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The purpose of the present paper is to show the close rela-
tion between the theory of Finsler spaces and differential geometry
of tangent bundles, and to  develope the former as a theory of
special linear connections on the tangent bundles. In a previous
paper [11], a special linear connection r' on the tangent bundle
was derived from a given Finsler connection, and called the linear
connection o f  Finsle r  type. It was also shown that, by sym-
metrization of F', the linear connection given by K. Yano and A.J.
Ledger [16 ] was obtained as a  specially simple case. Further,
it was known that the tangent bundle was thought o f a s  a
Riemann manifold with a Riemann metric which was defined by
lifting a given Fins ler metric on the base manifold to the tangent
bundle [13], [15].

In the present paper, w e are specially concerned with the
difference between the linear connection of Finsler type F' and the
Riemann connection r with respect to the lifted Riemann metric.
The difference will be exactly formulated by defining the strain

tensor o f  th e  Finsler connection under consideration, by means
of which the parallel displacement of tangent vectors with respect
to I" w ill be com pared w ith that w ith respect to  T. These
considerations lead us to the concept of norm al Finsler connec-

tions, which seem natural from the standpoint of the theory of
linear connections on the tangent bundles.

It appears from the theory o f  Finsle r  spaces that the last
section is an appendix, because some theorems given in that place
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will be concerned only with the problems arising from Riemann
metrics and not from Finsler metrics. Those theorems, however,
will give interesting results as for sectional curvatures of the
lifted Riemann metrics.

§ 1 .  Fibre bundles

L e t  F(M ) (M , 7r, G) b e  the bundle o f  fram es over a  dif-
ferentiable n-manifold M , where 7 : F(M ) M  i s  the natural
projection, and G=GL(n, R) is  the structural group. Throughout
the present paper, we shall denote by the letter z  a point of
F(M ), and by (x', z a')  a  canonical coordinate of z , corresponding
to a local coordinate (xi) on the base manifold M , namely,

z = (z a ), a n; z a  = ax'
where we use the notation M  to denote the tangent vector space
to M  a t a point x.

Next, le t T(M) (M, T, F, G) be the bundle of tangent vectors
to M , where T  T(M)—>M is  the natural projection, and F  is  the
standard fibre, that is, a real vector n-space. In the following,
we shall denote by the letter y a point of T (M ), and b y (xi, y')
a canonical coordinate o f y , corresponding to a local coordinate
(x1 )  on M , namely, y =y i(a/ax i) . Further, let (ea ), a=1, ••• , n, be
a base of F, which is considered to be fixed throughout the paper.
Then, the operation of gEG on F is defined, referring to the base
(ea ), such that

g = ( g ) :  f  = f ae a  g f  g f b e a  .

By the projection T  of the tangent bundle T(M ), the induced
bundle T 'F (M )  is obtained from the frame bundle F(M ), which
will be denoted by Q(T(M), 7ri , G ) .  The structural group o f Q  is
G=GL(n, R), too, and the total space Q  is given by

Q = { (y, z)E T(M)x F(M)1T(y) = 7r(z)}  .

Thus, a point q = (y , z )EQ is  a pair of a tangent vector y and a
tangent frame z  to M  a t the same point x=T (y )=77.(z )EM . The
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principal bundle Q  will be called the Fins le r bundle of M  under
consideration, which will play an important role in the theory of
Finsler sp aces . The mapping 7r, i s  the natural projection Q--->
T (M ) such that zi(Y, z )= y .  A  right translation R g  of Q by g G
is naturally induced from a right translation R g  of F (M ) such that

Rg (y, z) = (y, R g (z)), nam ely , (y, z)g = (y, zg).

W e shall denote by q  -(y , z ) a point of Q  and by (x 1 , yi, 4) a
canonical coordinate o f q, where (xi, y1)  and (x 1 , 4 )  are canonical
coordinates of y and z  respectively.

In order to consider the differential geometry of the tangent
bundle T (M ),  w e shall be concerned w ith th e  frame bundle
FT(M )(T (M ), rr', G ') over T (M ), where : F T (M ) -T (M )  is the
natural projection, and G' =GL(2n, R) is  the structural group.

L e t F '  b e  a  real vector 2n-space, and then F '  may be
identified with the direct sum FEDF, and we have the fixed base
(e',,), a =1, •••, 2n, which is obtained from the above fixed base (ea )
of F  as follows [11]

=  (ea , 0 ), a =  1 , ••• , n
=  (0, ea ), (a )  =  n +  a.

Therefore, referring to the base ( e ) ,  we can obtain the opera-
tion o f g 'E G ' on F ' as well as that of g G  on F .  Let p :  FED

F--)-F' be the identification, and then we see, for f= fa e a EF,

P (f ,  0 ) --= f a e ,  p ( 0 ,  f )  =  f a e . )  •

Further, we shall define a natural homomorphism 99 : [11] by

g = (gg)EG
cp(g ) = (gg 0 G'.

\ 0  gg)

It is easy to verify that

FT (M)

  

(1.1) p(g f, 0) = 99(g)p(f, , 0),
p (0 , gf) = 99(g)p(0, f).

F inally , w e shall illu strate
fibre bundles and mappings used

T (M)

    

7T
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often in  the following. The mapping n-, is called the induced
mapping such that 7r2(y, z )=z , and the mapping c13 is  a .bundle
homomorphism, which will be defined in § 5 by a non-linear con-
nection H  o n  T (M ), together with the above homomorphism
.99 :

§ 2. Non - l in e a r  connections

A  frame zE7r - 1 (x ) at a point x  M  is interpreted as an admis-
sible mapping from the standard fibre F  o f  T (M ) to the fibre
T- 1 (x ) over x. Since the mapping is a homeomorphism, we denote
by z "  the inverse mapping of z. Further, by means of the fixed
base (ea )  o f F, a global coordinate ( f ° )  on F  is introduced such
that f  = f e a  . Hence, f E F  gives a tangent vector field j ( f )  on F:

../ ( f )  f a

a
f  =  f a e a .ar

We shall call j ( f )  a Parallel vector f i e ld ,  corresponding to fE  F.

Now, since a tangent vector X  to  the manifold M  at x  is a
point of the fibre T- '(x ) over x, z 'X  is a  vector o f F .  Corres-
ponding to z - lX , the parallel vector field j ( z 'X )  on F is obtained.
Then, given a poin t yF T - 1 (x ) ,  we obtain the tangent vector
j( z 'X ) z -i y  to  F  at the point z 'y ,  and thus

(2. 1) X " = dz (j(z - iX ) z _,,),

where d z  is  the differential of the mapping z. X" is a tangent
vector to T (M ) a t the point y and obviously vertical. It will
further be easily verified that X ' depends only on y and not on
the frame z  used. X " as thus obtained is called the v e r t i c a l  l i f t
o f X  to y  [11 ]. I f  we put X = X i(a/ax i) in  terms of a local
coordinate (xi), then X" is expressed by

(2.2)X v  = ,

a y i

referring to the canonical coordinate (xi, y i) on T(M).

By means of the notion of the vertical lift, we can introduce
a  special vertical vector field b o n  T (M ), which will play an
important role in future. That is, since a  po in t y  o f T (M ) is
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regarded as a tangent vector to M  at x =r(y ), the vertical lift yp
of y to the point y is defined as above, which will be denoted by
b. Referring to a  canonical coordinate (x', y ' ) ,  b  is expressed
by yi(a/ayi) y . It is remarked that the tangent vector field b
as thus defined was introduced without a tangent vector field on
M , and, in this sense, w e refer it the intrinsic v ector f ield on
T(M).

Further, we consider an integral curve of the intrinsic vector
field, which will be called an intrinsic curve on T ( M ) . The dif-
ferential equations of an intrinsic curve are given by

(2. 3) d x id .
=  0  - -

v
—  = .

dtd i

It is seen from (2. 3) that the curve has been already treated in [8].
Next, we shall be concerned with a concept of non-linear

connection on M, or in T (M ), which is one of the basic concepts
in the present paper.

Definition. A  non-linear connection H  in the tangent bundle
T (M ) is a distribution yE  T(M)—>Hy  such that a tangent vector
space T (M ) y  t o  T (M ) at any point y is expressed

T(M) y  = H y eDT(M); (direct sum) ,

where T(M)v„ is the vertical subspace o f  T(M) y .

The modern definition o f a  non-linear connection as above
was given by W. Barthel [1 ],  who developed the theory of holo-
nomy groups o f nonlinear connections. He imposed further two
conditions, namely, homogeneity and differentiability. The homo-
geneous condition is not required for our present purpose, though
it has been often used in  our previous papers. On the other
hand, the differentiable condition is, of course, necessary in our
discussion, but it will be used without mention.

H y  is called the horizontal subspace o f  T (M ),, and XE H y

is  horizontal. If a linear connection F is given in  th e  frame
bundle F(M ), the associated linear connection H  is obtained in
T (M ) [12, p. 4 3 ].  The associated connection is a specially simple
case of non-linear connection. With respect to  a non-linear con-
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nection H , the lifting operator l y : M x --)11,„ x=1
-(y ), is introduced

such that -r/y = 1 .  I f  we refer to a local coordinate (x i) of x , and
put X = X i(a/ax i), the lift /y X  o f X  to a point y is expressed

(2. 4)
/  aa  \l y x — yJ

where Fi(x , y )  are functions of xk and yk, and called the connection

Param eters o f  H .  In a case o f an associated connection with a
linear connection in F(M ), the connection parameters are reduced
to the form ykFk i,(x).

The notion of a lift of a curve C  on M  to  T (M ) will be in-
troduced with respect to  a  given non-linear connection H .  A
lift o f C is a horizontal curve covering C .  Let x i(t) be a curve
C , and then a  lift o f C  is given by the differential equation

(2.5)d Y i  +  P i (x(t), y(t))
d x )  — O.

dt dt

A point y (t) of the lift is called to be obtained from its starting
point y(0) by the Parallel displacement along the curve C .  This
is nothing but the notion of an usual parallel displacement of a
tangent vector y(0) to M  at the point x(0).

In a similar way to the case of the intrinsic vector field »,
we obtain the horizontal vector field 15, th a t  is , th e  lift o f a
tangent vector y E M x  to  the point y E  T (M ). t) will be called the
H-intrinsic vector f i e ld  on T(M ) with respect to the non-linear con-
nection H .  In terms of a local coordinate (x i, y i) on T (M ), t) is
expressed

(2. 6)
/  a\  .- )ax : ay]

An  integral curve o f th e  H-intrinsic vector field f) is called the
H-intrinsic curve, which is given by the differential equations :

(2. 7)
d  x i.  d  y i

=  y ',  + F j (x(t), y(t))yi(t) = O.
dt dt

A projection of an H-intrinsic curve on the base manifold M  is
called a path with respect to the non-linear connection H .  It will
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be easy to show that a path is characterized by the property that
the tangent vector of the curve is parallel along the cu rv e . The
differential equation of a  path is given by

dxVI.xj(2.8) + F'i (x(t),
dt ) dt

§ 3. Flat connections in Finsler subbundles

We shall be concerned with the Finsler bundle Q(T(M), 7-t„ G)
of the manifold M .  Given a point qEQ, we define a mapping

L,: G gE G  qgE Q  ,

and hence, corresponding to an element A  o f th e  L ie  algebra
L(G) of G, a vertical vector field F (A ) is obtained such that F (A ) q =
L,(A ) a t q, where by the same letter L , we denoted the differen-
tia l of the above mapping L .  F ( A )  is called the fundamental
vector field on Q, corresponding to A E L (G ).  It is well known
[1 2 ]  that, given a  base (A „ ••• A r ), r =n 2 ,  o f  L(G ), the set of
fundamental vector fie lds (F (A ,),•••,F(A„)) sp an s  a vertical
subspace Q g"  of a tangent vector space Q, to Q a t an y  point q.
The similar fact holds good in a case of the frame bundle F(M).

Lem m a 1. Let F (A ) and F (A ) be fundamental vector fields
on the Finsler bundle Q and the frame bundle F (M ) respectively,
corresponding to an element A  o f th e  L ie  algebra L (G ) o f  G=
GL(n, R ). Then, the induced maPping 7t2  :  Q—>F(M), q —(y, z)EQ-->
zE F (M ), carries F (A ) to F(A).

P ro o f. F (A ) is defined by a mapping

L z : G F (M ) ,  g E G  z g E F (M ) ,

such that F(A) z =  L (A ).  The proof will be easily obtained by the
fact that n-,L,=L z  , q—(y, z).

Lem m a 2. A tangent vector XEQ , vanishes, if and only i f

71-1 (X )  =  0, 7 r 2 (X ) =  O,
where 7- r ; T ( M )  is the projection, and 71-2 : Q -4 '(M ) is the in-
duced mapping.
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P ro o f . The condition is clearly necessary. Conversely, if it
is satisfied, then X is vertical by means of n i (X )=  0 , which implies
that there exists an  element A E L(G) such that X = F (A), . As
a  consequence of Lemma 1 , 7r2 (X ) = 0 = q  = ( Y ,  z ) ,  and hence
A=0.

Now, we shall introduce following three subspaces o f a
tangent vector space Q , to Q at q:

(2 ; = {XEQ q 17t1(X) = 0 } , = EQ,1 7r2 (X ) = O} ,

= IXEQ,11 - 7-r,(X )= 01 .

(X, is well known and called the vertical subspace, while Qq'y  will
be called the induced-vertical subspace [7 , p. 1 4 6 ], and Q r  the
quasi-vertical subspace.

Proposition 1.

( 1 )Q  = Q;;IEBW (direct sum),

( 2 ) Rg QV = (),";

where R , is  a  right translation of  Q  by gEG.
( 3 ) Given x E M  and zE7r - 1 (x ), we define a  mapping

s„: 7 - 1 (x )— .Q , yET - 1 (x) (y, z)EQ ,

and  then sz(T(M7,))= W , z ) ,  w here T (M );  i s  the vertical

subspace of  the tangent vector space T (M ) y  t o  T (M ) at y.

P ro o f . W e shall first prove ( 3 ) .  Given a tangent vertical
vector X E  T (M );, we see 7r2 s z (X )= 0  by virtue of 7-1-2 .sz  = constant,
which implies that  s ( X ) E Q .  Consequently we have .3.( T (M ) ) c
W .  To prove the reverse inclusion, if we take X E Q'g v, it follows
that Tn-

i (X)=717r 2(X )= 0, which implies that z i (X )E  T (M ); .  Further,
it fo llow s from  7r1sz  = identity and  7r2sz =constant that n-i (X -

so- i (X ))= 0 ,  n-,(X— sz n.,(X ))=  O. T h e re fo re  w e  h ave X = s r 1 (X )
from Lemma 2 , and hence s z (  T ( M ) ;) D ( 2 j .  Thus we proved (3).

Next, we shall show (1). Given X E  Q r ,  it follows from
7-7r,(X )=  0  that n-,(X )E  T (M );,  and from (3) .31- 1(X )E  W . Since

7r,(X —  szz,(X))= 0 , we obtain X =so - ,(X )+ Y, where Y is vertical.
Therefore we have QV' The fact that Q; n Q:,'' = 0  is a
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direct result o f  Lemma 2. Finally (2) will be easily verified
from 7-/-2 /?,— Rer

2 ,  where R g  is a right translation of F(M ) by gEG.

Now, given a point x E M , a subbundle Q (x ) o f Q  can be
introduced, whose base space •is the fibre 1- - 1 (x ) over x .  Q ( x )  is

called the Finsler subbundle o v e r  x . A  poin t of Q(x ) is a pair
(y, z )  of a tangent vector y and a frame z  at the fixed point x.

It is obvious that a tangent vector space Q (x ), to Q(x ) a t q=

(y, z ) is nothing but the quasi-vertical subspace Q:v of Q, , because
Q r =  {XEQ q 17r,(X )  is vertical}. T h e n , we observe that (1) and
(2) of Proposition 1 mean that the distribution Q - : qEQ(x)— >Q giv

on Q (x ) is  a  connection in  Q ( x ) .  This connection on the fibre
-r 1(x )=M z  is called the f lat connection in the Finsler subbundle
Q(x) over x . On the other hand, (3) of Proposition 1 means that
the mapping sg  i s  the lifting operator to the point (y, z )  with
respect t o  the flat connection. The base space o f  Q (x )  is
homeomorphic to the vector space F (the standard fibre of T(M )),

and (y 1 )  as often used in the preceding section is thought of as
a global coordinate on the base space T - 1 (x ) o f Q ( x ) .  Then, the
lift s z X  of a tangent vector X = X t(a/ay i), to (y, z ) is immediately
expressed by s z (X )=X qaM y ') ( ,  in  terms o f th e  coordinate
(y 1 , z 1)  on Q (x ) . Accordingly, it is seen that the connection para-
meters o f the flat connection vanish identically in terms of the
coordinate (y 1 ). Therefore, the covariant differentiation with
respect to the flat connection is nothing but the partial differen-
tiation by y'. In the classical theory of Finsler spaces, this fact
has been well known and often used in  order to derive new
tensors from a given scalar or tensor (see, for example, [14]).

§ 4. F in s le r  metrics

It is well known that a  tensor field T  of type V  on a dif-
ferentiable manifold M  is thought of as a mapping from the frame
bundle F(M ) to a vector space V such that TR g =g - 1 T  is satisfied
[5, p. 66], where R

g
 is  a  right translation of F(M ) by g E G , and

g - 1  in  th e  right-hand side is the operation of the representation
of g - 1  o n  V .  On the other hand, in classical theory, components
of a  tensor field T  on a Finsler space M  are generally functions
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not only o f x l but also of y', and hence T  cannot be regarded
a s  a  mapping from F (M )  to  som e vector space. In  previous
papers, the present author has been shown that, from the modern
standpoint, a  tensor field T  on a Finsler space M  is regarded as
a  mapping from the Finsler bundle Q  to some vector space such
th a t T k = g - IT .  Thus, for an  example, a  tensor field of (1, 1)-
typ e  T  is  a  mapping Q ---.F O F * (F * i s  the dual space of the
real vector n-space F ), so that T  is expressed

T(q) =  y )z - '7 z g e a 0 e b  a t  q = (x 1 , yi, ,

where z - h; are elements of the inverse matrix of the matrix (4),
and (ek) is  the dual base of the fixed base (ea ) of F .  Coefficients
P i (x, y) are  functions of xk and yk, which are classical components
o f T .  y=n i (q ) is called the element of support of T  (q ), follow-
ing E. Cartan [4].

As an example of Finsler tensor fields, let us remember the
characteristic field y  on Q , which is defined by y(q)=z - ly, q=
(y , z). The characteristic field y is a Finsler tensor field of (1, 0)-
type, and has played an important role in  our previous papers.
W e may say that y  is  the element of support itself, because the
classical components of y  are yi.

Definition. Finsler m etric function L i s  a  positive-valued
scalar (namely, a  Finsler tensor field of (0, 0)-type) and further
supposed to be positively homogeneous o f degree 1. Thus L
satisfies

L R g 'L ,  Lk, = r•L ,

w here hr , r > 0 ,  i s  th e  homogeneous mapping [ 1 ]  such that
hr (y , z )-(ry , z ), which is used in order to define the homogeneity
with respect to y [7 ].

Then, there exists an unique positive-valued function L  on
T (M ) such that 1,7r,= L. In fact L  is given by Ls a , where s a is
used in Proposition 1. Then, (L (y ))' 12 is called the absolute length
of a tangent vector y  to M .  The arc-length of a curve t-..x(t)
on M  is by definition the integral of the absolute length of the
tangent vector x '(t ) to the curve.
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Let us denote by A o the covariant differential operator with
respect to the flat connection as defined in  § 3. Then, from the
function L , a  tensor field of (0, 2)-type G is defined by G=-L-A (L 2 ).

We now have to impose upon L  the regular condition :

(1) G (f , f ) 0, f  E F  ,

(2) G (f , f )  = 0, if and only i f  f  =0  .

The tensor field of (0, 2)-type G  a s  thus obtained is called the
Finsler m etric tensor, constructed from the Finsler metric func-
tion L .  In  the following, components of G  are written g u (x, y)
as usual, and hence we obtain G(q)— gi i (x , y )4zgeageb, where q=

(x 1 , y i, 4).
L et X  an d  Y  be Finsler vector fields, that is , tensor fields

of (1, 0)-type, and then we have X (q), Y (q) F , q E Q , and hence
a real number G(X , Y ),=G(q)(X (q), Y(q)), which is called the scalar
product of X , Y  with respect to the element of support y=7r 1(q).
In particular, the non-negative number (G(X , X ),) 1 1 2  is called  the
relative length of X  with respect to y.

Now, we shall deal with a  non-linear connection H  in  T(M )

and a Finsler metric L .  In § 2, the notions of parallel displace-
ment and path have been introduced.

Definition. A  non-linear connection H  is said to be metrical

with respect to a  given Finsler metric L , when the following two
conditions are satisfied :

(1) A  parallel displacement o f  a  ta n g e n t  v e c to r  to  M

preserves its absolute length.
(2) Any path coincides with an  extremal of the variation

problem with respect to  the Lagrangean L ,  provided that the
path parameter is taken as the arc-length s  of the path.

It follows from the homogeneity o f L  that the condition (1)
is expressed by d(g, ; (x, y)yiyi)— 0, where dy i = — F;(x , y )dx i from
(2. 5), and hence we obtain

(4. 1) F o j  —  7 00j

w here w e p u t F i s i = g ,,F1  a n d  7, i , a r e  Christoffel's symbols
constructed from g, ; (x, y ) with respect to xk. Further, following
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the usual manner, index 0 means the contraction by the element
of support y k • Next, an extremal in the condition (2) is given by

d2 xi. f d x ) clxj dxk
+7.154 X> u, ( 7 j i k g i i 7 j 1 k )

ds 2d s  d s  d s

and hence (2) is expressed

(4. 2)

We sum up the above results for the later use.

Proposition 2 .  A  non-linear connection H  is metrical with
respect to a Finsler metric L , if and only if the connection para-
meters P., sa tis fy  (4. 1) and (4. 2), where yu k  a re  Christoffel's

symbols constructed from the components o f th e  Finsler metric
tensor g, ; (x, y) with respect to x.

Given a Finsler metric L , there exists really a metrical non-
linear connection H .  In fact. if we put Gi =izy ° 1 0 ,  the non-linear
connection H  whose connection parameters are given by

(4. 3) FX x , y ) – 
ay
aG i

is then metrical, as is well known [ 4 ] .  The connection H as thus
obtained will be called B erwald's non-linear connection [2, p. 45].

§ 5. Finsler decomposition o f tensor fields

Assume that a non-linear connection H be given in the tangent
bundle T (M ), and we shall define a bundle homomorphism from
the Finsler bundle Q to the frame bundle FT (M ) of the tangent
bundle T (M ) as follows. The homomorphism 97 : G—*G' between
the structural groups has been defined in  § 1 . If we take a point
q=(y ,z )EQ , z =7- 2(q) i s  a  fram e, that is, a set of linearly inde-
pendent n  vectors z =(z a)  a t  x - 1-(y)=71-(z)EM, and hence their
vertical lifts e = ( 4 )  to  the point y E T  (M ) span the vertical
subspace T (M ), w hile their horizontal lifts zh---(z ) to y  with
respect to H  span the horizontal subspace H .  Therefore the set
(zh, e) is considered as a frame at y, that is, a point of FT (M ).

Put (KO= (zh, e ) ,  and then the mapping c1: Q –.FT (M ) is defined.
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It is obvious that n-'43.= 7„ and (13 is  compatible with the
homomorphism namely ORg =R ', ( g ) (13, where R ' 40( g )  is a
right translation of FT (M ) by ,p (g )E G '. Consequently the map-
ping cp as above defined, together with 99, is a  bundle homomor-
phism [12, p. 20], [11, p. 258 and the final remark].

In the following, we shall show that a  tensor f ield o n  T(M )

is interpreted a s  a  s e t  o f  Finsler tensor f ields, by making use of
the above bundle homomorphism (1). In order to show that, for
example, let us consider a  tensor field of (0, 2)-type T  on T(M ).

Then, T  is regarded as a mapping FT (M )--›F'*® Fr* and satisfies
TR' g/ - 1 T , where R '  is a right translation of FT (M ) by g 'E G '.

Now, we shall introduce a  mapping T „: Q — ›F*O F* such that,
for f i, f 2 E  F,

T i l ( f i , f2) = T(P(fi, 0), p(f2, 0))€13 ,

where p: F F — F' i s  the identification as defined i n  § 1. In
order to see that T „ is really a  Finsler tensor field, it is enough
to verify that T i i R g = g  T „,  g E G .  In fact, it follows from (1.1)
that

T i l l?g ( f „ f 2 ) ,  =  T(p(f „ 0), p(f 2 ,0)) 4,( , ) , ( g )

= (9)(g) - 1 T )(p(f „ 0), p(f ,, 0))4,( , ) T (y o (g )p ( f  „ 0), 99(g)p(f  0))0 ( , )

= T (p (g f „ 0), p(gf
2 , 0)),E , ) = T n (g f „ g f ,) , = (g - 1 T, 1 ) ( f „ f ,) ,.

Therefore, we obtain a  Finsler tensor field o f (0, 2)-type T„.

Further, three Finsler tensor fields T ,„ T 2 1  and T 2 2  of the same
type will be introduced as  follows :

f2 ) =  T(P (fi, 0 ), P(0 , f2))43

T21(f1 f2) = T(P(0 , f1), P(f2, 0 ))43 ,
T22(f1 f2) — T(p(0, f ,), p(0, f

2
))43 .

Definition. The set of four Finsler tensors (T1 1 , T 1 2  T 2 1 ,  T 2 2 )

as above defined is called the Finsler decomposition of the tensor
field of (0, 2)-type T  on the tangent bundle T(M ).

We shall deal with components o f T  and its Finsler decom-
position. Given a point q =(y , z )  of Q , T  is expressed

T I(q )  = T o e ''® e 'o
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and then we obtain, for an example,
7 -21(.f1, f 2).7 To e"' Oe''(f 7e%), f'2'e0 Tca)bf 7f •

Thus, components o f T „, referring to the fram e z ,  are equal to
T ( a )b where (a)=n+1,•••, 2n, and b =1 ,• • • ,n .  Therefore, if  T a, ,
a, 0 =1 ,••• ,2 n , are components o f T  in  terms of the frame 013(q),
q=-(y , z ), components o f  th e  F in s le r  decomposition o f  T  are
given by

T1,  T a bT 1 2  T a (b ) ,

721 T (a )b T 2 2  T  (a ) (b ) ,

a, b = 1, • • • , n; (a), (b) = n +1, • , 2n .

In general, it may be said that components of the Finsler decomposi-

tion o f  T , ref erring to the f ram e z , are given by the classification
o f components o f  T , ref erring to the f ram e c13(q), q— (y, z), based

on ranges of indices.
On the other hand, if we consider components of the Finsler

decomposition with respect to canonical coordinates, the circums-
tances will become complicated. In  fact, let 711,, be components
o f T  with respect to a  coordinate (x 1, y 1) , and then we have

T  =

where we put z '= 0 ( q ) .  Then it follows immediately that

T „( f  f  2), = f  1)2.

Since e ( a )  is defined as the vertical lift of za , we obtain

f ae( a )  = hence zi ( a )  =  (0, z a
( ).

ay'

On the other hand, z'„ is defined as the horizontal lift  o f Zr,, we
obtain

=  4 (   aaa  .), hence 4 =  (4 , — zI,P.1 ).
ay '

Consequently, we see that

T „(f „ f ,) , = Tock,F .̀04z1f •
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Since, referring to the frame z , the tensor T„ should be expres-
sed  T n (f i, f 2 )=(T 2 i) i i z'Lzgf ,  it follows then from the above
that

( T21)1  -  T ( i ) i  T ( i  ) (  )F ki

which are components o f T2 1 , referring to the coordinate (x 1 ). I t
will be easily seen that, in  general, components of the Finsler
decomposition having at least one of the index 1 (for example,
T 2 1 , T ,„  T„ ) are expressed by components of the tensor, together
with the connection parameters F o f th e  non-linear connection
H  used.

The Finsler decomposition o f  a  tensor field on the tangent
bundle T (M ) will be defined fo r  a  tensor field of any type in
the similar w a y . A s  a n  another example, we consider a  tensor
field of (1, 1)-type T, which is a mapping F T (M )--> F 'O F '* . Now
we shall define mappings

10 1: P-->F, r 'e L E F '— > f 'a e a E F ,
Pz : F'-->F, f  f  1(a) e a  E  F .

That is , th e  first half of f '  is chosen by p, and the latter half
by p„ with respect to components of f ' .  Then we put, for fE F ,

T I(f) =  P i(T (P (f, 0 )»), T I ( f )  P 2 ( T ( P ( f ,  CI) O) ,
TI(f) =  Pi(T (P(O, f))(13 ). T I(f ) =  P 2 (T  (P (O ,  fDc13)

It will be easy to show that these T I ,  TT, 71 and 71 are Finsler
tensor fields of (1, 1)-type, an d  thus th e  Finsler decomposition
(71, TT, 71, TD o f T  is constructed.

We now return to the consideration of a Finsler metric tensor
G .  I n  a  previous paper [ l l ] ,  we obtained a Riemann metric
tensor o n  T (M ) from G, which was called the lifted Riemann
metric of G .  Since this concept is one of the basic concepts in
the theory of tangent bundles, we shall again give the way to
define it. L e t  X  be a tangent vector to T (M ) at y, and then we
have

X = hX+ vX, h X H , vXET(M ); .

I f  we put X =  TX , we have hX=l,,X„ and hence it will be natural
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that the length o f hX  should be defined to be the relative length
(G(X „ X 1)y )1 1 2 o f  X, with respect to the Finsler metric G .  On the
other hand, if a point xE M  is regarded to be fixed, the Finsler
metric G= g i i (x, y)4zgeezOeb is considered as a Riemann metric on
the fibre T- '(x ), and g i ;  are components of the metric in terms of
the global coordinate (3,1 )  on T- 1 (x ), because 4 are components of
the frame z "  (the vertical lift of z ) in terms o f (yi). Since vX

is  tangent to 1-- 1 (x ) , the Riemann length Iv X  of v X  is obtained
with respect to  the above Riemann m etric . Put v X =X 1 (8/ay 1 ),

and then IvX1 2 =g 1,(x , y )X iX -7. Besides, v X  is regarded as the
vertical lift of X ,= X i(a/axi )E Mx ,  and g i i (x, y)Xi Xi —G(X„ X2).

Then, we define the Riemann length (0(X, X ) . ),)1/2 of X  with respect
to G as the Pythagorean sum of the above lengths o f X, and X 2 ,

that is,

G(X, X )  G(X „ X ,)+G(X 2 , X 2 ).

by means o f which the lifted Riemann metric G is defined.
T h e  F in s le r decomposition ( G1,7 

G
12 )

 G 2 1 ,
 G 2 2 )

 o f  t h e  lifted
Riemann metric tensor G has been given in [11, (4. 2)] as follows :

G„ = G 2 2  G, Gi, = G 2 , = 0 .

§ 6. F in s le r  connections

A  definition of a Finsler connection has been given in previous
papers [ 6 ] ,  • • • ,  [1 1 ], from the viewpoint of fibre bundles. In this
section, however, we shall give an alternative characterization of it.

D efin ition . A  Finsler con n ect io n  (F, H )  o n  a  differentiable
manifold M  is  a pair of a non-linear connection H in the tangent
bundle T (M ) and a connection F  in the Finsler bundle Q  o f M.

By making use of the lifting operator / , with respect to r ,

we define two subspaces of a tangent vector space Q , to Q  a t  q
as follows

=  1 H ,, F 1 4 T (M ), q ( y ,  z ) ,

and then a pair (rh, 1-`") of distributions is obtained on Q .  It will
b e  easy  to  show that ( p h ,  in  is  a Finsler connection in a sense
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o f previous papers. Conversely, let (rh, rv) be a Finsler connec-
tion in a sense o f previous papers, and then we put

= yr1F , F , =  F :E D 1 1  (direct sum), q  = (y, z ) ,

and then the pair (F, H )  is  a  Finsler connection in  a sense of
the above definition. Therefore those definitions o f Finsler con-
nections are equivalent each other.

The theory o f Finsler connections based on the above defini-
tion has been developed in detail in previous papers, and we shall
then describe in outline for our present purpose.

For a vector f E F ,  two tangent vector fields B h(f  ) and B y (f )

on the Finsler bundle Q  are obtained by the rule

B "( f ) ,  = l a (z  f)", B v ( f ) ,  =  a (z ,  q  =  (y, z ) ,

w h e re  (  ) "  a n d  (  )v  denote the horizontal and vertical lifts
respectively with respect to H, while /, the lift to q  with respect
to F . B h ( f )  and B v (f )  are called the h- and v-basic vector fields
respectively. Corresponding to the fixed base (ea )  o f F ,  the set
(Bh(ea ) )  spans the h-horizontal subspace rh, while the set (Bv(ea ))

does the v-horizontal subspace F L. I n  terms o f  a  canonical
coordinate (x 1, y', 4) on Q , those are expressed

a 
Bh(ea )  =  4 (  —

k

 4 F  k j •- 6  ) ,
ax' a y  aZ1

Bv(ea )  =  4 (  a  —  4C h j • —a )ay ' '

w here F  are connection parameters of H and (Fk i i , C k i,) are that
of F .  I f  x E  M  is fixed, C '1  a re  connection parameters of the
connection Fv, that is, the restriction of F to the Finsler subbundle
Q (x ) over x as defined in § 3.

Let F(A )  be a  fundamental vector field on Q, corresponding
to an element A  of the Lie algebra L (G) of the structural group
G o f Q .  Then, the structural equations of the Finsler connection
(F, H ) are given by

[B h (fi), B h(f 2 )] =  F(R 2(f1, f2))+ 13 "(T (f 1 ,12))+B v (k(f1, .12))

EBh(f i), B v ( f 2 )1  = F(P 2(f1, f2))+13 h(C(f1, A)) +B v (Pl(f „ f2))

EB"(f ,), B v ( f 2 )] = F(S 2(f i, f 2))  + B v ( S 1 ( f i ,  f 2 ) )
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for f „ f 2 E F .  From these equations, the curvature tensors and
torsion tensors are obtained. First, 1?2, 13 '  and S '  are called the
h-, h v -  and v-curvature tensors respectively, and components of
1 2 2 ,  1 3 '  a n d  S '  a r e  1 ?1 ! 

F j i • k l  and Si !k / respectively, which •are
given by

,sxk +Ciih
F

is x k ) + F j h k F h i  1  F j h l F h i  k
8 h ,  8F/ 1( F  3 FS :

Ulf k 8C1
1

1a  F :
Pi! la ay i x k ji h y i + F 31',,C ,, 1,  C11, ,F,,1 ,,

a C j i k a c  Ji_  a y ,  — a y „ +  C J 1,  „c  , k

where we used the differential operators

8  _  a a F i

8x18 x 1 a y '

Next, T  and C are called the h(h)-and h(hv)-torsion tensors, and
those components are given by T1

1 k = f i f i k — F k i ;  and Ci ik . Finally,
IT , 131 and S i are called the v (h ) - , v(hv)-and v(v)-torsion tensors,
and those components are given by

D    8F:j o  t F,
—   2 k J ,Sxk 8.v ayk

C i i k —  Ckii •

Two kinds of covariant derivative AhK and AvK of a Finsler
tensor field K  are obtained with respect to rh and rv respectively.
For example, take a  Finsler vector field K ,  and then the com-
ponents Ki l ;  and  Ki I of AhK and A vK respectively are given by

K-'1.; — 8
8

K 1. +KkFk is,, K i  - +KkCkii.
yj

Now, assume that a  Finsler metric tensor G  be given, and
then a  Finsler connection (r, H ) is said m etrical with respect to
G  when A1,G = A vG = 0 . The following proposition is well known,
and so we show it without proof [4].

Proposition 3. T here ex ists uniquely  a  F in s l e r  connection

(P, H ) satisfy ing the following four conditions:
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(1) Metrical.

(2) The h(h)-torsion T =0.

(3) The v(v)-torsion S 1 =0.

(4) The condition F: F(x , Y )=Y k Fk i i(x , y) holds good.

A  geometrical meaning o f (4) has been shown in  [7 ], from
the standpoint of fibre bundles. The Finsler connection a s  thus
determined from the given Fins ler metric G  is called  Cartan's

connection [1O]. It is well known that the connection parameters
of Cartan's connection are given by

1 6 g i ; .
C i j k  -  g j I C I I  k 2  ay ), F i  — 7/ 0 C J ` k 7 o h o

F i j k  =

w h ere  / k  a re  Christoffel's symbols constructed from components
of G with respect to

In the following, we shall enumerate some important proper-
ties of Cartan's connection for the later use.

(5) The non-linear connection H  is  Berwald's one, and hence
metrical.

(6) y 1 1= O, and yil i = (Kronecker's deltas). T h e  fo rm er
identities m ean th e  above condition (4), while the la tter does
y kc k ii _ 0.

(7) C i j k  coincide with the Christoffel's symbols constructed
from g i i (x, y ) with respect to yk. W e said  in  §5 that g i ; (x, y)
are regarded a s  components of the Riemann metric on the fibre
T- '(x ), and hence Ci p ,  are connection parameters of the Riemann
connection on T- 1 (x).

(8) The v(h)-torsion .1?' and the v(hv)-torsion 13 ' are obtained
from the h-curvature R 2 and the hv-curvature 13 2  respectively by
contraction by the element of support :

R j i k  =  Y I
R I ! j k ,  P j i k Y iP i ! j k  7

while y 'S /!; k = 0.

(9 )  The v(hv)-torsion 13 '  is given by

P i j k  = CifkiLYI
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which implies that Pi p , are completely symmetric and P 0 = O.

§ 7. Strain tensors o f  F in s le r  connections

B y  means o f the bundle homomorphism Q— >FT(M) as
defined in  § 5, a  connection r/ in  FT (M ) is derived from  the
connection r  in  Q, where (r, H ) is  a  given Finsler connection in
Q .  r '  was called the linear connection of Finsler type [ 1 1 ] .  In
[11 ], we were concerned with the connection in  a  great detail,
and the following two facts have to be noticed here for the later
use.

Proposition 4. [ 1 1 ,  (4. 4)] I f  a  Finsler connection (r, H ) is
metrical with respect to a Finsler metric G, the linear connection
of Finsler type U' derived from (r, H ) is metrical with respect to
the lifted Riemann metric a of G .  The converse is true, too.

Proposition 5. DA, (2. 16), (2. 17)] The Finsler decomposition
of the torsion tensor T ' of the linear connection o f Finsler type r '
is given by torsion tensors of the Finsler connection (I`, H ):

T ' 1, , = 12T, T 1 1 = R I 1, T ' 1 2 = C ,

T ' 1
2

2 = P 1 , T '
2

1
2 = 0, TI, 2

2 = S 1 .

The Finsler decomposition of the curvature tensor R ' of F' is given
by curvature tensors o f (F, H ):

R'111 = RI 2 '1 1 = 1?, R h 1 = = 0

= R1L2 = R 1 1 2  -  R 1 1 2  — 0

R ' 1 2 2  -  R/h 2 -  2 , RIL2 -  R1 2 2  -  0  •

We have to agree entirely with H. Busemann, who said [3 ]
that the term "Finsler space" evokes in  most mathematician the
picture of an impenetrable forest whose entire vegetation consists
o f tensors. Indeed, according to our general theory of Finsler
connections, there a re  three curvature tensors and five torsion
tensors. F u r th e r , w e  have three R icci's identities and eleven
Bianchi's identities. But, from the standpoint of the differential
geometry of tangent bundles, we observe from Proposition 5 that
those five torsion tensors are nothing but the Finsler decomposi-
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tion of the only one torsion tensor T ' and those three curvature
tensors a re  that of the only one curvature tensor R ', and so on.

Now, w e shall have the Riemann connection r with respect
to the lifted Riemsnn metric G of the Finsle r  metric G .  It will
be clear that r does not generally coincide with the linear con-
nection of Finsle r  type F ', even if the original Fins ler connection
(I`, H ) is metrical and so is r .  We shall first show

Theorem 1. Let r be the Riemann connection in FT (M ) with
respect to the lifted Riemann metric G of a Finsle r metric G, and
let r  be a  linear connection o f Finsle r type in  FT (M ) derived
from a Finsler connection (r, H ) .  I f  F ' coincides with r, then the
metric G is Riemannian.

P roo f. The Riemann connection r is uniquely determined
from G by the condition :

(1) Metrical with respect to G.
(2) The torsion T ' vanishes.

Therefore, if  F'= T, it follows from Proposition 4  th at (P, H ) is
m etrica l. I f  follows further from T '= 0  and Proposition 5  that
C = 0 . Thus we see

a g i ;

A " G  0 :   C . •  =  0ay *

which implies that g, ; (x, y) are  functions of x  alone.
I f  G  is Riemannian, we obtain the linear Finsler connection

(1- , H ) [1 1 ] which is essentially equivalent to the Riemann con-
nection with respect to G .  Then we obtain the linear connection
of Finsler type F' derived from the above (P, H ) .  In this simplest
case, it may be expected that U' coincides with the Riemannian
F . B u t, this is not so, as will be shown later.

In order to formulate exactly the difference between connec-
tions r and r, we shall define a tensor K expressing the difference
as follows

D efinition. Let r and r  be connections in FT (M ) a s  men-
tioned in Theorem 1 .  The strain tensor K  of the Finsler connection
(F, H ) is  a  tensor field of (1, 2)-type on T(M ), that is, a mapping
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K: FT(M )-->F'OF'*®F'* such that

K(f ') = (0' (B(f ')), f' EF' ,

where (0' i s  the connection form of r  [11, (2. 3)], and B(f ') is
the basic vector field with respect to r, corresponding to P E P .

By making use of the strain tensor K, the basic vector field
M r )  with respect to r' is expressed by

(7. 1) B (f') =  B '(f')+F (K (f')) ,

where F(K(f ')) is  the fundamental vector on FT (M), correspond-
ing to the element K (f') of the Lie algebra L(G') of the structural
group G ' o f  FT (M ) .  Further, th e  connection form (-7-)  of the
connection r is given by

(7.2)—  K ( 0 )  ,

where 0 is  the basic form on FT (M ), namely, Oz , = z/- 1 7r' a t  z'E
FT (M).

Since the Riemann connection r is metrical, we are, in future,
concerned only with a  metrical Finsler connection (F, H )  and so
F' is supposed to be metrical. We shall first treat the curvature
tensor i o f th e  R iem an n  connection r, w hich is given by the
structural equation of the connection :

EBtf D, B(f =  F ( R ( f  Ç,
 f f

 Ç,
 f  F

Making use of (7. 1), the left-hand side o f th e  above is written

=  E f f ( f 1 ) ,  B V 0 i +  EB VD , R iqf
— E B V  F (Iq f  D)]+ EF (K(f 0), F (Iqf

=  F (R V  Ç, f  0) + M TV  Ç,
 f  0) - BV ( f  D f D +F(B '(f  Ç)K(f

+13' (K( f l ) f 0 - F  (BV OK( f I)) + F (Elf( f  K ( f  0 ] )
+ F (F (K(f 1))K(f F (F (K(f D)K(f)).

Comparing first the horizontal parts of the above, we obtain

(7.3)r  ,  f  =  K f f  f  -  K ( f  f  0

where we put K (f0  f1 = K (f  fD . Next, comparing the vertical
parts, and according to (7. 3) and the formula
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P(A )K (f ') = K (A f  ')— [A , K (f ')], A E L (G '), f  'E  F' ,

we obtain

(7. 4) R (f i,i 'D  =  R / (fl,f0 +A /K (f, f1)— A 'K (f l, f 0
EK(f 1), Kff 01 —  K(T '(.f 1, f  ,

where A' is the covariant differential operator with respect to r .

Let T  and K* b e  pure covariant tensors obtained from T '

and K  by the metric tensor G respectively, namely,

TV f 1, f  = , f 0)
f 1, f E F '

f K (f i, f 0)
Since both of r and F ' are metrical with respect to G, it follows
from (7. 1) that

( f  =  0 = B'( f ')G + F (K(f '))G = F (K( f '))G ,

which implies that

(7. 5) K*(f 1, )4.0 -1- 1C*(f , irl, Jc 0  = 0 .

Further it follows from (7. 3) and (7. 5) that

(7. 6) 2K*(f 1, .1' , .f0 1 , f
— T,Vf f  + f l ,  f  ,

which is the equation giving the strain tensor K.
Since K* is skew-sym m etric w ith respect to  the first two

indices, the Finsler decomposition of K * is completely known by
its part (Km K 1 1 2 9  K 1 2 1  

K
122 K 2 2 1  K 2 2 2 ) (w e  om it the s ign  *). It

follows from (7. 6) and Proposition 5 that those are given by
2

( K i l l ) a b c  =  T  a b c
— Tt,. +  T  cab y

2
( K 112)abc R c a b +  a b c

—
 C b ac

(7. 7) 2 (K 1 2 1 )a b c C c ab + C  ac b
—

 R b c a

2
( K 122)abc P c a b +  P b a c

2
( K 221)abc P a c b  P b c a

2
( K 2 2 2 ) a b c S ab c —  S  b c a+ Scab

where we used the letters
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T abc g b d T  ad  c Cabc g b d C a d  c

R a ba  =  g a d R b d
 c P a b c  g a d P b d  c Sabc g a d S b d  c •

Finally, w e shall pay attention to  the simplest case where the
original metric G is Riemannian and the Finsler connection (r, H)
is linear, that is, G  and (F, H ) are Riemannian in essential. It
then follows from [11, Proposition 1 ]  that non-zero components
o f (7. 7) are

2
(

1
121)abc Y d R d b c a 2(1Ç 112)abc Yd Rdcab

where Ra b a  a r e  components of the curvature tensor constructed
from the Riemann metric G .  Therefore, the strain tensor K does

not vanish in general, even if G and (r, H) are Riemannian.

§ 8. Normal Finsler connections

In this section, we shall treat one of the essential problems
of the theory of Finsler spaces, that is, to find the most natural
connection. It m ay be adm itted that one of the most essential
conditions satisfied by the connection is to be metrical with respect
to  a  given Finsler metric G .  Therefore, we shall consider only
a metrical Finsler connection in the following.

Next, we shall pay attention to  the parallel displacement of
tangent vectors to T(M ) with respect to the linear connection of
Finsler type Iv derived from the metrical Finsler connection (r, H)
under consideration, and compare it with the parallel displacement
with respect to the Riemann connection r as above treated.

z  ( F ,  H ) in Q r' in FT (M ),

\  G on T(M) r in FT (M ),

(r, H ) .......  metrical with respect to G,
...... derived from (r, H ) by c1),

G .......  the lifted Riemann metric of G,
...... Riemannian with respect to G.

Let C :  [0 ,  1 ] ,  T (M ), b e  a  differentiable curve on  T(M)
and let C ' and C be lifts  o f C  to  F T (M ) w ith  respect to the
connection J r '  and P  respectively, where their starting points

Finsler metric G
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coincide each other with 4 .  Then, C'(t) and C(t) are frames at
the point C(t)E T (M) obtained from z by parallel displacements
along C with respect to r  and r respectively.

Generally speaking [5 , p . 59 ], if 8  i s  a  curve on  FT(M )

which covers C  and issues from 4 , the lift C is given from 5
by modification by the suitable right translation as follows :

C(t) =  8(t)e(t), g'(t)EG'

where the curve t—>g'(t) on G ' satisfies the differential equation

dg' ± ,T (d z ) g ,( t ) ,

dt \d t

with the initial condition g' (0)= e' (the unit of G'), where t--zi(t)
expresses the curve 8.

Now, take 5=C', and it follows from (7.2) that g'(t) satisfies

(8.1)
dg ,  K (  z ,_idy », ( t ) ,
dt dt

where t—>y(t) i s  the original curve C  on  T (M ) and t—>z/(t) is
the lift C '.  Summing up the result, we have

Proposition 4. In the notation of  Theorem 1, let C(t) and CV )

be l if ts  o f  a  curve C(t) o n  T (M ) to  FT (M ) w ith respect to  the
connections r and r' respectively. T h e n  w e  have C(t)=C'(t)g'(t),

where t— e(t) i s  the curve on the structural group G ' o f FT(M),

satisfy ing (8. 1), where t—>y(t) i s  the curve C  and t—>z/(t) i s  the
curve C'.

The above curve t— g/(t) on G ' is called the strain of  parallel

displacements with respect to the Finsler connection (r, H ) under
consideration.

W e now  restric t ou r discussion to  the case w here C  is
horizontal w ith  respect to  the non-linear connection H  of the
Finsler connection (r, H ) .  Then, in general, C' is written in the
form (DC*, where C* is  a lift of C to the Finsler bundle Q with
respect to  F. It then fo llow s from  the definition of the bundle
homomorphism (1) that
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-idy dycDz' =  ( q ) - ' —  = p (f(t), O),
dt dt

where t—)f(t) is  a curve on F .  Thus, (8. 1) is w ritten in the form

(8.1h) dg ' K (p ( f(t), 0 ))e (t) =  0 .
dt

On the other hand , if C  is supposed to be vertical, we obtain
similarly

(8.1v) d g '  K-(po, f ( OW (t) = O.
dt

Since g/(0)—e' is supposed, we obtain (dg' I d t ) ,=  A  w hich is  an
element of the Lie algebra L (G ') .  When C is horizontal, it follows
from (8. 1h) that A = K(p(f(0), 0)) and hence, for f,E  F , we obtain

A (p (f„ 0 )) =  K (p (f„  0), p(f(0), 0))

= (K1 11(f1 ,f( 0 ) ) ,  K ( f1 , f ( 0 ) ) ) ,

where we m ade use of the F in sler decomposition of the strain
tensor K .  Further we have

A(P(0, fi)) = (K2 11(f1, f(0)), K2 21(1- 1, AO))) •

Consequently we obtain, for the case of a horizontal curve C, A =

A h :

(8. 2h)

When C is  vertical, we similarly obtain from (8. 1v) A =A ,,:

(8.2 y) Av = (K 1
1

2 f(0) K 1
2

2f(0)) .
K2 1 2 f (0) K 2 2 2 f 0 ) )

In  order to compare (8. 2) with the simplest case where G  and
(r, H ) a re  Riemannian, we shall find A h = A;),  and A = A  in the
latter case, and then obtain

A , ( 0 — Rcbaf(0)) , A ; ), = (R, a !'f(0 ) 6 0 \
1?„,V(0)r .0 ) 0 0)

A h = (K 1
1

1f(0 ) K 1
2

1f (0 )  .
.K2 1 1f ( 0 )  K 2 2 1  AO))
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where R c k a = ydRd ,„ and R c a l ! - =  bg  d g c e R a e d

H ere, let us remember the definition of the homomorphism

: G—>G', that is, q)(g)=(g ,  g E G , and hence an  element of
\O g )

the Lie algebra of 99(G) is of the form (* Therefore, it seems
\O *)

natural to pay attention to the places denoted by *  of A„ and A v ,

and to compare them with those of A;', and A?, respectively. For
the purpose to find natural and simple Finsler connections, we are
led to the following definition.

Definition. A  Finsler connection is said to be normal of the

f irst k ind, if the following two conditions are satisfied :
(1) Metrical.
(2) K 1

1
1 —K2

2
1 = K 2

2
2 = 0 ,  where K 's  a r e  components of the

Finsler decomposition of the strain tensor K.
Then, as for a norm al F insler connection of the first kind,

we shall show

Theorem 2. The connection param eters Pi , F y
1

1,  and CI „ of
a normal Finsler connection of the f irst k ind are given by

(1) C i i k g i j k ,

1 a g i ;
where Cifk—gnCi l k  and g i j k —  2  ay k •

(2) F i k =  g j i F k l  m u s t  satisfy  th e  follow ing dif f erential

equations:

a Fi k  a F . . a F k iF  ik

a y , a y k + a y ; a y ;2 ( g 11 g k ti F 1 1 )+ 7 ; i k —y i k i  =  O,

where g i ' ; =gm g i h ;  a n d  y i ; „ are C hristof f el's symbols constructed

f rom  g i ; (x, y) with respect to  xk.

( 3 )  F i j k =  g i i F i i  k  are given by

1 /a F . a F  ikF
1

2  \  ayi a y i gi` iFne •

Therefore the connection is uniquely determined, i f  F 1 ; a re  given

such as to satisf y  (2).
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P ro o f . It follows from (7. 7) that the conditions for a Finsler
connection (r, H ) to be normal of the first kind are given by

a gi ;(8. 3) ax* F i j k + F j i k

(8.4)2 g 1 1 k C i j k + C j i k

(8. 5) T i j k —  T j k i +  T k i j  =  O,
(8. 6) P i j k  =  P k j i

(8. 7) S i i k  S i k i +  S —  O.

It is  easy  to  show that (8. 5) and (8. 7) give T i i k  S i p ,— 0, namely,
F k i ;  and  Ci ik  C h i;  . Then (1) is  a direct result from (8. 4).

It follows from the definition of P i ik  that

aFi f

P  —  a y k 2 g 1 1  k  F1 1 + Fk ii

and hence (8. 6) is w ritten in the form

aF, j OFk J
F k i j  F , k i  —  a y k a y i  •

Combining the above with (8. 3), we immediately obtain (3), and
then (2) means F i j i , = F , J i . Thus the proof is complete.

In order to consider (2) in Theorem 2, let us suppose as usual
that F i i (x , y ) be homogeneous of degree 1 w ith respect to y  [7].
Then, the contraction of (2) by y k  gives

OF J o  O F o i a F i o3F1 1 —Fu  = +  a y ;  — a y ;  + 7 1 1 0 - 7 ; o i - 2 g i l ;Flo •

Therefore, F 11  will be uniquely determined if F„ and F o i are given.
It is no ticed  that, if the non-linear connection H  is supposed to
be metrical, then F ,,  and F ,, are already determined by Proposi-
tion 2.

Theorem 3. A normal Fin s le r connection (r, H ) o f th e  f irst

k ind is C artan 's  connection, prov ided that the non-linear connection

H  be metrical and Fli (x , y) are homogeneous of degree 1 with respect

to y.

Pro o f . As already observed, the connection satisfying all of
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the conditions as mentioned above are uniquely determined. On
the other hand, Cartan's connection satisfies those conditions, and
hence the proof is complete.

Consequently, we may say that Cartan's connection seems to
be quite natural from our standpoint.

In  th e  above discussion, we considered general horizontal
and vertical curves o n  T  (M ), and (dg' I dt) „E L ( G ') .  We shall
now be concerned with an  H-intrinsic curve (horizontal) and an
intrinsic curve (vertical). A s for an H-intrinsic curve which has
in  § 2, f ( t )  in  (8. 1h) is equal to ya (t)e , and hence (8. 1h) is then
been defined written down

— (  K 11 b 0 0 g
( 1 ( 2 1 1 )

1(b)
O g"b2 =

dt

(8.8)a  =  1 ,  • • • , 2 n  ,

der ( K i2 ( K 2 2 1 )  b
a g“,?» —

dt

In particular, as for Cartan's connection (I', H ), (8. 8) becomes
quite simple :

dgl:1  R  a  , / ( b ) 0

at 2  0 "b " '

from which we have

dg":' + 1  R .

" b  

g a b

dt 2  (  

— ./?70

c

(g"g) +g ' (2) ) = 0
d t

d „ 1 ,
— (g / +  g , (b)) + g'g;) = 0 .
d t

Since the curve g' (t) satisfies g' (0) = e' the equations

eg (t)— e(t)  =  0 , g ' ( :̀) (t)+ g ' ,,(t) = 0

must hold for t= O. T herefo re , the above differential equations
show that these two equations hold for any t.

Next, we shall consider an intrinsic curve as defined in  § 2.
In this case, f ( t )  in  (8. 1v) is equal to y°(t)e 0 ,  and hence (8. 1v) is
then written down
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 — (K112)ba( K 2 1 2 )  ba  g =  9
dt

ce = 1, •••,2n ,(8.9)
d g ()

(K i 2 a l  ( K -
222)b ao g %) 0

dt

In particular, if we consider Cartan's connection, (8. 9) becomes
solely dg' Idt = 0, and hence g '( t)  is reduced to the point e'.

W e su m  u p  th ese  fac ts  as  fo r Cartan's connection in the
following.

Theorem 4. Let (r, H ) be Cartan's connection constructed from

a Finsler m etric G. The strain of Parallel displacements gi(t) with

respect to  (r, H ) is  of the follow ing form :

(1) F o r a n  H-intrinsic curve, g '(t)= ( g(',;,\, where get
g (g) g g

and g ( g) a re determined by the differential equations

dgg + 1 dg ((b6 ) 1 R o „! o e g g 0

dt 2 ° dt 2

w ith the initial conditions g;,-(0)= 87„

(2) For an intrinsic curve, g '( t )  is reduced to the unit of G'.
It is  observed  that the differential equations in  th e  above

(1) which give gg and g (g) will not become simpler formally, even
if  G and (r, H ) are Riemannian. Thus, we may say that Cartan's
connection gives the sim plest parallel displacem ents of frames
along an H-intrinsic curve and an intrinsic curve.

From the viewpoint of Theorem 4, w e now  lay dow n the
following definition.

D efinition. In the notation of Theorem 4, a  Finsler connec-
tion is said  to  be normal of the second k ind if  it is m etrica l and
the strain of parallel displacements g'(t) is of the following form :

(1) F o r an  H-intrinsic curve, gi(t)—  (gg g <) .
g (Z ) e /

(2) For an intrinsic curve, g '( t)  is reduced to the unit.
It w ill be easy to  show from (8. 8) and (8. 9) that the condi-

tions (1) and (2) as above are expressed
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(8. 10) (K i i i)ba
 0 =  (.'2 21)b° 0, ( K 2 11)b'  = — (1 (1 2 1)ba „

(K i l Oba
o =  (K2' ba  0  =  ( K

2

 ) a  =  ( K 2 2 2)ba ,  = 0  .

T heorem  5. Let F 1
1 ,  F 5

1
1, and C,' 1, be the connection parameters

of a normal F i n s l e r  connection of the second k ind . I f  F ;( x ,  y) be
assumed to be homogeneous o f  degree 1  with respect to  y ,  these
connection P arm e te rs  are as follows:

(1)
(2)

(3 )

C i i k + C i i k  —  2g 1 1 1 ,, C 0 —  0 .
F15 — F5 1 —  701; 705 1, F1 0  —  Tao Fo i Yooi •

a g i ;

F i j k  F j i k  —  x k

where the same notation o f  Theorem 2  is used.

P ro o f. The first equation of (1 ) and (3) mean solely that the
connection is metrical. According to (7 . 7 ), the equation (8. 10)
are written down

(8.11)
(8. 12)
(8.13)
(8.14)
(8. 15)

Si 50 S i o i  S o i i  —  0 ,
T150 T301+ Tou — P 0 5 P j o i

R o i i  Cu p  C 5 1 0 —  0 ,
R i o j —  C o p  C jo i =  R jO i  C O i i  C iO i

P011 + P 3 1 , =  0 .

It follows from the definition of S i l l , that (8. 11) becomes Cu o = 0,
where we used the first o f  (1). Thus we obtain R o i ;  0  from
(8. 13). It follows from the first of (1 ) and (8. 14) that R ,, 5 = R30 .•
Hence (8. 13) and (8. 14) become

(8. 16) R 0 1 3  =  0, R , 0 , — Rio, •
Next, by the same way as in the proof of Theorem 2, we obtain

P o i , —  

a F°' — F jo i  P510 — Fop,
ay i

where we have to notice that the homogeneous condition on P i

w as used . Then, (8. 15) gives

(8. 17) @Fo ; +7 o i i  7 j o i  •
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Similarly (8. 12) is written

a F it, OFJ ,
.(8. 18) ayi —  T i i o — Yuo•

Contractions of (8. 17) and (8. 18) by y ' give the second and the
third equations of (2), and then, inserting F 1 0 - 7 , i ,  in  (8. 18), we
obtain the first of (2). It now remains to treat (8. 16), but it w ill
be shown by direct calculation that (8. 16) is an automatical result
of the facts as have been already verified.

It follows immediately from (2) in  th e  above theorem and
Proposition 2 that

Corollary 1. The non-linear connection H of a normal F in s ler
connection of the second k ind (r, H )  is m etrical, Prov ided that

F,(x , y ) be homogeneous o f degree 1 w ith respect to y.
For the purpose to make little the strain of parallel displace-

ments o f  a  Finsler connection (r, H ), w e are finally led to the
following definition.

Definition. A  Finsler connection is called normal, i f  it  is
normal of the first kind and of the second kind.

Then, we establish from Theorem 3 and Corollary 1 that

Corollary 2. A normal F in s le r  connection is definitely Cartan's
one, prov ided that Fi(x , y ) o f th e  connection parameters be homo-

geneous o f degree 1 with respect to y.

§ 9. Curvature tensors

It will be rather complicated to find the curvature tensor .17?
of the Riemann connection P with respect to the lifted Riemann
metric G by referring to the local coordinate (X i, yi) on the tangent
bundle T (M ) .  In this section, we shall do by making use of the
frame D (q ), q Q. T h e  curvature tensor J has been expressed
by the curvature tensor R ' and the torsion tensor T ' of the linear
connection of Finsler type r', together with the strain tensor K,
in  th e  abstract form (7. 4). In that equations, if fÇ , .f . E F ' are
taken a s  p ( f ,  0 ) o r  p (0 ,  f ) ,  fE F ,  w e shall ob tain  the Finsler
decomposition of the curvature tensor .1?- a s  follows :
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( 1 i111)abcd R a b c d  Z R e a b R c e d + ( R e c b  g e c b ) (2 R d e a
 g e e )

(21? edb g e d b ) (2- R aea g c ea)

( R1112)abed 2 ( R d c a l b  R d c b l a )  ( g d c a l b  g d c b l a )  P  e c d R a e  b •

(R1122)abcd R e d a b +  (2  R d a e  g d a e )G R c b e• g c e•b)

(9. 1) ( R d b e  g d b e )(J2 R e a ! g c
e

 a )  ,

(R 1 2 1 2 )a b c d  —  R b c a I d  g b c a ld +  P a b d ic  P a b e P c e  d

+  (2  R b e a  g b e a )g c e d+  1 (1 R b c e  g b c e )R d a e• •

(R2220abcd — Pedal b Pcdbl a +  2 ( P ea  c R b d e  P eb e
p

o de) •

(R222)abed g d a e g b e  c  g d b e g a e c +  P  e d a  P  b e  c P e d b P  a e c •

Rem arks. (i) Since the lifted Riemann metric G is determined
by the original F insler metric G and the non-linear connection H,
the above k does not depend on the choice o f r of the Finsler
connection (r, H ) .  In  the above formulas, the lifted  Riemann
metric is given by means o f Berwald's non-linear connection H.

The symbols in  th e  right-hand members are th a t o f Cartan's
connection. (ii) It fo llow s from  the meaning o f th e  Finsler
decomposition, components o f k  are given by (9 . 1), referring to
the frame c13(q), that is, for example,

a b ed  —  ( R i m )  abcd 9 R a (b )e (d ) ( R- 1212)abcd •

a, b , c ,  d  =  1 , • • • ,n  ;  ( b )  =  n + b ; (d )  =  n + d

Since the general formulas (9. 1) are complicated, we next
consider the case where G is Riemannian. In this case, the non-
linear connection H  used to obtain the lifted Riemann metric G
is naturally the associated linear connection with the Riemann
connection with respect to G .  Then, we obtain

k a b c d  =  R a b c d RoeabRoe•cd+711(RO ebcRoe,ad RoebdRo e• ac) •

k a b c (d )  =  R O d a b ;c  •

(9. 2) k b (c ) (d )  =  R a b c d +  1 (R o d a e R b e•Oc R o d b e R a e•oc) •

a (b )c(d ) —  1 .1? a c b d +  i R o b c e R a ! o d  •

k a ) (b ) (c )d  =  0 , -1:1-
 (a ) (b ) (c ) (d )  — .

a, b, c, d =  1, ••• ,n
(a) =  n + a ,  ( b ) =  n + b ,  ( c )  =  n + c ,  ( d ) =  n + d

Rem arks. (i) In  (9. 2), R a b ,d  are, of course, components of
the curvature tensor R  of the Riemann connection r with respect
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to the Riemann metric G on the base manifold M .  The index 0
means the contraction by y  a s  usual, and the semi-colon means
the covariant derivative with respect to  the connection I'. (ii)
Members in the right-hand sides of (9. 2) are components referring
to  the frame z , while members in the left-hand sides are com-
ponents referring to the frame cID(q), q=(y, z).

From (9 . 2), we shall obtain some interesting theorems as for
sectional curvatures of the Riemann manifold T(M ).

Theorem 6. L e t M  be a Riemann manifold w ith a Riemann
m etric G . T hen the tangent bundle T (M ) over M  is regarded as a
Riemann manifold w ith the lif ted  Riemann m etric G  o f  G .  Let
S(X , Y ) be the sectional curvature of a 2-section spanned by tangent
vectors X  and Y to  T(M ).

(1) If X and X are vertical, then ,g(X, Y )=  0  [ 13, Theorem 18].
(2) I f  X is the intrinsic vector b ,  then ,g(X, Y)= 0 fo r  any Y .

P ro o f . Suppose that X  and  Y  be vertical, and hence there
exist f „ f 2 E F  such that X = 0(q)(0, f i ) and Y=43(q)(0, f 2 ). It then
follows from (9 . 2) that

R(X , Y, X, Y) = R(p(0, f 1 ), p(0, f ,), p(0, fi ), p(0, f2))

R2222(f1, f2 f2) ,

which proves (1). Next, i f  X = b ,  X  is expressed X=c1)(q)(0, y),
where y = le a E F .  Hence we see

R(X, Y, X , Y ) =  R (P (f  f2), p(0, y), p(fi f2), p(0, y))
= (R1212)abcdfiybf ly d

 - - -  0 ,

where we put Y=c13(q)(f„ f , ) ,  f „  t 2 E F .  Thus, (2 ) is proved.
It follows from Theorem 6  that, if the Riemann manifold

T (M )  i s  of constant curvature, the curvature must vanish iden-
tically, and hence we obtain

Corollary 3. If the tangent bundle T (M )  ov er a Riemann
manifold M is considered as a Riemann manifold w ith the lif ted

Riemann m e tric , it  is  impossible th at  T (M ) i s  o f  non-vanishing

constant curvature.

Next, let us compare a sectional curvature of T (M ) with one
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of M , corresponding to each other by lifting tangent vectors. Let
X  and Y be tangent vectors to M, and we have the vertical lifts
X '  an d  Y ' o f X  and Y  respectively. It follows from Theorem
6  that the sectional curvature S(X", Y V )= 0 . On the other hand
we shall obtain

Theorem 7. In the notation of Theorem 6, we denote by S(X, Y)
the sectional curvature of a 2-section spanned by tangent vectors X
and Y to M .  Then

(1) g(Xh, Y").- S(X, Y) ,

where X" and Y" are horizontal lifts of X and Y respectively. The
equality holds good, if and only i f  R(y, X, Y )=R ; :k l y jX 4 Y7 =0.

(2) 17") 0 ,

where Yv is the vertical lift of Y .  The equality holds good, if and
only i f  R(X, Y, y)= Ri f k i XiY "y' =O.

P ro o f. I f  X M „  is expressed X = z f, z E it - i (x ) ,  fE F ,  we
obtain

X"=.13(q)(f, 0), X y= 43(q)(0, f), q  =  (y , z ).

It then follows from (9. 2) that

g(Xb, = S(X, Y ) — R(y, X, Y)1 2 ,
S.(X ", Y v ) =  IR (X , Y , y)I 2 ,

where 1.••1 denotes the length with respect to the original Riemann
metric G  on M .  A s  a  consequence of the above equations, we
have the theorem.

Institute of Mathematics, Yoshida College,
Kyoto University
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