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Theory of Ferroelectric Phase Transition in KHzP04 Type Crystals. I 

Masaharu TOKUNAGA*l and Takeo MATSUBARA 

Department of Physics, Kyoto University, Kyoto 

(Recieved December 6, 1965) 

To explain the large isotope effect on the transition temperature in KH2P04, the tunnel
ing motion of the protons in hydrogen bonds is considered and a theory of the phase transi
tion is developed under the assumption that the ferroelectric behavior of this substance is 
due to cooperation of the ionic displacements, the interactions between ions and protons and 
the tunneling motion of protons. The relation between the present theory and the Slater 
model or the Blinc model is discussed. 

§ I. Introduction 

In spite of the considerable amount of investigation made from the theo

retical as well as the experimental side, the microscopic mechanism of the phase 

transition in KH2P04 and isomorphous crystals does not seem to be clearly un

derstood. If . we classify the ferroelectric substances roughly into two groups, 

displacive and order-disorder type ferroelectrics, then KH2P04 will certainly 

belong to the latter group. However, the experimental data accumulated so far 

do not really give us a definite molecular picture of the phase transition, but 

sometimes reveals obvious inconsistencies among observed quantities. The main 

object of the present paper and a forthcoming one is to organize the somewhat 

divergent observed facts from the theoretical point of view and to suggest some 

experiments which might be helpful in attaining a full understanding of the 

phenomena. 

The crystal structure of KH2P04 (which will be abbreviated as KDP here

after) is the so-called tetragonal diamond type. A characteristic feature of this 

structure is the existence of hydrogen bonds connecting two P04 tetrahedra, 

which run almost perpendicularly to the direction of the ferroelectric c axis. 

In the ferroelectric phase, the magnitude of the saturated polarization Ps is 

well accounted for by making use of the observed values for the displacements 

of ions K+I, p+5 and o-2 along the c axis relative to their symmetric positions. 2
),s) 

Therefore the hydrogen bonds do not contribute any appreciable dipole moments 

to the saturated polarization, and hence the essential unit of the dielectric prop

erties in this crystal is the dipole moment of the complex [K-P04] as shown 

in Fig. 1. If KDP is of an " order-disorder " type of ferroelectric, that is, if 

the phase transition is caused by order-disorder arrangements of the dipole 

moments, the two configurations of the complex [K-P04] denoted as (A) and 

*l Present address: Research Reactor Institute, Kyoto University, Kumatori, Osaka. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

5
/4

/5
8
1
/1

8
7
4
6
7
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



582 M. Tokunaga and T. Matsubara 
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(B) in Fig. 1 should appear with equal prob

ability in the paraelectric phase. This pre

sumption can be checked by X ray or neutron 

diffraction, but we have no definite experi

mental evidence on this point. 

The first molecular theory of the phase 

transition for KDP was proposed by Slater4
> 

in 1941. In his theory, Slater assumes that 

each proton takes one of two possible posi

tions along a hydrogen bond and in the four 

hydrogen bonds which are connected . to a 
Fig. 1. The dipole unit in KH2P04 P04 group, only two protons occupy the posi

and its two possible orientations. 
tions nearer to the P04• All other configura-

tions in which protons more than two or less than two are attached to one P04 

group, are assumed to have higher configuration energy and are discarded. The 

polarization of the unit cell may be determined from the proton . configurations 

and a state of complete order in the proton arrangement is assumed to corres

pond to the ferroelectric ground state. This model has subsequently obtained 

experimental support from the neutron diffraction work carried out by Bacon etal.,2
> 

who showed that the proton density distribution deduced from the neutron diffraction 

extends along the hydrogen bond in the paraelectric phase, and becomes, localized 

around an asymmetric position shifted from the center of the bond in the fer

roelectric phase. The direction of the proton shift from the center of the bond 

is reversed when the applied field is reversed. Thus the view that the phase 

transition in KDP is triggered by the order-disorder transition in the proton 

arrangement seems to be established. The Slater model can provide a good 

a·ccount of the observed entropy change at the Curie temperature, although the 

predicted phase change is not of the second kind as is actually observed. By 

taking account of the proton configurations discarded in the Slater model, 

Takagi showed that the phase transition may be of the second kind and the 

agreement between theory and experiment on thermodynamical and dielectric 

properties is much improved. 5
> More recently, a refinement of the theory along 

the lines of the Slater-Takagi model has been given by Silsbee et al. 6
> 

Though the Slater-Takagi theories are successful in explaining many pro

perties of KDP, they have a serious defect. A remarkable feature of the phase 

transition in KDP is the very large isotope effect. On deuteration, the Curie 

temperature Tc of KH2PO/> is raised by as much as 1.7 times, whereas the 

Curie constant C does not change very much. 8> Concerning the isotope effect 

on the saturated polarization P.~, two different results have been reported: 

Bantle,9
> from the hysteresis loop, finds no isotope effect, while Zwicker and 

Scherrer10
> observe an isotope effect from their electro-optical measurement. Ac

cording to the Slater type of theory, however, the Curie temperature Tc depends 
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Theory of Ferroelectric Phase Transition in Kl-l2P04 Type Crystals. I 583 

solely on e, the energy difference between two different configurations of P04 

with respect to the two proton attachments (see Fig. 3), and it would be very 

hard to assume that e has a strong dependence on the proton mass. 

In order to explain the ·large isotope effect, Pirrene11
> proposes, in opposi

tion to the Slater theory, another model in . which the kinetic energy of the 

protons plays an important role. Pirrene's idea is further developed by Blinc~ 2
> 

in a model in which the proton is assumed to make a tunneling motion between 

two minima of the potential along the hydrogen bond. It is evident that the 

tunneling motion of the proton opposes the tendency to attain the lower energy 

configuration and that the lighter the particle is, the more easily it can tunnel, 

thus inhibiting the phase transition. Thus we can expect a higher Curie tem

perature on deuteration. If the proton tunneling really takes· place, it should 

give rise to a splitting in the vibrational level of the proton. Eline and Hadzi13
> 

have found the expected· splitting of the vibrational levels by analyzing their 

infrared absorption data for KDP and its isomorphs. But Razarev et al. 14
> have 

questioned Eline and Hadzi's interpretation of their experiments. More direct 

evidence for the existence of the splitting might be obtained by or s:~rving the 

light quanta emitted when vibrational transitions between the levels of the 

doublet takes place, which would probably fall in the far infrared region. HadzP 5
> 

claims that he has observed these light quantum irt his experiments, whereas 

Tinkam and his co-workers16
> question his result. Besides these controversial 

points, there is another experimental fact unfavourable to the Eline model. 

Although Eline has not discussed the dynamical properties in the light of his 

model, it is expected that his model gives a dielectric dispersion of a resonance 

type. According to a recent measurement by Hill and Ichiki,17l however, the 

dielectric dispersion of KD2P04 is rather of the Debye type, with distributed 

relaxation times. 

In spite of these uncle.ar points, we shall still examine the Eline model by 

generalizing it to some extent and by asking whether this generalized version of 

the Eline can do better than other models in giving a consistent account of 

various experimental facts. The viewpoint we take in this paper is the follow

ing. We assume that the large isotope effect in KDP is due to the proton 

motion and hence there exists proton tunneling. On the other hand, the phase 

transition is assumed to be triggered by a cooperative ordering in the proton 

arrangement, to which the displacements of ions are strongly coupled. Thus 

the ferroelectric. behavior of KDP is due to the combined effect of several dif

ferent factors-the ionic displacements, interaction between ions and protons 

and the kinetic energy of protons. In § 2 we set up a Hamiltonian which can 

describe the different degrees of freedom and their interactions. Further reduc

tion and· ~implification of the Hamiltonian is made to focus our attention on the 

proton system and to discuss the influence of the proton motion on the order

disorder transition in the proton arrangements. In § 3 we neglect the tunneling 
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584 M. Tokunaga and T. Matsubara 

effect in the Hamiltonian set up in § 2 and look for the relation between our 

Hamiltonian and the Slater-Takagi model, so that we may identify some of the 

parameters involved in our Hamiltonian with those u.sed in previous theories. 

Then we work out a Bethe approximation to discuss the temperature dependence 

of the spontaneous polarization and other quantities. Section 4 is devoted to 

the explanation of the isotope effect with the aid of a simplified Hamiltonian. 

The present calculation can reproduce the essential features of the Eline theory 

of the isotope effect, but in addition it enables us to discuss the consistency of 

the isotope effects observed for the Curie temperature Tc, the magnitude of 

the saturated polarization P.~ and the Curie constant C. The concentration 

dependence of Tc in partially deuterated crystals is also investigated from our 

new point of view in connection with a recent measurement by Kaminow. 18
) 

In § 5 we summarize the results of the calculations and criticize the Eline 

model. Dynamical problems such as dielectric relaxation and inelastic scattering 

of neutrons will be discussed in a forthcoming paper. 

§ 2. Effective Hamiltonian*> 

First we shall follow Slater's idea that the dielectric properties of KDP 

may be entirely determined by the proton configuration. Of course this is an 

approximation and we shall make the necessary generalization later so as to 

include the other degrees of freedom such as the dipoles caused by ionic dis

placements. A projection of the network of hydrogen bonds on a plane per

pendicular· to the c axis is shown in Fig. 2. Each proton represented by a 

Fig. 2. A projection of the network of 

hydrogen bonds on a plane perpen

dicular to the c axis. + and - denote 

two possible sites for the proton. 

small circle has two equilibrium positions 

along a bond which connects two P04 groups 

represented by the tetrahedra, and executes 

anharmonic oscillation in a double-minimum 

potential. Let us enumerate all the protons 

in a definite order. Then we assume that 

the energy of the proton system is expressed 

in the form 

Hproton = ~J-Jl (i) + ~~H2 (ij) + · · ·, (2 ·1) 
i i, > j 

where I-!1 (i) represents the part of the 

energy which depends only on the configu

ration of the i-th proton and H2 (ij) the 

part which depends on the pair configuration 

of the i-th and j-th protons and so forth. 

*J The idea described in this section has been reported at the symposium on the " phase 

transition and ferroelectrics" which was held in January, 1962, at the Research Institute for Solid 

State Physics. Essentially the same idea was also published by de Gennes in 1963_19) 
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Theory of Ferroelectric Phase Transition in KH2P04 Type Crystals. I 585 

We shall neglect all interactions of higher order than H2. Since we are going 

to put special emphasis on the tunneling of the proton . between two stable 

positions, it turns out to be convenient to adopt the second qnantization for

malism for the proton system, although the Fermi statistics of the proton does 

not play any important role in the present problem. Let ?JI(r) be the quantized 

wave function for the protons, then the Hamiltonian Hproton may be expressed 

as 

II proton=~ ?J!* (r) rl1?JI(r) dr+ (1/2) ~! W* (r) W* (r') H2?JI(r') W(r) drdr'. 

The protons are highly localized along the hydrogen bonds, and hence we can 

choose a properly complete set of localized wave functions as the basis for the 

expansion of ?J!(r). We denote the ground state wave function of the £-th proton 

which is oscillating around one of two stable positions along the i-th hydrogen 

bond by ¢/' (r) or ¢/ (r) according as the equilibrium position is the + site 

or the - site as shown in Fig. 2. In general, we have to consider all the 

wave functions of higher excited states, but there is some experimental evidence 

that such excited states are not important except for temperatures higher than 

those we are considering here. 13
J '

20
J We shall ignore them for the sake of sim

plicity. Assuming that the set of functions {¢/ (r), fL =a or b, i = 1,- · · 2N} are 

already made orthogonal to each other, we expand ?JI(r) in the form 

?Jf(r) = ~ {ai ¢/' (r) + bi ¢/ (r)} , (2·2) 
i 

where the expansion coefficients ai and bi are Fermi operators which satisfy 

the well-known commutation relations 

[a/, aJ + = [bi*, bj] + =oij 

[ai, aj]+= [ai*, a/]+= [bi, bj]+= [bi*, bj*J+=O 

[ai, bj]+=[ai*, bi]+=[ai, bj*]+=[ai*, bi*]+=O. 

(2·3) 

If we put (2 · 2) into H'proton, there appear many kinds of combinations of prod

ucts in a quadratic form for H1 and in a quartic form for 1-!2• However, 

since the ¢/' (r) 's are localized functions, we may safely neglect the overlapping 

of them except for that of the form 

This assumption simplifies the results, and the relevant terms in Hrroton become 

Hproton = ~ [h (aa) ai *ai + h (bb) bi*bi + h (ab) (ai*bi + bi *ai)] 
i 

+ (1/2)~[Vij(aa, aa)a/aj*ajai+ Vij(bb, bb)bi*b/bjbi 
tj 

+ vij(aa, bb) (ai*b/bjai+b/a/a/Ji) 

+ vij(ab, aa) (ai*a/ajbi+a/a/bjai+ai*b/ajai+bi*a/ajai) (2·4) 
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586 M. Tokunaga and T. Matsubara 

. + Vi;(ab, ab) (a/a/bibi+a/b/aibi+bi*b/aiai+bi*a/biai) 

+ vij(ab, bb) (a/b/bjbi+bi*a/bjbi+bi*b/ajbi+b/b/bjai)]' 

where 

h(!J.V) = )¢/(r)fi1 (i)¢/(r)dr (2·5) 

(2·6) 

/f., v, a and /3 being either a or b. We assume that a proton occupies definitely 

either one of two equilibrium positions along a bond and therefore 

(2·7) 

With this restriction, the products of a creation operator and an annihilation 

operator at the same site can be replaced by equivalent spin operators. To be 

more precise, it can be shown that the operators defined by 

Zi= (1/2) (a/ai-b/bi) 

. xi= (1/2) (ai *bi + b/ai) 

Yi= (1/2i) (ai*bi-bi*ai) 

satisfy the commutation relations for spin operators 

(2·8) 

[Xi, Yj]-=ioijzi, [Yi, Zj]-=ioijXi, [Zi, XJ_=ioijyi· (2·9) 

In terms of these operators, (2 · 4) can be rewritten as 

}Jproton=L; [-t- {h(aa) +h(bb)} + {h(aa) -h(bb)}Zi+2h(ab)Xi] 

+ (1/2) 11 [ Vij (aa, aa) (-~ + zi) (--~-- + zj) + Vij (bh, bb) (~-- zi) ( -}-- zj) 

+ Vij (ab, aa) { (1 + 2Zi) Xrl- Xi (1+ 2Zj)} + 4 Vij (ab, ab) XiXj 

+ Vij(ab, bb) {Xi(1-2Zj) + (1-2Zi)XJ]. 

From symmetry considerations it is required that 

h(aa) =h(bb) 

and 

vij(aa, aa) = vij(bb, bb) . 

(2 ·10) 

Then rearrangmg the various terms in (2 ·10) and omitting the constant terms, 

we obtain an effective Hamiltonian for the proton system in the form 
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Theory of Ferroe!ectric Phase Transition in KH2P04 Type Crystals. 1 587 

Hproton = - 2SJ~Xi- (1/2) ~ [Jijzizj + Lii (XiZj + ZiXj) + KijXiXj] , 
t ij 

(2 ·11) 

where the. coefficients 2SJ, Jih Lii and Kii are given by 

- 2SJ = 2h (ab) + (1/2) ~ [Vij (ab, aa) + Vji (ab, aa) + Vij (ab, bb) + Vji (ab, bb)] , 
j 

Jij=2Vij(aa, bb)- Vij(aa, aa)- Vij(bb, bb) ~ 

Lii=2Vii(ab, bb) -2Vii(qb, aa), 

Kii= -4Vii(ab, ab) .. 

(2 ·12) 

It is not hard to give a physical meaning to each term in the Hamiltonian 

(2 ·11). The two possible directions of the i-th "spin" Zi correspond obviously 

to the two possible equilibrium positions of the i-th proton, and the x com

ponent of the i-th " spin" xi makes the i-th proton jump from the + site to 

the - site and vice versa. Therefore the first term in the right-hand side of 

(2 ·11) repre·sents the kinetic energy. The second term is the interaction energy 

between protons and the third and . fourth terms are connected with the effects 

caused by interference between the tunneling motion and proton interaction. 

However, the last two terms may be ignored because they are proportional to 

integrals which involve the products of the wave functions localized a.t different 

equilibrium positions. In a later section we shall . base our discus:sion on a 

simplified :Hamiltonian 

H = - 2SJ~ xi- (1/2) ~ Jijzizh 
. i . 0 

(2 ·13) 

under the assumption that Lii and Kii are much smaller than Jii· 

It will be appropriate to make two remarks at this point. First: the mmn 

part of 2Q is the so-called resonance integral h (ab) which depends on the pro

ton mass. Assuming a harmonic oscillator wave function, Eline has given an 

approximate expression for h (ab) .13
> Generally speaking, h (ab) becomes smaller 

when the mass of the oscillator is increased. Secondly, within the framework 

of the Slater model the dipole moment of a P04 group is determined by the 

configuration of the four protons attached to it. This means that the dipole. 

moment is a function of the spin variables Zi. If we define the + and - pos1t1ons 

of each proton as indicated in Fig. 2, then the Slater model tells us that the 

c component of the total polarization is proportional to 

(2 ·14) 

where /1 denotes the magnitude of a dipole moment associated with a complex 

[K-H2P0 4]. When we cosider the Eline model, the total polarization will fluc

tuate as the proton tunneling takes place. So long as we take P given by 

(2 ·14) as the total polarization of the crystal, we are assuming that the time 

variation of P follows the proton motion instantaneously. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/3

5
/4

/5
8
1
/1

8
7
4
6
7
4
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



588 M. Tokunaga and T. Matsubara 

As was stated in the introduction, it seems that the polarization of the 

crystal lattice results not from the proton charges but from the displacements 

of the ions K+I, p+ 5 and 0- 2
• Therefore it is more realistic to introduce the 

degree of freedom associated with the ionic displacements in addition to those 

of the proton system. Instead of going into a d,etailed discussion of the intro

duction of this new degree of freedom, we shall content ourselves with a slight 

extension of the theory described so far. We suppose that the crystal is com

posed of N dipole moments strongly coupled to the proton system. Each dipole 

is assumed to take only two alternative directions which are represented by two 

values of an Ising spin 6n, n being the suffix denoting the position of each 

dipole. The above assumption is not unreasonable in view of the fact that the 

spontaneous polarization in the ferroelectric phase is closely connected with a 

definite displacement of the complex [K-P04] along the ± c directions. The 

two values of 6 correspond to the two configurations A and B of the complex 

[K-P0 4] shown in Fig. 1. The energy of the crystal is a function of the con

figurations of both dipoles and protons. Let us assume a Hamiltonian of the 

following form : 

· H=- (;i/2)~ 6nGnn'(]n,-!J.E~ 6n- ~ Vn(6n, [ri]n) + ~ H1(i). (2·15) 
nn/ n n i 

In this expression the first term represents the dipole-dipole interaction and the 

second term is the potential energy of the dipoles in an external field E. In 

the third term Vn (6 n' [ri] n) is the energy of the n-th dipole in the field pro

duced by the surrounding protons whose coordinates are denoted by the symbol 

[ri] n· l-11 (i) is the part of energy which depends only on the configurations 

of the i-th proton. H 1 can be expressed in terms of the x component of "spin" 

Xi. In order to express the third term in terms of spin operators, we first expand 

Vn as 

V + and V _ are now expressed in tern1.s of spin operators in a similar way as 

before and if we retain only the pair type interactions for the sake of simplicity, 

the final result takes the form 

+ LZj ( +) (XiZj + ZiXj)} + ~ {vni ( +) Zi + (J)ni (+)Xi}] (2 ·16) 
i 

1-(]n 
-~--- [(+)~(-)]. 

n 2 

The last line in (2 ·16) is the expression occurring in the first two lines but 

with all (+)replaced by (-). From the fact that the configuration with 6n = 1 and 
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Theory of Ferroelectric Phase Transition in KH2P04 Type Crystals. I 589 

Zi = 1/2 has the same energy as the configuration with On= -1 and Zi = -1/2, 

it is required that 

J;; ( + ) = Jt; ( - ) = J;; ' 

Kt;( +) =K!J(-) =K!j, 

L!J ( + ) = - L!J ( - ) = Lt; , 

Vni ( + ) = - Vrli (-) = Vni ' 

Wni ( + ) = Wni ( - ) = Wni . 

By making use of these relations, (2 ·16) may be rewritten as 

Vn (on, [ri] n) =- (1/2) ~ [Ji1ZiZ1 + Ki1XiX1] - ~wiXi 
ij i 

- -z=L2 L!}Gn(XiZj+ ZiXj)- -z= VnifJnZi' 
n ij ni 

where the following abbreviations have been used: 

Jij = ~ J!J, Kij = -z= K/j, (J)i = ~ Wni . 
n n n 

(2 ·17) 

(2 ·18) 

(2 ·19) 

Adding the dipole-dipole interaction, the field energy and the kinetic energy of 

protons to (2 ·18), we have finally the total Hamiltonian 

H=- (tL
2
/2)~ GnGnn'fJn,-PE~ Gn-2Q~ Xi- (1/2):L; [JiJZiZJ+K\,JXiXJ 

n n' n i ij 

(2. 20) 

where 2Q is a sum of the resonance integral h (ab) and wi. Ki1 and L!J are 

much smaller than JiJ and may be discarded. In the derivation of (2 · 20) we 

have made a number of assumptions and simplifications. A more elaborate 

calculation, however, leads to essentially the same result as the above Hamil

tonian except for higher order terms. 

§ 3. Relation to the Slater-Takagi model 

In this section we shall study the relation between the effective Hamiltonian 

derived in § 2 and the Slater-Takagi model. For this purpose we omit the 

tunneling effect and start with 

(3·;1) 

To clarify the relation between (3 ·1) and the Slater model, it is convenient to 

consider the energy levels of one P04 group determined by four proton con

figurations. Let us take a P04 and four protons. attached to it and denote their 

spin variables by Zr, Z2, Zs and Z4 as shown in Fig. 2. If we retain the in

teractions Ji1 only between nearest neighbours, then there appear two interaction 

parameters 
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590 M. Tokunaga and T. Matsubara 

and 

(3 ·2) 

In the present model, one P04 group can take 24 different configurations depend

ing on the set of values {Zj=±1/2, j=1,-··4}. Using (3·1) and (3·2), ·the 

energy level of each state can easily be calculated and the results are summarized 

in Table I. Instead of U and V, we define two parameters eo and e1 by 

Table I. Energy levels of a P04• 

configuration I number o. f protons :1 configuration I number of protons II 
Z1 Z2 Za Z4 attached to P04 1 Z1 Z2 Z3 Z4 attached to P04 energy 

:-+ : ·~ -l·--:- -r--·~------ -----------~---2-----(zu::v;/4 

+ + 2 I 

+ + + 
+ + 
+ 
+ 

+ 

+ + 

+ + - -

3 

3 

3 

1 

4 

1~--
!l 
I, 

I 

---1,; ------~---
- - + + 

V =2el +eo, 

0 

0 - (2U-:-4V)/4 

(3 ·3) 

and_ adjusting the zero of energy so that the energy of the configuration 

( + + + +) or (- - - -) becomers zero, we obtain the level scheme depicted 

in Fig. 3. The energy levels assumed in the Slater model and in the Takagi 

model are also given in the same figure. The Slater model corresponds to 

taking c1 as infinity, while in the Takagi model the highest level in Fig. 3 is 

discarded (i.e. eo+ 3el ~ oo). 

It is instructive to study the thermodynamical properties of the system 

with the Hamiltonian (3 ·1) using the cluster approximation. Let us take a 

cluster of four protons Zh j = 1, 2, 3, 4, and let the Hamiltonian of this cluster 

be 

H4 = - U (Z1Z2 + Z2Z4) - V (Z1Z2 + Z1Z4 + Z2Zs + ZsZ4) 

- [,uE+ (U+2V)Z] (Z1+Z2+Zs+Z4) , (3. 4) 

where Z is the statistical average of Zj for a proton outside the cluster. Simi

larly we denote the Hamiltonian of a proton j= 1 in the molecular field of the 

other protons as 
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"[S] "[S] + (00} 

• • 
T 

ci 
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+ 
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(I} (2} • (3} 

Fig. 3. Energy levels of P04 for various models. 

(1) present model 

(2) Slater model 

(3) Takagi model 

H1=- [,uE+ (2U +4V).Z]Zt. 

(3 ·5) 

Further we introduce the density ma

trices of the cluster and, one proton 

by 

The cluster approximation is equiva

lent to demanding that the Z appear

ing both in H1 and H4 are the same, 

and hence 

(3 ·7) 

where Tr2,s,4 means a partial trace over the variables Zh Za and Z4. For the 

case of no external field (E= 0), the values of the Boltzmann factor exp [- (31--14] 

are listed in Table II for various configurations. In this Table II, a, b and c 

are defined respectively by 

+ + + 

+ + 
+ + + 

+ + 

Table II. Boltzmann factors for various cluster configurations. 

+ 

+ 

1 

1 

4 

4 

4 

2 

a=exp( -Sea) , 

b=exp( Set), 

c=exp[ -{3(U +2V).Z/4]. 

dipole moment 

+2.u 

-2.u 
() 

+.u 
-p. 

() 

(3 ·8) 

Now it is an easy task to write down the matrix elements of equation (3 · 7), 

which has a diagonal form. Thus for Z1 = 1/2 we have 

(3 ~ 9) 
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592 Af. Tokunaga and T. Matsubara 

and for zl = - 1/2 

.Z4 -l (K + 3Lc- 2 + Lc2 + c- 4
) = .Z1-

1c- 2
, 

where the following abbreviations have been introduced : 

.Z4=c4 +c-4+4L(c2 +c- 2
) +2K, 

K=2a+a2b4
, 

L=ab. 

(3 ·10) 

(3 ·11a) 

(3 ·11b) 

(3 ·11c) 

(3 ·11d) 

An equation which determines Z or c as a function of temperature is obtained 

by subtracting (3 ·10) from (3 · 9): 

(c2
- c-2

) [2L + (c2 + c- 2
)] 

-~4+ c=4:t4I(~i-+ ~=2)-+ 2K 

It IS obvious that equation (3 ·12) always has a solution 

c=1 or Z=O. 

(3 ·12) 

(3 ·13) 

Besides this solution, which describes the disordered state, there exists another 

solution 

(3 ·14) 

provided that the temperature T is lower than a critical temperature Tc deter

mined from 

(3 ·15) 

For T<Tc the solution with non-zero Z provides us with a stable solution, and 

the value of Z is related to the spontaneous polarization Ps in the following 

manner. If we define the dipole moment of one P04 group as a function of 

the proton configurations as is shown in the last column of Table II, then the 

spontaneous polarization Ps is given by 

Ps=2Nf1Z=2N!1 Tr[Zl P1(1)] (3 ·16) 

which, 1n virtue of (3 · 8), (3 ·11) and (3 ·14), turns out to be 

p =N [(1-K+2L) (1-K-2L)r12 

s fl. 1-K 
(3 ·17) 

In Fig. 4 the curves of· Psi N11 calculated from (3 ·17) are shown as functions 

of T /Tc for various values of the ratio c1/co = n. As is seen from this figure, 

the phase transition becomes much sharper as n is increased, and in the limit 

of n-Hx::; the transition is of the first order. The results obtained here are very 

similar to those of the Takagi model, but different in an important respect from 

those obtained by ter Haar and Grindley/1
> who worked out a similar theory 

of the phase transition in KDP. They obtained a result in which the order of 
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the phase transition may change from the second order to the first order de

pending on the magnitude of the interaction parameters Jii· The origin of the 

discrepancy between the present theory and theirs can be readily traced back 

0.9 

08 

0.7 

0.6 

0.5 

0.6 0.7 0.8 

Tfrc 

0.9 1.0 

to an inadequacy in the assumptions 

made about the energy levels of a P04 

group in their model. 

Performing a similar calculation for 

the case of a finite field (E=/=0), we can 

easily derive an expression for the elec

tric susceptibility. We shall mention 

here only the results. For T>Tc 

X = N /1~ • -- . L + 1 . - ·-
kT K+2L-1 

(3·18) 

and for T<Tc 

N;i ( 2L )
2 

K+ 4L--1 X = ----- - --- -------- ------------- . 

kT 1-K 2(1-K-2L) 

(3 ·19) 

If we let c1-> oo in (3 ·15) and (3 · 18), 

we recover Slater's results 

(3. 20) 

and 
Fig. 4. Psi N p. as the functions of T/Tc for 

var-ious values of n=Er/Eo. e and X repre· 

sent the experimental values. 

1\TfJ.2 1 
X = - --- ---------- -- ___ . (3 · 21) 

kT 2 exp ( -- {3c0) -1 

§ 4. Isotope effect 

We are now in a position to discuss the isotope effect usmg the tunnel

ing model. First we start with the Hamiltonian (2 ·13) 

.R = - 2!2~ xi- (1/2) ~ Ji,zizj 
i ij 

and adopt a molecular field approximation. Introducing an external and a mo

lecular field, we replace the original Hamiltonian by 

~I=-~ [2QXi + JZZi + 11EZi] , (4• 1) 
L 

where J = ~ Jij and Z is the thermal average of Z, a quantity to be determined 
j 

self-consistently at a later stage. The eigenvalues of ( 4 ·1) are readily found 

to be 
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594 A1. Tokunaga and T. Matsubara 

(4·2) 

and the partition function per proton is thus given by 

.Z = 2 cosh (SWE) . (4 · 3) 

The self-consistency condition will be fulfilled if Z 1s determined from an 

equation 

z =a /8 CSJZ) log .Z , (4·4) 

which gives us 

(4·5) 

In the case E=O, (4·5) has always a solution Z=O. Besides this solution, 

when the temperature is sufficiently low we have another solution determined 

from 

(4·6) 

The critical temperature Tc is given by an equation 

4!2/ J =tanh (.Q/ kTc) 

or 

(4·7) 

with q = 4!2/ J. Z is proportional to the spontaneous polarization Ps and the max

imum value of Ps attained at T= 0 can be shown to be 

(4·8) 

The expression for the electric susceptibility X is also easily derived by working 

out a similar calculation with the finite field E. The result is, for T>Tc, 

N;_i 1 
X = -. ----- --- -------------------· ---------------

f<T coth (S.Q) - coth CSc.Q) · 
(4·9) 

We are ready to study the isotope effect by making use of these formulae. We 

assume that deuteration changes only the parameter Q and does not influence 

N, 11 and J. Let us call the ratio of the value of Q for deuteron and proton 

( 4 ·10) 

Then the ratios of the critical temperature, and the maximum polarization for 

KD2P04 and KH2P04 are respectively given by 

(4·11) 

and 

( 4 ·12) 
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In Fig. 5 the calculated curves for the ratio Ten /T/1 are shown as the functions 

of q for several p values. The observed values for five isomorphous crystals 

·are also indicated by horizontal lines in the same figure. In order to get agree-

ment between theory and experiment, a rather high value of q is required. In 

the case of KDP, for instance, we have to take q = 0.92 even if p = 0. This q 

value, which is necessary to explain the isotope effect on the transition tem

perature, however, gives an isotope effect on the ratio of the maximum spontaneous 

polarizations given by (4·12) too large to be compared with the observed value. 

Furthermore, the temperature variation of the susceptibility just above Tc pre

dicted from ( 4 · 9), is quite sensitive to the change of JJ, in contradiction with 

the observed behavior. Thus we encounter difficulty so long as we adopt the 

Hamil toni an (4 · 1) . 

7/! H 
!Jc 

The molecular field approximation is by 

no means adequate in the present problem 

because it fails to take into account the strong 

short range correlation among the four protons 

near one P04 group. This defect 'of the mo

lecular ,field approximation is most clearly 

manifested in the fact that the critical tern-

2.0 

1.5 

KH2P04 
KHzAs04 

RbHzAs04 

RbH2P04 

CsHzAs04 ::;: ' 
perature in this approximation is determined 

·(when q~O) by 

( 4 ·13) 

which is in remarkable contrast to the cluster 
~--~--~----~--~ 

0.6 0.7 °8 09 I.O q approximation described in § 3 where in the 

Fig. 5. Calculated curves for the ratio limit of e1 ~ oo kTc was given by e0/log 2. 

TcDfTcH as the functions of q and Therefore it is desirable to work out a theory 
p. Horizontal lines represent ob-
served values for different isomor- of the isotope effect based on the cluster ap-

phous crystals. proximation: To do this, we include the kinetic 

energy of protons in the Hamiltonian (3 · 4) in the form 

1!4 ~ - U (Z1Za + Z2Z4) -- V (Z1Z2 + Z1Z4 + Z2Za + ZsZ4) 

-((Z1+Z2+Z:~+Z4) -2!2(X1+X2+Xs+X4) 

and 1n (3 · 5) 1n the form 

where we omit the external field E and put 

(= (U +2V)Z. 

(4 ·14) 

( 4 ·15) 

( 4 ·16) 

The principle of the calculation is the same as before and the self-consistent 

equation to determine Z is, instead of (3 ·12), given by 
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596 M. Tokunaga and T. Matsubara 

a a 
(4 ·17) --- log .Z4 = 2-- log .Z1 

f)(~() f)(~() 

with 

.Z4 = Tr [exp (- ~H4)] (4·18a) 

and 

.Z1 = Tr [exp (- (3H1)] . (4 ·18b) 

Actual evaluation of (4·17) is difficult, but the determination of the transition 

temperature can be made without much trouble by expanding both sides of 

( 4 ·17) in powers of ( and equating the first terms on both sides. In this way, 

Tc is determined as a function of c0, n = c1/ co and q = Qj c0• Figure 6 shows 

Tc(q)/Tc(q = 0) as a function of q for the case n = 5. If we assume that there exists 

7;(qV-rc(oJ no tunneling motion KD2P04, i.e. q = 0, 
lr 0.5 1.0 q=4Jl 

1.0 ------------- then the observed isotope effect on 

-- Tc in KH2P04 may be accounted for 
......... ,',,, by taking q = 1.4. 

05 

Fig. 6. Isotope effect of the critical temperature in 

the cluster approximation for the case E1 = 5E0• 

Dashed line shows the molecular field approxi-

It would be interesting to examine 

theoretically the variation of Tc in the 

mixed crystal KH2(1-anD2xP04 with the 

degree of deuteration x. In the sim

plest approximation, we may assume 

2= (1-x)SJH+xSJD or 

q= (1-x)qH+xqD. ( 4 ·19) 

mation. Then using the result given in Fig. 

6, we can evaluate Tc for the mixed crystal when the ratio p = qD/ qH is fixed. 

In Fig. 7 the calculated ratios Tc (x) /Tc (1) for several p values are shown to

gether with the experimental values observed in a recent experiment by Ka

minow.18> Agreement between the theory and experiment is fairly satisfactory 

in view of the comparatively large experimental error. It should be noted that 

if we adopted the molecular field approximation, the theory would predict an 

x-dependence of Tc (x) far from the linear relation, as shown in Fig. 7. Thus 

the cluster approximation removes some of the defects involved in the molecular 

field approximation described above, but it cannot remove the difficulties en

countered before in explaining the absence of isotope effects on the Curie con

stant and saturated polarization. 

Some of the difficulties mentioned above, however, may be overcome by 

considering the degree of freedom of the ionic displacements which are assumed 

to be responsible for the electric polarization. Therefore let us take the Hamil

tonian (2 · 20) and see what comes out when the molecular field approximation 

is applied to it. Neglecting small terms which involve Kii and Lt}, we rewrite 
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Tcc1::yTc(1 l 
(2 · 20) as 

1~-----------------==---~ H =- (!t
2
/2) :E 6nGn n'(Jn'- !tB:E (Jn 

n n/ n 

0.9 

(4. 20) 
0.8-

0.7 

In the molecular field approximation, the 

Hamiltonian per proton is given by 

Hproton = - .JZ · Z- v?f • Z- 2Q)( 

0.6 .__________,____j :____-fZ- 2QX (4·21) 

0 0.5 
X 

1.0 

and that for one dipole by 

Hdipolc = - [ttE + tt2
G?f + vZ] rJ, (4. 22) 

Fig. 7. Theoretical critical temperature Tc(x) 

of a partially deuteratecl crystal as a 

function of the degree of deuteration x. 

Dashed line shows the result based on 

the molecular field approximation. Ex

perimental values are shown by +. 

where .J and Z are the same as before 

while v and G are defined respectively 

by 

V = :E Vni = :E Vni 
n i 

and 

G=:E Gnn'. 
n' 

Z should be. determined self-consistently by an aquation 

Z = Tr [Z exp (- (3Hproton)] /Tr [exp (- (3Hprotou)] 

= (~~-~ 7}_~) tanh [~~-(:Jz-t;(r)2+4J?2; 2 ] _ 

2[(JZ +v6) 2 +4!2
2

]
112 

and similarly ?f should be the solution of an equation 

?f = Tr [6 exp (- (3l-Idipolc)] /Tr [exp (- (3Hdipolc)] 

=tanh [(3 (ttE + vZ + tt2
G6)] . 

By our assumption, the electric polarization may be put equal to 

P:=Ntt ?f, 

(4· 23) 

(4. 24) 

(4. 25) 

(4 ·26) 

and by solving the simultaneous equations ( 4 · 24) and ( 4 · 25), we can easily 

obtain the spontaneous polarization Ps below the critical temperature Tc and sus

ceptibility X above and below Tc. Here we shall present only the result for 

the susceptibility above Tc: 

(4· 27) 
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The critical temperature Tc is the temperature at which X tends to infinity and 

both Z and (f become zero. From (4·27) it is given by 

kTc =tiC+ V 2 
tanh (Q/ kTc) / J[q- tanh (Q/ kTc)] (4·28) 

which inay also be written as 

v2 
1 + J(kTc-~-iic)- =q/tanh(QjkTc) (4. 29) 

In the limit v=O, (4·29) reduces to (4·7) as it should. Since (f tends to unity 

as T goes to zero, the maximum polarization PM is in the present model 

(4. 30) 

Thus there appears no isotope effect in PM, although the critical temperature 

calculated from (4·29) depends sensitively on Q. 

§ 5. Summary and discussion 

In the previous sections we have discussed a' model of KDP which includes 

the Slater model in one limit and the Eline model as another limit. The large 

isotope effect observed on the critical temperature of this substance is explained, 

following Eline, by taking into account the tunneling motion of protons. A 

conclusion inherent to a theory of the Blinc type is that the spontaneous polari

zation cannot attain its maximum value even at the absolute zero of temperature 

because of the presence of the tunneling motion. This result may be in accord 

with the electro-optical observations of Zwicker and Scherrer,I0
J but the recent 

measurement of the dielectric constant by Mayer et al. 8l seems to support 

rather the result of Bantle's experimenel which reveals no isotope effect on 

the spontaneous polarization. If there is little difference in the saturated 

polarization between KH2P04 and KD2P04, the Eline model has to be modified 

in such a way that the main part of the dielectric polarization is contributed 

by the ionic displacements and that the ordering in the proton system merely 

plays the role of a trigger to make the ionic lattice polarize spontaneously. 

At present there seems to exist no conclusive evidence as to whether or 

not the protons are really carrying out tunneling motions. From the theoretical 

side, it is difficult to draw any definite conclusion on this point, so long as we 

are concerned only with the equilibrium properties of KDP as in this paper. 

In our theory, the presence of the tunneling motion is characterized by a para

meter q = Qj 8 0• From the discussion of the isotope effect on Tc, we have 

deduced a theoretical value q = 1.4 for KH2PO... On the other hand, as is easily 

shown, 2Q is equal to the energy splitting of the vibrational ground state of a 

proton caused by tunneling motion. According to Hadzi's experiment on far 

infrared absorption,15
J this energy separation may be identified with the energy 

of an observed photon 
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2Q=l23 cm- 1
• 

If we assume that there exists no tunneling motion in KD2P04, (Hadzi could 

not observe the corresponding photon in KD 2P04.) then eo is related to the 

critical temperature of KD 2P04 Ten= 213 °K, on using the cluster approximation 

with n = 5, by the relation 

kTcn = 1.39 eo , 

from. which we have e0 =l05 cm- 1 and hence q=0.56. This q value is somewhat 

smaller than the theoretical value, although the order of magnitude is the same. 

The observations on the critical temperatures of partially deuterated KDP are 

not inconsistent with the present theory. From these results, therefore, it is 

difficult to make a definite choice of models. The tunneling motion of the pro

tons, if it ever exists, will be more closely connected with the dynamical pro

perties of the crystal such as the inelastic scattering of neutrons and dielectric 

relaxation. We shall discuss such subjects in the second part of this paper. 
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