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1. Introduction. The linear mechanics of fluid-saturated porous media as 
developed by the author was reviewed and discussed in detail in two earlier 
papers [l], [2]. In its final form it is based on the linear thermodynamics of 
irreversible processes. It is applicable to the most general case of anisotropy 
and includes not only the basic principles of classical thermodynamics but also 
the effects of coupled flows of irreversible processes. Thermoelastic dissipation 
is also implicit since the heat flux is nothing but one of the internal thermo- 
dynamic coordinates of the system. The solid matrix itself may be viscoelastic. 
Actually the theory is even more general since it takes into account the visco- 
elastic interaction of the fluid with the solid.due to the micromechanics of fluid 
penetration in cracks which are much smaller than the pores. An important 
concept derived from the existence of a dissipation function for the fluid is that 
of “Viscodynamic operator” [2]. This is an operational symmetric tensor which 
describes the frequency-dependent behavior of the fluid. The symmetric char- 
acter of this tensor leads to important conclusions in the theory of acoustic 
propagation. 

Regarding the extension to non-linear problems a first step is constituted by 
a theory which introduces the non-linear superposition of a state of initial 
stress and incremental deformations [3]. This also leads to an analysis of finite 
deformations based on stress-rates. In this case the deformation is considered 
as a continuous sequence of incremental deformations 141. The concepts and 
methods introduced in this incremental theory lead quite naturally to the next 
development which considers a description of finite deformation using material 
coordinates. In particular the concept of pressure function for a porous medium 
which was introduced in the theory of incremental deformations [3] provides 
one of the essential means by which this extension of the theory can be accom- 
plished. The mechanics of porous media is thus brought to the same level of 
development of the classical theory of finite deformations in elasticity. In 
order to restrict the length of the paper, the theory is presented in the context 
of quasi-static and isothermal deformations. 
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It should be pointed out that in order to develop a realistic theory of porous 

solids, it is essential to use a material zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdescription of the deformation because 

we are dealing with solid matter whose properties such as the porous structure 

are transported and rotated with the material. This is in contrast with the 

Eulerian or spatial okscription which is more suitable when dealing with isotropic 

homogeneous fluids. In this connection reference should be made to recent 

attempts to treat the mechanics of porous media by applying theories of inter- 

acting continua which are based on a Eulerian description. In addition to 

presenting basic diaculties inherent in the Eulerian description of deformation 

of solids, the physical model of the theory of interacting continua lacks the 

required sophistication to account for all significant and essential properties 

of porous media. 

2. Equilibrium equations. The deformation of the solid is described by the 

transformation 

(2.1) Er = 4&i) 

for the initial coordinates xi to the final coordinates ii . We are dealing here 

with the average displacement of an element of material sufficiently large with 

respect to the pore size. The average local deformation is homogeneous within a 

differential element and defined by the differential relations 

(2.2) 

where 

(2.3) 
82 

cii = azi’ 

A measure of strain is 

(2.4) Q*j = (Yji = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACk;Cki e 

The coefficients cii represent the homogeneous transformation of a sample cube 

of the solid originally of unit size. We shall refer to it as the unit sample. 

The isothermal free energy W of this unit cube after deformation is a function 

of the strain measure aii and of the total mass of fluid m added in the pores 

of the sample during deformation. It may also depend on the initial location xL . 

(2.5) W = W(Crii , m, Z,J. 

We also define a vector whose components Mi represent the total mass of 

fluid which has flowed across a material area which before deformation is a 

unit square perpendicular to the xi axis. It is related to m by the relation 
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A body force field (Bi per unit mass derived from a potential U(&) is acting on 

the medium 

(2.7) 

The initial mass of solid and fluid in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa  unit volume before deformation is denoted 

by m, . The mass of this sample after deformation is m, + m. The equilibrium 

equations of the field are obtained from the principle of virtual work. We write 

(2.8) 

n n 

This equation must be verified for all variations of the six variables ii and Mc . 

The variations are chosen different from zero only inside the volume Q so that 

boundary conditions are not involved. 

Let us first vary .$* . 

(2.9) 
n 

where we have put 

Equation (2.8) yields 

[jii acii + (m, + 4 !$ SIi] dQ = 0 

(2.10) fii = z. 
si 

These quantities represent the nine force components acting on the faces of the 

unit sample after deformation, hence per unit initial area. Introducing the 

values (2.3) for cii and integrating by parts we obtain 

(2.11) -2 + (m, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm) $ St< dCJ = 0. 
I . 1 

n 

Hence the equilibrium equations 

(2.12) 2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(m, + m) 5 = 0. 
I 

This condition expresses the translational equilibrium of the field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfii . Note 

that because W is independent of a rigid rotation the nine components fii 
satisfy identically the three equations of equilibrium of moments of an element 

of the medium. 

Conditions of equilibrium of the fluid are obtained also from equation (2.8) 

this time by varying Mi . We derive 

(~+U)~mdQ=O 

n 

where 
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(2.14) +$. 

Introducing the value (2.6) of m and integratingFby parts yields the fluid equi- 

librium condition 

(2.15) 

or 

(2.16) $ + U = Const. 

The physical significance of $ is clarified as follows. We consider a large 

reservoir of fluid at a pressure p, which together with the unit sample of porous 

medium constitutes a single thermodynamic system. Its free energy per unit 

mass of fluid injected is 

(2.17) 

where p is the fluid specific mass assumed to be a function of the fluid pressure p. 

Its initial value at pressure pO is p = pO . Expression (2.17) for $ is the work done 

isothermally on the system to extract a unit mass of fluid from the reservoir, 

bring it to the pressure p and inject it in the solid at that pressure. It may be 

written 

(2.18) 

We shall call it the “pressure function”, a term already in use for this expression 

in fluid mechanics. However, as a thermodynamic variable for the mixed tluid- 

solid system its present definition is in a broader context where it plays the 

role of a chemical potential. Actually its application is not restricted to the 

presence of actual pores. The fluid may be in solution in the solid, or may be 

adsorbed. Such phenomena are usually associated with the concept of capillary 

or osmotic pressures. 

It is of interest to examine the particular case where the fluid content m 

depends only on the pore volume and fluid density. An additional physical 

interpretation of W  is provided in this case. We call v the increase of pore volume 

per unit initial volume of bulk material. Under the present assumption we may 

write 

(2.19) dv = d(m ; m”)- 

The differential of the free energy is 

(2.20) dW  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfii dcii + +b dm. 
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By putting 

(2.21) dW = fii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&ii + p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdv 

and taking into account relations (2.17) and (2.19) we find 

(2.22) w = w + [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-1’ p d(;) -  t](m~ + 4. 
PO 

This result may be interpreted as follows. Consider the system composed of 

the solid matrix and a thin layer of fluid attached to the internal walls of the 

pores. We may call it the wetted solid. As required for the validity of equation 

(2.19) we must assume that the mass of fluid in this layer is constant. The 

pressure p is then the pressure acting on the solid across the wetting fluid layer. 

The term p dv represents the work done by this pressure on the wetted solid. 

If the free energy of the wetted solid depends only on cii and v it is represented 

by W. Hence 

(2.23) 

Note that interfacial interactions of fluid and solid are taken into account here 

provided it can be localized in a thin layer of constant composition and considered 

as belonging to the solid matrix. For example the contribution of surface tension 

to the rigidity of a porous solid is included quantitatively in equations (2.23). 

It is well known that a large percentage of the elastic properties of porous media 

may depend on surface tension effects, particularly if the pores are small so 

that the total fluid solid inter-facial area is large. Hence expression (2.22) for 

the free energy W  may be interpreted as the sum of the free energies of two 

non-interacting phases. The first term W is the free energy of the wetted solid, 

while the second term is the free energy of a mass m, + m of fluid brought to 

the pressure p from the reservoir at the initial pressure pO . This mass of fluid 

is introducted into the pores without additional work. 

Green’s tensor. This form of the stress tensor may be defined as in the classical 

theory of Elasticity. It is expressed by 

(2.24) T. == ri 
+Yir 

using Green’s definition of strain as 

(2.25) vii = $(CYjj - 6ii)* 

Change of variables by con tat t transformation. In many problems it is con- 

venient to use other independent variables than cii and m. For example we may 

choose cii and y? as independent variables. This may be achieved by a classical 

procedure using contact transformations. We define a function 
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(2.26) 5 = W - m$. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Its differential is 

(2.27) d5 = dW - md# - #dm. 

Substituting the value (2.20) for dW we derive 

(2.28) d5 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfii dcii - m d 
e” 

. 

We may express 5 in terms of cyii and # 

(2.29) 5 = S(CY<j , ys). 

Equation (2.28) implies 

(2.30) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
fii = g 

*i 

65 

-m=G* 

Relations, in terms of the fluid pressure p and the increase in pore volume t) are 

obtained by putting 

(2.31) x=w-pv 

applying the contact transformation method to W, i.e., to the free energy of the 

solid-matrix expressed as a function of c<i and v. When changing the independent 

variables to cij and p we obtain 

(2.32) 
fii = E 

$2 

ax 
V=-dp’ 

The last equation yields the increase in pore volume. Another contact trans- 

formation could be applied with the stress components (2.24) as independent 

variables. We introduce 

(2.33) s = W - TiiYii 

which we express in terms of Tii and m. In this case 

(2.34) 

as 
Yii = -dTii 

Other similar relations may easily be derived for any group of seven state 

variables by the appropriate contact transformation. 
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3. Generalized Darcy’s law. When the equilibrium condition (2.16) of the 

fluid is not satisfied, the motion of the fluid relative to the solid is expressed by 

Darcy’s law which for isotropic permeability is written 

‘(3.1) 

where tii is the rate of volume flow per unit area of bulk material, Ic is the 

permeability coefficient, p the fluid specific mass, 7 the fluid viscosity. The total 

potential 4 is 

(3.2) +=++U 

where 9 is the pressure function (2.18) and U is the body force potential in 

accordance with equation (2.7). The form (3.1) of Darcy’s law was derived by 

M. Ring Hubbert [5] with an extensive discussion of its geometrical and physical 

significance. 

For anisotropic porosity, the author has shown [l] that the generalized 

form of Darcy’s law is 

(3.3) c. = -k. e!?& . 
*f 71 ati 

where the permeability is a symmetric tensor 

(3.4) kij = 7cii . 

For a Newtonian fluid this symmetry property is a direct consequence of the 

existence of the well-known dissipation function of Rayleigh. For the reader 

unfamiliar with dissipation function properties, the relationship between the 

symmetry property (3.4), and the existence of a dissipation function is explained 

in the appendix. The author also pointed out [l], [2] that the symmetry property 

(3.4) is quite general and is not restricted to pure viscous behavior. It remains 

valid if we include physical-chemical interactions between the solid and the 

fluid where the viscosity concept may not be applicable. In fact, it is a conse- 

quence of general principles of irreversible thermodynamics as expressed by 

Onsager’s reciprocity relations. These relations are valid for a large class of 

phenomena of mass and energy transport and imply the existence of a thermo- 

dynamic dissipation function which is a measure of the rate of entropy produc- 

tion. For our purpose of analyzing finite deformation we introduce a more 

convenient form of Darcy’s law (3.3) in terms of initial coordinates before 

deformation. Consider an area X of the porous material before deformation. 

After deformation it becomes X’. The total mass flow rate across this area is 

(3.5) F = ss,, P& dfz & + tiz dEa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdtl + ti, d&d 42). 

By transforming the variables [i to the initial coordinates xi we obtain 

(3.6) F = I/-  (i& dxz dx, + n;r, dx, dxl + i@ , dxl dxJ 
.T 
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where 

(3.7) iGl< = pl_iiRii 

and Rii is the cofactor of cii in the Jacobian determinant 

(3 3) A = det 2 = det 1~1. 
I A 

The linear relations between the differentials d& and dxi lead to the fundamental 
property 

(3.9) 

These expressions are the elements of the inverse of the matrix of A. 
Expression (3.6) shows that ti, represents a mass flow vector. For example 

a, is the rate of mass flow through a displaced surface originally equal to unity 
and perpendicular to x, axis. Hence the vector %Yi is the mass flow rate through 
the faces of a deformed parallelipiped, initially a unit cube with faces parallel 
to the axes xi . W e may write 

(3.10) &2!$. 

Although it is a non-Cartesian vector, it nevertheless represents a directly 
measurable and physically meaningful quantity. 

We now go back to Darcy’s law (3.3), by introducing it in the value (3.7) 
of it&, . We obtain 

(3.11) I&i = -kl, f Rti -$. 
m 

Taking into account relations (3.9) we may also write 

(3.12) 

Substitution of this expression in equation (3.11) yields 

(3.13) 

where 

(3.14) 

tii = -K. i!!?!. 
li ax, 

Kii = k,, f R+. 

The symmetry property k,, = k,, implies the same property for Kij , i.e., 

(3.15) Kii = Kii . 
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Equation (3.13) is an intrinsic formulation of Darcy’s law governing the mass 
flow through the faces of a deformed element of the material in terms of the 
gradient of 4 between parallel faces. The intrinsic permeability is now repre- 
sented by the directly measurable symmetric tensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKii . For a Newtonian 

fluid the symmetry property of this intrinsic permeability may be derived as a 
direct consequence of Rayleigh’s dissipation function without having to use 
relation (3.14). When the flow involves more general chemical physical processes 
the symmetry property of Kij is a consequence of Onsager’s relations. The 
intrinsic permeability is of course a function of the initial location, the deforma- 
tion and the fluid mass content. Hence 

(3.16) Kii = Kii(~ , ~y/zz , m). 

Power dissipated. It is interesting to evaluate the power dissipated 6 per 

unit initial volume 

(3.17) 

Expressing these quantities in terms of @/axi , taking into account (3.7) and 

(3.9) we find 

(3.18) 

with 

(3.19) 

This coincides with the value (3.14). Expressions (3.17) and (3.18) are invar- 
iants. They show that kii and Kii are contravariant tensors which in tensor 
notation are written with superscripts. We may also write 

(3.20) 

Hence comparing with (3.17) 

Complete set of equations for the deformation field. There are basically six 

unknowns represented by the two vectors 44 and Mi . An important feature of 
the present formulation is the holonomic character of the conservation equa- 
tion (2.6). The free energy may be written as a function of the six unknowns 

Ei and Mi 

(3.22) W = W (Ori, 9 -5 ) ‘k)’ 
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With fii = aIV/aci, , the equilibrium equations (2.12) 

provide three equations for the six unknowns. Three more equations are provided 

by Darcy’s law (3.13), i.e., 

(3.24) 
dM, = -K 3. 

at ii axj 

The six equations (3.23) and (3.24) constitute a complete set with x1 and t as 

independent variables. Another complete set of equations may be obtained 
which involves only four unknowns .$ and #. The function 5 defined by equa- 
tion (2.26) is a function of Cif and $. We write the equilibrium equations (2.12) 

(3.25) 
afii 
aXi 

- (m, + m) g = 0 
I 

with fii and m expressed by equations (2.30) in terms of c,f and #. By applying 
the divergence operation on equation (3.24), and taking into account relation 

(2.6) we derive 

(3.26) 
am -=- a;, Kit $, - at , ( > , 

We now have a set of four equations (3.25) and (3.26) for the four unknowns 

fi and +. 

Extension to non- New tonian fluids. For an isotropic fluid with non-linear 

properties, the rate dependent stress is expressed in the form (see appendix) 

(3.27) 

where I: , I: , I; are the three invariants of the strain-rate tensor eif . The func- 
tion cp plays the role of a dissipation function. As explained in the appendix this 
leads to a generalized non-linear form of Darcy’s law 

(3.28) $g+,z=o. , 
It may be formulated in terms of the mass flow rate ik?i and the initial coordi- 
nates xi . We write equations (3.28) in the form 

(3.29) 

or 

(3.30) $$z+p-$o. . 



POROUS SOLIDS 607 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

We also derive 

(3.31) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aD’ a[i aD' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAati, ati --= 
&ili zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaxi 

y--. 
aMl &hi axi 

Taking into account relations (3.7) and (3.9) we obtain 

Hence (3.31) becomes 

(3.33) 
aw ati aD’ --= 
atii axi pAa* 

Substitution of this value in equation (3.30) yields 

(3.34) $g+E=o 
i i 

where a, = m’ is the dissipation function per unit initial volume. Equations 
(3.34) represent Darcy’s law referred to initial coordinates Xi . The power 
dissipated per unit initial volume is 

(3.35) *= _n;r.J?!k=J$ aa, 
’ dXi ian;ri’ 

Direct evaluation of this dissipated power also provides a method of obtaining 
Darcy’s law (3.34). The dissipated power may be calculated on the basis of 
expression (A.lO) of the appendix. 

4. Variational principles and Lagrangian equations. Variational principles 
and the associated Lagrangian formulation were introduced and applied exten- 
sively in the linear theory [l], [a], [3]. The same formulation may be extended 
to finite deformations. We first write Darcy’s law (3.24) in the form 

(4.1) 
a+ -= 
dxi 

- Ai~ti~ 

where Aif = Aii is a “resistivity” tensor which is the inverse of Kit . Following 

the procedure developed earlier [6] we write the six equations (3.23) and (4.1) 
in the form of a variational scalar product as 
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Thii variational equation must be valid for arbitrary variations S[i , 6M< . 

The integrals are over the volume D in the space Xi of the initial state. Inte- 
gration by parts of equation (4.2) yields the variational principle 

(4.3) A,,@, 6Mi dQ = 1 fi St< dS - 1 4ni 6Mi dS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S S 

where 

(4.4) v = I// [W + (m0 - $$),I da 
n 

is the total free energy of the system including the body force energy. The 
surface integrals are extended over the boundary S of the initial volume 0. 
The vector ni denotes the unit outward normal to the initial boundary, while 

(4.5) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi = Wfii 

is the force acting at the deformed boundary per unit initial area. Hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi S& 
ia the virtual work of these boundary forces. The quantity ni 6Mi is the variation 
of the outward mass flow across the deformed boundary per unit initial area. 

We now represent the unknown fields ti and ALli by n generalized coordinates qd , 

(4.6) 
5i = Ei(Ql 9 QZ "' Qn f 22 j 0 

Mi = Mi(ql 9 qz .a* qn , 21 t 0. 

With variations 6qi the variational principle (4.3) becomes 

(4 -7) 

where 

(4.3) 

is a generalized force at the boundary. Finally from 

(4.9) 

we derive 

(4.10) 

tii zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aM. dMi 

=apifh+at 

enir, =dMi. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ah aqi 

Hence because of the reciprocity property Air = Aji we may write 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD is a dissipation function 

(4.12) 

Since the variation principle (4.7) must be satisfied for arbitrary variations 
6q< we derive the conditions 

(4.13) 

They constitute the n Lagrangian equations for the n unknown generalized 

coordinates qi . 

Lagrangian equations and irreversible thermodynamics. The equilibrium 

conditions may be written 

(4.14) 

The departure from equilibrium is measured by the “disequilibrium force” 

(4.15) Xi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQi - g. 
. 

For a thermodynamic system whose behavior obeys Onsager’s relations when 
disturbed from equilibrium the author has shown [7] that the equations of the 

system are 

(4.16) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXi = g 
i 

where D is a quadratic form in pi which represents the dissipated energy pro- 
portional to the entropy production. While developed in the context of linear 
systems the result is obviously valid for the non-linear case where V is arbitrary 
and the coefficients in the quadratic form D may be functions of pi . Equations 

(4.15) and (4.16) are identical to the Lagrangian equations (4.13). 

Lagrangian equations for the case of a non-New tonianfluid. We have shown 
that Darcy’s law in this case is expressed by equation (3.34). The variational 
principal (4.3) must be replaced by 

where 9 is the dissipation function per unit initial volume of porous medium. 
By proceeding as above we obtain the Lagrangian equations (4.13) where the 
dissipation function is now 

(4.18) 
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Note that 3 is a function of aii , m, and il8, . 

5. Isotropy and second order theory. We consider the case of isotropic bulk 

properties of the porous medium. This case may be formulated by considering 

the three invariants 

(5.1) 

I, = det 10~~~1. 

The free energy in this case is a function of I, , Ia , I3 and m, 

(5.2) W = W(I, , I2 , I3 , 4. 

The functional dependence of the permeability on the deformation is also 

restricted by the condition of isotropy. The intrinsic permeability is expressed as 

(5.3) Kci = F,$$ + F3$ + F3-5 

ai 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF, , F, , F3 are functions of the three invariants (5.1) and m. Note that 

when Kii has the value (5.3) the expression Kiiaii is an invariant. Since crii is 

covariant, expression (5.3) for K<i has the correct contravariant property and 

obeys the same transformation laws as (3.15). That it represents an isotropic 

property can be seen by referring oli5 to its principal directions in which case (5.3) 

takes the form 

(5.4) IL = f(all , az2 + e3 , a22a33 , 4 

and two others obtained by cyclic permutation. 

The medium has been assumed statistically homogeneous, but of course this 

is not required since W and K i j may also be functions of Xi . We shall consider 

in particular the second theory where 

(5.5) 4i = 2i + ui 

and Ui is a first order displacement. According to equation (2.25) Green’s strain 

tensor is 

(5 -6) 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdUi 

yij = 2 ( azj + axi 

i!Ei+&&). 

The free energy for an isotropic medium may be written 

(5.7) W = W(% , % , S3 , 4 

where C& , S2 , s3 are the invariants obtained from expressions (5.1) replacing 

a!ii by yii . In a second order theory the relations 
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must contain all first and second order terms in 

W to be of the general form 

(5.9) W = c,$ + C& + c,$ + CJ,$ + 

+ C&m 

611 

(au,/&r,) and m. This requires 

C&G + C,m” + Cm” 

+ C&m + Cl&m2 + Cll%m 

where 1’2, , Ca , etc. are constants. Hence the free energy is defined by eleven 

constants in this case. That eleven constants are required to define second order 

elastic properties of a porous medium was already derived earlier by the author 

[l]. Putting m = 0 yields the five coefficients of the classical second order 

elasticity theory. 

A second order theory also requires the functional dependence of the perme- 

ability to be expressed to the first order. From equation (5.3) we derive 

(5.10) Kij = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKS,, + W leii + (PzeLk &k + Am> 6i, 

where ,& , p2 and p3 are constants and 

(5.11) e;i=i(z+$$ 

is the first order strain. 

6. Viscoelastic behavior. In addition to the dissipation represented by 

Darcy’s law, there is another contribution due to the dissipation in the fluid 

by the rate of deformation of the solid. It is generally much smaller than the 

former. However while remaining small it may become dominant when Darcy’s 

flow is negligible or disappears. This will be the case for nearly homogeneous 

deformations with small gradients of the potential 4. There are also special 

frequencies in wave propagation where this happens. It is important to note 

that this additional dissipation is uncoupled from Darcy’s law so that the two 

effects may be evaluated independently. This can be seen by evaluating the 

combined dissipation in the fluid. The cross product terms disappear because 

of symmetry considerations since they are products of the vector tii and the 

strain rate tensor e:i . We must assume of course a fluid of linear viscosity. 

The property may also be considered as a consequence of Curie’s theorem. 

However the conclusion is not valid if the fluid is non-Newtonian with strong 

non-linearity. 

Essentially what is involved here is a behavior analogous to a non-linear 

viscoelastic solid. This will be rigorously the case if m = 0, i.e., if the fluid content 

of the pores does not change, as would be obtained for sealed pores. However 
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The last equations are linear differential equations for qi . If aii and m are given 

functions of time, the expressions 

(6.7) ai = -Ai - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABi 

are known functions of time. The last of equations (6.6) may then be solved 

for Qi . The solution is 

(6.8) qi = Cf?:iiai 

where &ii is the integral operator defined as 

The relaxation constants X, are non-negative. The solution (6.8) was derived 

by the author for linear irreversible thermodynamics in the context of visco- 

elasticity [8] and of heat conduction [6]. The non-negative character of X, is a 

consequence of the fact that aji and bii are symmetric and define respectively 

non-negative and positive-definite forms. 

By substituting the value (6.8) for qk into equations (6.6) we obtain expressions 

for fit and 9 as relaxation functionals of Cii and m. The particular interest of 

this result lies in the fact that the experimental non-linear behavior of porous 

and viscoelastic media tends to follow expressions (6.6). 

In many cases an adequate description of the material is obtained by putting 

(6.10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aB, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdD, dB, o 

-=_=-= 

atif zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAati zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAam ’ 

Hence 

fii = $ +ao,+aA,& @, 
d&i acij kl 2) 

(6.11) 
l i 

The term aD,/dCii represents a viscous resistance while the terms containing 

J%,@., represent a relaxation. They are simply superposed, as additional terms, 

upon the static equilibrium stress-strain relations 

(6.12) 

fii = $ j 
11 

Note that the second of equations (6.11) implies a relaxation of 9, hence of the 

fluid pressure due to a deformation or a change in fluid content. Physically 

this corresponds to a delayed penetration of the fluid into very small micropores 

or cracks. Also this may be associated with a squeezing effect of the viscous 

fluid in thin interstitial gaps between grains. These effects were pointed out 
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(7 .a s (71 6e, + 72 8Ez)T dr = 0 

, which must be true for arbitrary variations 6u. We choose variations 6u which 

are different from zero only within the limits of integration. Substituting the 

values (7.1) for Ed and r2 and integrating by parts yields the equilibrium condition 

for the stress field 

(7.3) 

Let the medium be isotropic. The free energy per unit initial volume is of the 

- form 

(7.4) W = WV, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, J, , 4 

with 

(7.5) 
J, = ~1 + 62 , 

J, = ~1~2 

as required by the assumption of isotropy. The stresses and the pressure function 

are 

aW zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaw aw 
Tl=~=aJ1+““aJ,’ 

(7 -6) 
aw aw aw 72=-=- 
de2 aJ, +c1aJ,’ 

The generalized Darcy’s law takes the form 

(7 -7) 
~=-_K?k 

am 

where M is the total mass of fluid which has flowed through an area initially 

equal to unity and perpendicular to the radial direction. Conservation of mass 

is expressed by 

(7 -8) m = -';&(rM). 

The intrinsic permeability K is a function of Em , es and m. 

(7.9) K = K( cl , e2 , n-2 ). 

Substitution of the values (7.6) and (7.8) into the equation of equilibrium (7.3) 

and Darcy’s law (7.7) yields two equations for the unknowns u and M. The 

Lagrangian equations are obtained by writing u and M in terms of the generalized 

coordinates qi . 
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(7.10) 
u = U($ , qs *-* q* ,T, t>, 

M = M(ql , qz --- qn ,r, 8. 

We consider a system within initial cylindrical boundaries at T = a and T = b. 

The values of V, D and Qi to be used in the Lagrangian equations (4.13) are 

V = sb Wr dr, 
a 

(7.11) 

The subscripts indicate the values of the variables at the boundaries. For 

example r. is the value of TV at T = a. 

A similar analysis is valid for the case of spherical symmetry. In this case 

u denotes the radial displacement at the distance T from the origin. It is a func- 

tion only of T and the time t. The principal stresses per unit initial area are 

r1 along T and ra = TV in a plane tangent to the spherical surface centered at the 

origin. The corresponding principal strains are Q and ea = Ed and are given 

in terms of r by the same expressions (7.1). The principle of virtual work yields 

(7.12) s (~1 8~1 + 272 &)r2 dr = 0. 

We derive the equilibrium condition for the stress 

(7.13) 

For an isotropic material the free energy is 

(7.14) W = W(J, , Ja , Js , 4 

where 

J, = ~1 + ~2 + ~3 = ~1 + 2~2 , 

(7.15) J, = E2E3 + E3El + cc2 = he2 + EE , 

J, = 
2 

B1E2-53 = ElE2 . 

We express W in terms of the three variables e1 , e2 , m and write the stress-strain 

relations 

aw 
71=-, 

ae, 

(7.16) 
law 

7a=Tjjg 
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Darcy’s law is given by equation (7.7) as for the cylindrical case and the con- 

servation equation is 

(7.17) m = -$ g (?M) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM is now the mass of fluid which has flowed through a spherical surface, 

centered at the origin, per unit initial area. Substitution of the values (7.16) 

and (7.17) for r1 , ra , 9 and m into the equilibrium equation (7.13) and Darcy’s 

law (7.7) yields two equations for the unknowns u and M. 

Generalized coordinates may be introduced by expressions formally identical 

to (7.10) where r is now a spherical coordinate. For a material initially bounded 

by two spheres T = a and r = b the Lagrangian equations are obtained using 

the values 

v = sb wT2 dT, 

0 

The values of r1 at the boundaries are r. and Tb with subscripts denoting similarly 

the boundary values of other variables. 

Appendix. 

Properties of the dissipation func fion. The existence of a dissipation function 

and its properties in connection with the Lagrangian equations of a fluid with 

Newtonian viscosity are well known. Use of these properties has been made 

earlier in the theory of porous media [l], [2]. They are briefly recalled here. 

The velocity field vi of a Newtonian fluid of specific mass p is referred to 

Cartesian coordinates. When inertia forces are neglected, the stress field uii in 

the fluid satisfies the equilibrium equations 

(A4 
& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAau 
ati 

-pz=o. 

The body force potential per unit mass is denoted by U. The stress cij is the 

sum of two terms 

(A-2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
, 

Uij = Uij 
- PSij 

where U& is a viscous stress while p is a hydrostatic stress depending only on 

volume changes. The viscous stress is expressed by 

(A-3) 
, 

Uif = 2ve:, - &je’ 6ij 

with a viscosity coefhcient 1 and strain-rate components 
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64.4) 

Note that ali is the stress deviator. Introducing the value (A.2) of @ii the 

equilibrium equations (A.l) become 

(A.5) 
aa:, a4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

et i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-pd5;=0 

where rp = JI + U. If this equation is satisfied we may obviously write 

64.6) 

where 6vi are arbitrary variations of the velocity field. If 6vi are chosen to 

vanish at the boundary of the volume of integration a’, then integration by 

parts in equation (A.6) yields 

(A-7) 

We now introduce an important property of a:,. . Equation (A.3) shows that 

it may be written in the form 

(A.8) 
I aP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

aii = q 

where 

(A.9 Q = &.e!. - +$2 rt $3 

is the dissipation function of the fluid and 

(A. 10) 2~ = aiie{i 

represents the power dissipated per unit volume. With the value (A.8) for a:,. 

equation (A.7) becomes a variational principle 

(A.ll) 

We shall apply this result to derive the generalized form of Darcy’s law by 

considering the motion of a viscous fluid through a rigid porous solid. We assume 

a Poiseuille type flow with negligible inertia forces and consider a small region R 

of the material sufficiently large relative to the pores so that properties may 

be averaged. In this region the microvelocity field relative to the solid may be 

expressed as a linear function of the average rate of volume flow tii through 

the region. We may write 

(A.12) vi = v&Jtii 
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where the coefficients vi ,. are functions of the local coordinates & . From (A.12) 

we derive the local strain rate distribution 

(A.13) 

This expression neglects the terms containing a?-ii/a[i . This is consistent with 

the basic assumption that tii is sufficiently uniform throughout a region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR which 

is large relative to the pore size. The major contribution to the dissipation is 

therefore due to ti, and the effect of atii/~ii may be neglected. The local dis- 

sipation function q is then evaluated using (A.13). We also introduce the follow- 

ing averaged values, over the domain R 

D’ = j$ ssj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ G?R = $qbiitiitii 9 

(A.14) 
R 

In evaluating the second integral we have replaced p 84/d[i by a constant average 

value in R. The variational principle (A.ll) is applicable to the fluid contained 

in a certain volume D of the porous solid. The volume occupied by the fluid 

is a’. However we may extend the integration to the volume fi by putting 

vi = 0 in the regions occupied by the solid. The validity of the variational 

principle (A.ll) requires 6vi = 0 at the boundaries of Q’. This condition is 

automatically satisfied at the fluid-solid interfaces because of the fluid viscosity. 

In addition we impose the condition Gtii at the boundaries of Q. This insures 

that 6vi also vanishes at boundaries of the fluid which are not in contact with 

the solid. Introducing the average values (A.14) the variational principle (A.1 1) 

becomes 

(A.15) 

This being valid for arbitrary variations 6tii inside the volume 0, we derive 

(A.16) qbijtii + p g = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 
t 

Solving for tic this result may be written 

(A.17) 

with the symmetry property 

(A.18) kii = kji . 

This result established Darcy’s law (3.3). 

Non-Newtonian fluids. The concept of dissipation function may be extended 

to non-Newtonian isotropic fluids. This is immediately evident since the varia- 
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tional principle is based solely on the fact that the relation between fluid stress 

and the strain rate may be written in the form 

(A.19) 

where 

(A.20) cp = (o(C , 1,’ , a 

is a function of the three invariants of the strain-rate. They are obtained by 

replacing aif by e:, in expressions (5.1). Again we express the microvelocity field 

as a function of tic . Since the fluid is now non-linear the distribution of the 

microvelocity field depends on the magnitude of Ziri . 

From relation (A.19) we derive the same variational principle as (A.ll). 

We may also write average values (A.14). However in this case the average 

dissipation function 

(A.21) D’ = D’(tii) 

is not a quadratic form of tii . Application of the variational principle using the 

average values (A.14) yields the condition 

(A.22) 

Hence with arbitrary variations dtii we obtain 

(A.23) 

This is the generalized form of Darcy’s law for non-Newtonian fluids. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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