the optlcal axis,

z o
. . 2 - . ik (z vA ) o
80+ 22 [ 00

" 0Z

‘ . a2 k ' d “ _
B (kp2) = 22 fa P(Z)(k'r z*)el o2 " ) z_ .

Z .
1 e+"'Z(Z"‘Z') o

Ep (+ ‘Z) - . | é .i;(z) _) \\.' k '
e+ (kpp2) = 5 [ 8, (kp,z')e dz



. L Co
(z z')
Ep (FT z) = anw e ﬁ(z)(iT z')e €2 dz'
(k )eff
/2 2
LN A 2
(k ez)eff = (ke+,z- ke_’z)ngm/Zni ‘}‘ 32 ¢mf ni(c-2e4},] (7)

O .
¢ 1is the optical axis of the crystal The last term in Eq. (6) is a

1ong1tud1na1 field which leads to optical rectlflcatlon when
w = Wy - Wy = 0. It is however a non- rad1at1ng term and we shall neglect
it in the following dlscu551on.

| The solution’in.Eqs; (6) and (7) appear in the form normally ob-
tained for nonlinear optical processes in the slowly varying envelope
fapproximation However, no such approximation has been made. As shown in
Appendlx B, Eq. (6) together with Eq. (7) is an exact solution of Eq. (4) v
with P(Z)(kT,z)as the source term, The field *p(kT z) in the medium does
not have a slowly varying amplitude elnce d Iﬁp(ﬁf,z)|/az 1s“not negll-
gible in comparison with 2k8]§p(§f?z)|/az. In fact, the slowly varying
_ envelope approximatioh is equivalent to assuming for each polarization a
wave propagating in one dlrectlon only o

As a check, we can use Egs. (6) and (7) to derlve the solutlon for

the special case of optical mixing at an infinite boundary surface dis-

cussed by Bloembergen.34 We have kyr= 0, & >, and 3(2)(§f,z)
= Pyve 52 in the medium. Equation (7) gives for the reflected output
o 2 . -ik z . _ _
.. yPee ¢ forz<o (8a)
c“k (k. _+k_ ) _ _ » v
0z oz sz

and for the transmitted output



o
L
o
S
- &
W
L
~d
&l
Ky

2 [ ik z ik 7 e
p _ 2mw . o, | 02 sz 1 0z . L . -
-E*t' -c-:—z-k—- PO .me E:;:'-F;'Ze | for z > 0. S (8b)
0Z . s 0 o e . - '

The above solution is,however,only true for. the caSe with no reflection at
the boundary, but the homdary effects.can he, easily incorporated 'by'}
taking into account the ‘linear reflection of ‘ép at the bouxidary surface.

The complete solutlon for the problem with a crystal vacuum plane boundary

~is then glven by

2k, ' —ikzz :

k——Y— Ep ‘ ) for z2< 0
kk ikz |
2éﬁfg-a9z—,f£(z='0)e ° forz>0 . (9
z oz ' ‘ ' o

where k = [ (/)2 - k)z(] 1/2. Subst1tut10n of the expressmns for ﬁpand Ep
Eq (8) 1nto Eq. (9) y1elds results 1dent1cal to those derlved by Bloemborgen 34
| The above example suggests that the boundary effects can indeed -
“be taken ,care of separately. ‘In Sec. TIC, we shall use _the same procedu_re
 to 'take into account the boundary conditions of optical mixing in a slab
medlum Then, with the expression of §(2) &T z) in Eq. (3), we can cal-
.culate from Eqs (5) - and the appropriate boundary conditions the
Fourier component f(ﬁr,z) of the DFG output and hence the difference- .
frequency fieldf(-r) in spacei In many ca_ses, only one of ‘the four Waves‘
in Eq. (7)' is nearly phase-matched. When this .happen"'s, we need to retain

only the phase-matched component in a good approximate calculation,
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C. Boundary Effects

We have seen in Sec. IIB how we canfakeinto account the boundary'
effects of a crystal-vacuum interface by simply incerporating linear re-
flection and transmission of the waves at tne boundary into the solution.
We now discuss the boundary effects of the more general case of a slab
- crystalline medium. We can consider ﬁg'in Eq. (6) as forward propagating
waves starting from z = 0 in the medium and subsequently undergoing |
.multinle partial'reflecfions at the two slab surfaces..Similafly, We con-
‘sider ﬁ? in Eq. (6) as,backward'propagating waves starting from z =9
in the medinm. Thus, the field outside the slab is given by the Sum of
ﬁgland f? weighted respectively by appropriate Fabry-Perot factors due
Zto'multiple’reflections and transmissions. To7find the Fabry-Perot fac-
tors, we first calculate the transmlss1on and reflectlon matrices for
ordinary and extraord1nary waves at a s1ngle crystal-vacuum boundary
surface, and then find the overall transmission and reflection matrices
of the slab for the two waves by.summing'ovef multiple transmissions
_and‘reflections,at the slab surfaces. |

Consider firstfthe~case defined in Fig la. Vlhe incident mono-

chromatlc plane wave E CET) + Ef A and the reflected plane

+ +
wave ﬁ (?T) r + El 1 are related  to the refracted ord1nary and
extraordinary waves Eo+(KT) and Ee+(PT) respectively, by the matrlx re—d

lations35
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1+ ot

i+ e+
(10)
E E
r-\ _ o+
)
E E

T \e+

where . :
| PP L
- WY, ey
£ | .
R o o o
8Lk /(1 vk, B /(L)
: ) 1 ‘ - 1 1 |
N oy T ARG, T,/ (T
B, = | o
+ | B | el Y
gtr! ko/(1+rilo)1§, BT Ko/ (g K
1 P R S S :
To E o Ogkg)/Ggtkyg)s T E (gl - K,/ Ogke ¥ KKy,
Lo + o2t toty 12t o 1 et
Ter © ('kgz 2 k) (g, £k,), Ty 2CKYG 2 kzkése')/(l_( Yo t klefe)
' A ~ V' + ~ | . AL | ;
@ = 6, « (2xkp, By =0, [(Zxkr)x I%]
+ B A~ A A + _~ ~ A At
@ a Gy, sbed, s [Gripei]
'" + _ A ~
Ye = &k

With subindex "-" applied to the case of Fig. 1b w1th :

N
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We next consider transmission and reflection of Qrdinary and extra-
ordinary waves incident from the crystal side onto the boundary sﬁrface .
as described by Diagram a in Fig. 2. Clearly,‘Diagram a is equivalent to
the(sum of Diagram b and Diagram c, and Diagrams b and c are identical to
\those in‘Fig.'la and Fig. lc respectively. We therefore have o o : ;

E

‘ _ y _(-) O-
S SRS S N
e_
E,_\ ,
=R_ ' . o (11)
\E__/ _
- e-
where
SR B ot
Ti = A - ‘-B:T-K-,-T- ﬁi
C ele
. ﬁi- - A,:: (ﬁi ’ |
the subindices '"+'" and ''-'' now refer to cases where the érystalline

medium occupy thé left’half-space and the right half-space, respectiveiy.
We can now use the results iﬂ Eq. (11) to calculate the effect of
multiple transmissions and reflections at the boundaries of a cyrstal slab.
In pafticular, we are interested in finding the forﬁafd and backward prop-
agating far-infrared waves outside the slab created by optical mixing

inside the slab. As we mentioned earlier, we can imagine that optical mixing
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generates waves ﬁg starting at z =10 and Ep starting at z = £ and in
'gettlng out of the slab these waves undergo multlple ‘transmissions and
’ reflectlons. Therefore, for the generated field out51de the slab _we readlly
find for z = 4
| —]'E'l‘+'= ¥+§+ 20+(2) ¥ ;4-' R - o- ) (12a)
OV E,. () |

aﬁd foi' z <0

"o e | [E @) o o (B ()

Ep. = T_F_ | +P_ R, | (12b)
k A AN \E,®
. where .3,, %P (1k029')' "
x wlik)) | )
wa  E, 1B, RF |- [p £ b R] an
[ S LT _ n"O ' '

/

Becaﬁse' of the genefalizéd Fabry-Perot factor 35 the output f1e1ds- _
El‘ i_ can be vrapidly varying functions of .]?T’. w, and 2. In some cases, |
however, when the pump laser 'beams héve fairly bread linewidths or the
crystal slab is wedged or not suffitiently weil»poliéhed_,' it is mc.n"e' -
appropriate to find an average Fabry-Pefot factor or the éverage output?
by averaging over one Fabry -Perot period. For example in the nearly )

_ 1sotrop1c case, we find from Eq. (12) after some manlpulatlon,

/
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exp(-YL)

1-|I‘" l4

(14)

where vy is the attenuation constant along z.
'D. Far-Infrared Output Power and Its Far-Field Angular Distribution.
~ The total far-infraréd power outputs from the slab in the forward

and backward directions are

= jdxdy(z 10 |ﬁT+(x,y)I2 o | - (15)
eValuated at large z. By Parseval's Theorem, this can be wrltten as |
P -5 dkxdlky BS) - AR . ae
| 1<)2(+1<y < k% | -

where. ET (kT) is given by Eq (12)

In most practical cases, we are also interested in the far field angular-_' |

dlstrlbutlon of the output power. As shown in the Appendlx of Mlyamoto

and Wolf ,36 it has the expression

4.2 (6,9) . |
. -:TQ 0:¢ = cos el ET { sme (xcos¢+}’51n¢)} .2 .
| T an
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,v iII‘ Results of Numerical Calculations
| In this section, we shall present numerlcal calculatlons of
~ far- 1nfrared generation by dlfference frequency mixing using the
equatlons given in the previous section. We,choose somewhat-arbltrarily‘
vthe follow1ng values for the characterlstlc parameters of the non11near
crystal n, = 2, n(w) = 4, and X(z) = 1 87X10 -6 esu, The two nearly over-
"lapped pump beams, one ordlnary and one extraordlnary, are assumed to -
have the same focal spot in the crystal w1th both béams always along
the nornml to the slab The questlon we propose to answer 1s how various
quant1t1es such as phase mlsmatch focu51ng, beam walkoff and absorptlon :
affect the far-infrared output at different frequenc1es |
‘A Far infrared generatlon in the absence of absorptlon and optical walkoff.
" We assume in thls case that the opt1ca1 axis of the crystal is in the
'rplane of the slab along X. The two pump beams, one ordinarf and one extra-
ordinary,'propagate along thebnormal tO.the'slab,i,with essentiailyhno
walkoff, the nonlinear polarization ﬁNL is along ?, and the common focal
spot of the tuo-pump beams is at the center of the slab. .Wefalso assume
that the extraordinary refractive index N of the pump beam can be varied
by external means such as temperature in order to adJust the amount of
~ phase mlsmatch in DFG and that only the ordinary far-1nfrared waves in
the forward d1rect10n can be nearly phase matched Slnce the phase mlsmatch
is different for dlfferent Fourier components E(kT w) of the far-infrared .
output we define an ax1a1 phase mismatch Ak =k (wl) k (mz) ko(w)
\to descrlbe ‘the overall phase matching condition. |

F1gure 3 shows the far field angular distribution of the far- 1nfrared

U

output, df?ﬁﬁ)/dﬂ versus 8, at 100 cm -1 calculated from Eq. (17). In
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the calculation = the slab has a thickness of 1 cm., the focal spot_siZer
ijs w = 25um, and the axial phase mismatch corresponds to

Mk, = - 5.1 a1,

Since the far-infrared.butput is approximately symmetric'i
about z (i.e., nearly independent of the azimuth angie ¢ = tan” (ky/kx)),
Fig. SIactually.showé a distribution in thé form of a hollow cone. The
radiation peaks at the angle o, = sin'l{ ng‘(w) - ['no'(w) +. Aka'c/ui] 2.}'15
- ‘at which phase matching Akz = k1 - k2 ftkdz(“D = 0 occurs. The secondary:
maxima of the phaée-matching curve can;also be seen. They become more |
pronounced for shorter far-infrared wavelengths as the effect 6f diffraction
becomes less important. From the expression of .ém’ it is seen thatvif
Aka = 0, then 'em.= 0 and the far-infrared output'appearsvésia narrow
solid cone aiong the z axis. If Akai> 0, then thére is no solution for
‘em and the far-infrared output is strongly suppressed by phase mismatch;
the angular distribution may show a weak céntral peak at 6 = 0 and SOheA
secondary maxima at finite 6. For negative Ak, tﬁé phase-matched
peak shifts to larger en;umtil O = ﬂ/Z; then becausevof~tota1 reflec-
tion at the surface, the far—inffared radiation‘in the phasé—matéhed;di-
rection can no longer get out of the slab and the output peak at 6 = n/2
drops quickly. | | | |

The total far—infréred power output f?zversgs Akﬁ is shown in
Fig. 4 with thé same set of parameters used for Fig. 3; Thé_curve has

1

a maximum around Aka =-5.1 cm — corresponding to the full development

of the hollow phase-matched cone in Fig. 3. The steep rise of the curve at

Aka ~ 0 c:m_1 is due.to the initial appearance of the phase-matched cone.

1 1

The gradual decrease between Ak~ - 10 cm ~ and -75 em © is due to
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the combined effects of decrease of the farnlnfrared transm1551on co-
‘eff1c1ents and decrease of the<affect1ve P( ) for the generatlon of ord;nary |
far-1nfrared waves around the phase-matched dlrectlon The steep ‘drop
after Bk, = -75 end s due to total reflectlon of an 1ncreas1ng portion
of those far 1nfrared ‘waves generated near phase matchlng. _.

If the far-1nfrared wavelength A_ inside the crystal becomes much
‘smaller than'the3focal spot size W, the variation of far-infrared out-
put versus phase mlsmatch Ak, appears more like the usual phase-matching -
.functiou (sin_zx)/x2 for the ideal plane wave case. An.example is ‘shown in |
Fig. 5 for the case of ) = w/8. Because of the smaller A/ W ratio, |
the off-axis Fourier components of the far-infrared become relatiuely
less important and hence the output drops more rapidly with increase of
Aka. The curve in Fig. 5 is,however,still nbticeablyhasymmetric and its
peak occurs at Ak =-2 cm-lvrather than' Ak = 0. As the rat1o of
b'l/\Vdecreases further, the effect of far-infrared dlffractlon becomes
even smaller; the phase—match1ng curve‘f§aversus Ak then develops
~more clearly deflned secondary peaks and approaches the symmetrlc
form ‘sin” (8k 2/2)/(Ak 2/2) | |

The focusing geometry of the Gaussian pump beams is completely
character1zed by the focal spot size w. In order to see how the far-
1nfrared output varies w1th focu51ng, we calculate the =20 curve in
F1g 6 which shows the max1mum of;éz%Ak ) as a functlon of w, Because
of the hlgher pump 1nten51ty resultlng from tlghter focu31ng, the far- 1nfrared
output increases sharply with decrease of w. It however reaches a. maxi-

mum at W = 13 um as the correspondlng reduct1on of ‘the 10ng1tud1na1
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focal dimension takes its toll, It is,interosting-tolnote that in the
model of collimated Gaussian pump beams with a radius W and with
w2|E E | = constant, BP versus w haa no maximum, This.is because
when kfﬂ<< 1 for all significant far-infrared Four1er components,
'P(Z)CLT ,2) in Eq. (3) becomes independent of kp and W,

While Flgs. 3-6 are for w = 100 cm -1 Flgs 7-9 show results of

similar calculation for w = 10 cm -1

. The far-field angular distribution"
of the. output is glven in Fig. 7 for two values of the azimuth angle

= tan” (ky/k ) =0 and n/2 In this case, because A/W = 10v?s
large, far-lnfraped diffraction is more lmportant; phase matching oc-
curs around 6 = m/4 and the phase-matched peak is very broad. As a
result, the output asynmetry with respect to ¢ Shows‘up because at
| relatively large ©, the transmission.coefficient for the ordinary
far-infrared‘waﬁe across the slab boundaries is different for different
¢. For ¢ = 0, the wave is linearly polarized perpendicular to the
plane of incidence,rwhile_for ¢=m/2, the wave is linearly polarized
in the plane of incidence. The latter caso has a Brewstervangle at -~
6 =176". |

Figure 8 shows the total far-infrared output'af'03= 1Q cm_'1 as a
"function of the axial phase mismatch Aka; The cufve-again resombles
the well-known phase-matching curve (sinzx')/x2 for thebplane wave case
except that its maximum is at Aka = -4 c:m—1 instead of Aka % 0
and it has no well-defined nodes. However, this_resemblance does not
occur because diffraction is unimportant. It occursbbecause;'when the

far-infrared wavelength is sufficiently long, then all the far-infrared

Fourier components ﬁ(iT,z) have roughly the same Akzz x Akaz; in other
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_nords, if 'Akak = 0, then all the'far-infrared Fourler components are -
nearly-phase-matched.vThe'snall difference of Akzz ameng the Fourier
cemponents,however,broadens the phase-matching peak and ebscuresvthe
fine structure. o N

The £ = 0 curve'in Fig, 9 désctibes the peak value of fgz(Ak )‘at'

-1 as a functlon of the focal spot size w, we notice that in o

w =10 cm
the Tange of our calculat1on, this maximum output power (529 (Ak )
always increases W1th decrease of w. In this case, kTW'becomes )

much smaller than 1 at small w that the nonlinear polar1zat1on ﬁ(z) (kT)
.approaches a constant 1ndependent of kT w, and z in spite ‘of the factor}
| (1+£ ) in the exponent1a1 function in Eq. (3). Consequently, the r=0
‘curve of Fig._9'f1attens out atfsmall‘n.‘EventUally; for even

smaller w, we should expect the Curve to go thfough»a maxinum

like the ¢ = 0 curve in Fig. 6 for w = 100 cn L.

-B Far Infrared generat1on w1th a f1n1te walkoff angle between the '
~ pump beams.

We now consider the effect of optical walkoff on far—infraned

: generation. We still assume that the pumpbbeams‘prepagate normal-to the
slab and absorption -is negligible,. but the orientation of the optical

8 axis.of the crystal is now varied in the X-Z plane in order to vary the
walkoff angler e The‘primary.effect of optical walkoff ‘is that_it limits
the effectiue interactlon‘length of the beams. When g is much larger.
than the divergence angle of the pump beams, the two pump beans overlap
in the focal region only over a distance of 2w/|c|; most.of-the far—in;
frared radiation is generated from this overlapplng region. As |z|
increases, the effectlve interaction length decreases and |

' hence the phase matchlng peak in the far-field angular dlstrlbutlon
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‘becomes weaker and broader as.shown in Fig. 10 for w = 10.cmf1.
For smaller focaJ.SpotsizeS W, the walkoff effect'ié stronger. This gives
rise to a lower maximum at a larger w for the L+ 0 curves in Figs. 65#ndSL
The far-infrared output should invgenéfal consist of both ordinary and
extraordinary waves. We have so far assumed‘that the e-wave is strongly
phaée-ﬁismat@hed and can be neglected. This is true fof 6¢’= cos-l(ﬁ-i)
larger than the total reflection angle bp- However, when ¢ approaches 2
- or eé approaches zero, the phase mismatch of the e-wave is greatly're-
'duéed and the €-wave output becomes non-negligible. For 6 ~ 0, we have the
»nearly degenerate case where the € -wave and the o-wave_contribhte,almost
equally to the far-infrared output. | | |
" There are two other less important effecté of optical walkoff on
 fgf-infrared generation. First, the exp(ikx zz/2) term in Eq. (3) con-
tributes to the phase matching relation which now becomes |
Akz = kl'k2»+ kx; - kz = OJThistenmshiftsthecentebofthephase-matching'
coné in Figs. 3, 7, and 10 from kx =0 to kx = c(Aka + qgw/c)/z. Since.
for ¢ = 0, the far-infrared transmission coefficient for o-waves at the
boundary_failsvoff monotonically with increase of 8, this increases the
phase-métched output for kX > 0 and decreases that for kx'< 0. Second,
as seen f}om Eq:-(s),thenmximwnbf lﬁ(z)CET,z)|is'shifted from |
ke =k, = 0to kg =X ze?/ (1+6%) and K = 0; its effect on the far-field
angular distribution is just the opposite of that due to the shift of the:
phasematching céne. Depending on the situation, oné effect may dominate over the
other. They are responsible for the slight asymmetry of the z=0 curves in Fig. 10;
The‘phase-matching effect is more important for fhe z = - 0.01 case

while the |P(2)(kT)| effect 1is more important for thef = - 0.02 case.
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For shorter cfystals (r < 0.5 cm); the phase—mafching effect is more
important. |
C. Effects of linear absofption on far-infrared generation.

vIn practice, nonlinear far-infrared genefation.iﬁ’cryStalslis always-z
limited by far-infrared'absorptibn. This is the maiﬁ reason why far-infrared

DFG in solids has in most cases been restricted to the range between 1.

1

and 200 cm' . Roughly speaking, with an absorptlon coeff1c1ent .Y, the

effective length of the crystal for DFG cannot be much more than Z/Y
| Figure 11 shows how the far-lnfrared output from a l-cm slab decreases

" as a function of the far-infrared absorptlon coeff1c1ent y for w =10

-1

.and 100 cm ~. In the calculation, the focal spot size was chosen as

W= 25 um and the locatlon of the focal spot was at the center of

- the slab for vy = 0, while for increasing y it moves towards the end surface

-1

-of the slab. As we mentioned earlier in Sec, IIIA, forw= 1chm , all

the significant far-infrared Fourier components are nearly phase-matched

-1

(Akzz < ﬂ). TherefOre,_the'curve,for w= 10 cm - in Fig. 11 agrees

fairly well.Withfthat described by [1-exp(-y£/2)]2/(y2/2)2’fpf the

-1

phase-matched plane wave case. For w = 100 cm ~, sihce not all the

_significant far-infrared Fourier components can be nearly phase-matched

the reduction of far-infrared output with' increasing absorptlon is slower‘_
and cannot be approx1mated by the phase matched plane-wave form at small y. -
- In some respects the effects of y for YQ > 2 can be similated by an

-1

absorptlonless crystal with a length 2y .. An increase of Y increases the

phase-matching angle and broadens the phase-matched peak in the angular

dlstrlbutlon of the far- 1nfrared output. It also makes (4 k )opt’ the

- optimum axial phase_mismatch for maximum total far-lnfrared.output, more

-1

negative. This latter effect is quite pronounced for w = 100 cm ~ as shown

in Fig, 12,
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IV. Comparison w1th Other Models and with Calculatlons of Second Harmonlc
Generation. ‘ _

We now compare the results of our detailed calculations with.those
| ebtairied from two simple models for.the»bca_se whefe the optical walk-off
effect is negligible. One is the Gaussian distribution (GD) model inr
which we assume a Gaussian profile for the nonlinear polarization at the

 difference frequency

D - GO é”z)expl 26Oz - ) (18)

'1n the crystal slab where the pump fields are given by

-
E(?t)=é”.exp[—(x+y)/W+1k21wt],J~12 .
27

Thls is an extension of an earlier model used by Zernlke and Berman- and

26

Faries et al.“’ which assumes a uniform amplitude for ﬁ( )(r t) through- |

out a cylinder with a finite radius. The other s_imple‘model is_the usual
plane wave model in which we assume that the geometric ray apptOXimetion is
valid and that each beam can be described by a cylindrical pencil of rays
with e single wave vector. ' | l
From the GD model,'we obtain for the lossless case a total outpﬁt

power at w of
238 iy S Ok 22
2 _
@cw) T P88

w/c . - 2,2
f dkr(wkoz) <T(kr)>¢ Clak,) e i

a9

where <T(k'1")> ¢ is the far-infrared transmission factor averaged over
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the azimuthal angle ¢ with multiple reflections at_the.slab boundaries -
taken into account, and C(Akz) describes the effect of phase mismatch,

They are.giyen by

e 2.2
<T( )> - ko (Kgg * 1 k) + (kop * k) X
kp 7K +1< 1 I B S I 2 Yoz
oz "0 'z _ 0oz z
C(ak)) = sin® (k 2/2)/(k 2/2)% o
with ok =nw/c+ &k, -k, and ok =k -k, -nu/c.

The output powers at 100 cn ! and 10 em™! calculated from Eq. (19) as
a function of w are shown in Figs. 13 and 14 respectively in compariSonf

-1

’

'with the results of Eq. (16) from our more exact calculations.*At 100 cm
the only perceptible dlfference between the two curves occurs at small

beam sizes and amounts to 6° at w =13 um At 10 cm I

, the two curves
are V1rtua11y 1ndlst1ngu15hable Thus the GD model appears to be a very
satlsfactory approximation. | 4 |

. The output power from the plane wawe model without boundary conditions
is given,by- | |

2 o .
@P%w - P&, &, 42 (Tc0)> @

The result calculated from Eq. (21) is also shown in F1g 13, It is 209
hlgher than the correct value at w = 0.02 cn. The dev1at10n becomes much
worse at smaller w and d1verges as w approaches zero. This shows that the
plane wave model glves unacceptable results at small Mrbecause of 1ts dif-

fractionless approx1mat10n. With dlffractlon, the total far-lnfrared output
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power is decreased by total reflection of these Fourier cpmponents w1th |
E large k; and by phase mismatch (described by C(Ak,) in Eq. (19)) n
for other Fourier components. |

The plane wave calculation. is, however, sinlple and does not require .
mumerical integration. It is therefore preferred when Qne wants to crudely
estimate the output pewer. We can make the estimate more exact by multii)lying
“the calculated result by a cof'rection factor. Comparison of Eqs (19) and

(21) shows that this correction factor is given'by

F =90 go™W

2

REIN CAT L
We approxmate < T(kr)> C(Akz)/koz in the integral.by <T(O)> ¢/ko'
for kT kM and by 0 for kT ‘>_ kM37 where kM is defined a's‘ |

kM =y ZAkC (now/c - Akcf 2) with Ak being the smaller of the twc '
vquantiti‘es 2m/% and (n / 2 1) w/c. Phy51ca11y, at kT k.M
d@/d&‘z either has dropped to half of 1ts peak value or has. been cutoff

by total reflection. The correction factor then becomes .
F= 1 - exp (-?/8).
The output power calculated from F@Pw usmg Eqs (21) and (23) is within
20% of the correct value. | ’
We now discuss similarities and diffei‘ences between difference-fre-"

quency generation (DGF) and second-harmonic generation (SHG). In both
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cases, each pump f1e1d ﬁ with f1n1te beam radius has a dlstrlbutlon of
Fourler components w1th wave Vectors spreadlng effectlvely over an angle
26. The output of DFG or SHG from a non11near slab is 51gn1f1cant only
'when part of these 51gn1f1cant Fourler ‘components w1th1n the angular
spread 26 can satlsfy the ax1al phase matchlng condltlon Ak = 0. As

shown in F1g 15, this happens for SHG only 1f AkS Zk(ml) - k(2w1) 20

and Aks =2 k(wl) (1- cosGl) Ak and for DFG only if

Ak = Kk, —k(m)< 0 and AKD = k(w) (1-coss) 2 - Akg, where za is the .

_angular spread of the 51gn1f1cant far infrared Fourler components whlch can
get out of the crystal slab We empha51ze that for an eff101ent non- 11near

1nteract10n we must have Ak < 0 for SHG and Ak .i 0 for DFG

D

The quantlty AkR in SHG or Ak in DEG governs the qualltatlve

behav1or of the phase-matchlng curve j?a Versus Ak As we mentloned '

S

before, the output is most eff1c1ent when Aka (or -Ak ) falls in the

range between 0 and AkS (or AkR) Therefore, if AkR (or AkRg) >> 2n,
then the phase-matchlng curve has a broad peak; it rises sharply-to the

.peak around Akz (or Akg) = 0, then slopes downward as Akgl(or -Akg} :

increases -from 0 to::Akg (or'Akg , and finally in the case of DFG

falls rapidly at a certain Akg value because of the cutoff due to

‘total reflection at the boundaries. Examples are shown in Fig. 4 for

S 31

| DFG with Akpk = 80 and in Fig. 16 for SHG with Aksk = 100.°" Such a

phase-matching curve is characteristic of SHG with strong focusing of the

of the pump beam. In DFG, it occurs when the pump beams are more weakly
e D,
R )

< Zﬁ the range of 'Aki (or Akg) for efficient output is much narrower,

focused because of large far-infrared diffraction. When Akgg,(or Ak

and the phase-matching curve now shows a central peak and secondary maxima
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and minima, resembling the well-known plane-wave phasefmatching3cufve‘v_

described by sin”(ake/2)/(ake/2)%. Examples are shown in Fig. § for DFG

at 100 cn! with AkpR = 4, in Fig. 9 for DFG at 10 cn’® with Akt = 8,

and in Fig. 17 for SHG with AKS% = 5.68. ALl these curves are,however,
slightly asymmetric with a small shoulder on one side. This is'bécause for
AkSl <0 (or Akg > 0), the phase-matching condition AkZ = 0 is not
satisfied for any of the Fourier components. | |

There are several minor differences between the SHG and DFG phase

matching functions. For Akgg (or Akg$)>>f2n, the phase-matching curve :
- for DFG, as shown in Fig. 4, has a sharp drop around the value of Akg

where significant Fourier components of the far-infrared output begin to

be totally reflected at the boﬁndaries. In SHG, hbwever,.tqtal reflection is
'.hever important and therefore as shown in Fig. 16, no sudden drop'qf the output
pdwér occurs as Akglincreaséé. Because of the weaker diffraéfiGﬁ effect; )
thelphase-matching curve for'SHG has, in general, more pronounced fine struc-

* ture than that fbf DFG.
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V. Conclusion ‘

We have developed here the theory of far-infrared generation by.opticai
mixing in a nonlinear medium, using an extension of a formalism deﬁeioped N
earlier‘for second-harmonic generation By focused_lééer beams. The theory -
takes into account the effects of focusing,”diffraction, and double'réfrac-
.tion of the pumped beaﬁs and the effects of diffraction, absorption, and
reflectioné at the boundaries of the farjinfrargd output beam. Numerical
Calculations shéwing these effects are presénted. Both the total power‘
output and its angular distribution are calculated. |

We have found that focusingbof the pump beams can greatly enhance '
the far-infrared output. In a crystal of 1 cm 1ong, the'opfimum_focallv.
spot radius is roughly equal to or.smaller than the far-infrared wavelength
for dutput ffequencies less than 100 aml. The walkoff effect of the pump
beams in birefringent crystals does not reduce the output by more than a
faCtof of 2. Far-infrared absorption and boﬁndary reflectiohs are however
extremeiy important. The former is often the factor which limits the out-
pUt power, B

We show that the usual plane-wave model which neglécts the effects
of far-infrared diffraction ahd boundary reflections‘does not giVe a cor}-'.
rect description-of the far-infrared output, especially for tightly
focused pump_béams. A simple model treating the.non—linear polarization
as a constant 1/e radius,Gaussian distribution of radiating dipoles is,
vhoﬁever, a good approximation to the real picture. We also compare our
Tresults with thosetbf Second-harmonic.géneration-and hotice'a

great deal of similarities. Most of the differences can be
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ascribed to the boundary effects including total reflection which are more

important in the case of far-infrared generation.



OO0 045057 43

-29-

ACKNOWLEDGEMENTS _

ThlS research was supported by U S. Energy Research and Development :
,Admlnlstratlon One of the authors (J.R.M. ) would like to thank the
.Lawrence L1vermore Laboratory for providing computer time and R. L. Pexton
‘for providing eomplex error function and numerieal integration sub-’
routines. The other (Y.R.S;) is indebted te.the~Miller Institute of

University of California for a research professorShip.



-30-

Appendix A
The extraordinary ray assumed in S‘ecv. ITA actually has the form
~ 2 : .
% ez,/ 1 +gA2 : (x—czz) o )’2,

ﬁz(?,t): —— —— Xp | - — - Vi -
' /ﬁ+;52x) (I+ig, ) Wy (1+1E, ) W2(1+1_E2y)

Y

ik,z - wzt)'] | (A1)

_where

9\ (Zo 2x" 20 Zy)nz/{kz 2 em (a3 o, Y
2

Eex =2(z- ZO ZX)[ 2/ {kZWZ em,2 o, 2}J

;ey =2(z-2 2}’) [nz/ {kZ 2 ems é]

9 = unit vector parallel to the electric field of the e-ray for.

B ¢« 4

a normally incident laser beam
and the remaining parameters are as defined for Eq. (1). This ‘e:xpression
with zg o = Zy 5, iS essentially the same as the one ‘given in Appendix I
, 2X 0,2y ‘ ‘_ : _
of Ref. 31, but there the factors in the square brackets in the definition

of & and E Were approximated by 1. ‘

2x
‘ The nonllnear polarlzatlon I’( )(r,w) is obtained from Eq (2) usmg
the expre551ons of E in Eq. (1) and F 1n-Eq (A1). The transverse Fourier.
transform of 15( )(r,w) gives 15(2) (KT z). To obtain the expressmn of

3(2) (kT z) in Eq. (3), we made the followmg simplifying assumptlons

First, we assumed W T W, S W Second, we assumed a common focus for the
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two beams, 20;1'= 20;2x=‘Z0;2yj=Z0' Finally, we gssqmed1 

gl - EZX‘: gl - gZy = 0. This last assumptidn'is reasonable as long és 

3] El "£2x| , 3[&1 - 52y|<< n/Zt In our calculations, the largest value

of 3|g; - &y | or 3|€1 - Ezyl is 1 for the case of w = 10 cm L,

w=25um and - ¢ =-0.02. For all the other cases, 3{51 - gz¥|

or 3[£i - Ezy[ is much smaller than 1.
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'Appendix B

To derive Eq. (6), we first Fburier transform Eq. (4) and obtain -

[kk-K T+ B2 EQ = - an(f/Bp@ g
- | (B1)
kK. & . B@=-4ark .3y

The particular solution of Eq. (B1) can be written in the form.

@ - %(12) . B @,

From the inverse transform on kz, we then have

ikz(z-z')

(B2)
A‘straightforward,but_tedious,applicatioﬁ of the residue thereﬁ finally
1eads.to Eq. (6). |

~ We also notice tﬁat7Eqs. (6) and (7) are nof the resu1ts of slowlyv
varying envélope approximation.. This_is in fact generaliy true fdf the _.f
solution of optiéal mixing in the parémetric approXimatibn. For example,
consider the.simple case where the nonlinear procesé can be described by
the wave equation : \7 -
@Yoz + K E@ = @i AHP )
vhere PNL(z) #0 onlyif 0< z < %. Then, in the region -

0<z< %, the solution of the equation is

ik c
(o)

. 2 .z o ik (z-z2") | Y'R i | -ik (z-2") -
E(Z) = _21__(*1.2..__._ [/ PNL(Z')el o) Z Z. g R j Pm(z') e K] Z Z_ dz}
' 0 ’ - Jz

(B4)
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~ No slowly varYing‘en&eIOPe»appquimation waé made'in the deri&atibn. In.v
fact, one can easily show that with_the comﬁlete gxpfessioﬁvéf E(Z)_iﬁ

Eq.(B4); the terms aZIE(z)I /azzt and. 2k 8|E(z)| /3z are génerallyv_;
comparable in magnltude The usual slowly varylng envelope approx1mat10n

is actually equlvalent to neglectlng waves propagatlng in the opp051te

direction.
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1. Wavevector diagram for reflection of a plane Wave incident from the

vacuum side on the plane interface between vacuum and uniaxial crYstal

half—épaces: (a) crystal fills the right halerPacefr(b)mcrystal fills

the left half space and (c) an equivalent diagram with the crystal on :
the right. ‘

2. Wavevector. diagrams. showing (a) boundary transm1351on and re-

flection of ordlnary and extraordlnary waves and its decomp051t10n

’ -11nt0'(b)-and () ‘which describe two 51mpler.cases of-linear trans-’_

' Fig.

~ with the axial phase mlsmatch at its optimum value Akav= -;5.1 cm R

mission and reflection of waves at an interface.

3. Angular dlstrlbutlon of far-infrared power output at w = 100 am -1

-1

" a near optimum focal spot radius w = 25 um, a zero walk-off angle-

'Fig.
VFig.

Fig.

Fig.

5. Far 1nfrared power output at w .= 100 cm

-for Ak - 4,0 cm

. ¢°=0, anda crystal length £ = 1 cm.

4, ‘Far-iﬁfrared power output at w = 100 an!as a function of Akéz,

-assumlng a=0,z=0w=25um" .and £ =:1cm.

'1 as'a function of Ak 2
assummga-Og 0w-02mm,and2=1om o
6. Far-infrared power output at o = 100 cm- 1 as a functlon of the

focal spot radlus w for varlous walk off angles gy o= 10, and .

1 cm. The calculatlon was done by always adJustlng the axial

~ phase mlsmatch Ak to its optlmum value for maximm power output.

7 Angular dlstrlbutlon of far- 1nfrared power output at .u
-1
14

10 cm'

= 25 um,“f ¢z =0, =0, and & 1 cm.

The azimuth ¢ is defined by ¢ ='tan'1(y/x).'
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and our present calculation for w = 10 cm”
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8, Far-infrared power output at w = 10 cm'lvas'a function of
Akal' assuming « = 0, £ =0, W =25um, and £ =1 cm,

9. Far-infrared power output at w = 10 et

as a function of the
focal spot radius w.for various walk-off aﬁgies z, a'=50, and

2 =1 cm. Thé axial phase mismatch was always'adjuéted to its ootimhm
value in the calcuiationi | | A

10. Angular distribution'of the fé;?ihfrared poﬁer output-at

w=10 cm'l'for various walk-off angles ¢ assuming w = 25 pm,

a =0, 2=1cm, and the optimm value of Aka(c). A1l curves were
computed in the ¢ = 0 plane. _ |

11. J?a(a)/ééa(a = 0) versus a showing tho reduction of outpuf
power due to far-infrared absorption. For each point‘on-the curvesv'
for w = 10 am’} 1

and w = 100 cm ~, W= 25 um, ‘an optimm value

of Aka, and an:optimum location of the focal plane were used in

" the calculation. A corresponding curve calculated from the plane wave

model is also ‘shown for comparison.

12. Optimm values of 'Akal versus the absorption coefficient a
for the case of Fig. 11 with @ = 100 cm * where Ak, is the
axialiphase mismatch. a |

13. Comparison of the restlts of the Gaussian distribution model, -
theiplane'wave model, ‘and our present oalculation for w ='i00-cm-1,
@« =0,z =0,and 2 =1 cm. |

14. Comparison of the results of the Caussién.distribution‘model

| 1 w=0,2=0, and

2 =1aom.
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gFig;vls,'Phase%maféhe& Wavevector diagfansvfdr'(a) sécqﬁd harmohi§ugeﬁ{
eration_and»(b) diffefen¢e frequency generatioh.- | ‘,. B
 Fig. 16.. Second harmqﬁic péwer output.as_é function of ;Akaz. when |
o .Akil = 100..A[After Boydfand Kleinman, Jour. Appl. Phys. 39,
3597 (1968)] . | | U
Fig. 17. Secondlharmonic-powerioutput as a fuhétionvof Akéz wheni«

'Akgk + = 5.68. [After Boyd andeleinméanp.cit.]
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights.
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