
ARTICLE

Received 4 Dec 2014 | Accepted 26 Mar 2015 | Published 11 May 2015

Theory of Floquet band formation and local
pseudospin textures in pump-probe photoemission
of graphene
M.A. Sentef1,2, M. Claassen3, A.F. Kemper4, B. Moritz1,5, T. Oka6, J.K. Freericks7 & T.P. Devereaux1,3

Ultrafast materials science promises optical control of physical properties of solids.

Continuous-wave circularly polarized laser driving was predicted to induce a light-matter

coupled state with an energy gap and a quantum Hall effect, coined Floquet topological

insulator. Whereas the envisioned Floquet topological insulator requires high-frequency

pumping to obtain well-separated Floquet bands, a follow-up question regards the creation of

Floquet-like states in graphene with realistic low-frequency laser pulses. Here we predict that

short optical pulses attainable in experiments can lead to local spectral gaps and novel

pseudospin textures in graphene. Pump-probe photoemission spectroscopy can track these

states by measuring sizeable energy gaps and Floquet band formation on femtosecond time

scales. Analysing band crossings and pseudospin textures near the Dirac points, we identify

new states with optically induced nontrivial changes of sublattice mixing that leads to Berry

curvature corrections of electrical transport and magnetization.
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T
he ultrafast optical manipulation of materials by femtose-
cond laser pulses is rapidly becoming a major guiding
theme in condensed matter physics1–3. At the same time,

the quest for novel topological states of matter triggered
enormous research activity since the discovery of topological
insulators4. Merging both of these vibrant fields, a recent work
reported the coupling of short laser pulses to surface Dirac
fermions in the topological insulator Bi2Se3 (ref. 5). This work
demonstrated the creation of Floquet-like sidebands during
irradiation as well as the opening of a small band gap at the
surface state Dirac point for circular light polarization.

Time-reversal symmetry protects massless Dirac fermions on
the surface of topological insulators6,7 and, in combination with
inversion symmetry, also in graphene in the absence of spin-orbit
coupling8. In a milestone paper, Haldane envisioned that
breaking either or both of these symmetries would open a gap
at the Dirac points in graphene, allowing one to tune between a
trivial insulator and a Chern insulator9. While equilibrium band
gap engineering has become a major theme since the first
synthesis of monolayer graphene, it was only recently proposed
that circularly polarized, high-frequency laser light could turn
trivial equilibrium bands into topological nonequilibrium Floquet
bands10–25, coined Floquet topological insulator (FTI).

The FTI concept is based on two things: first, in the limit of
continuous laser driving at frequency O, the temporal periodicity
allows one to employ a repeated quasi-energy zone scheme with a
temporal Brillouin zone of size O. Second, in the high-frequency
limit, defined by O being larger than the electronic bandwidth, these
repeated zones contain well-separated copies of the original
electronic bands spaced by integer multiples nO, the so-called
Floquet sidebands. The effect of the laser on the original n¼ 0 band
manifold is perturbative in 1/O. If the laser is circularly polarized,
time-reversal symmetry is broken and an energy gap opens at the
Dirac points in graphene due to the fact that photon emission and
absorption processes do not commute. The FTI concept then
follows from an exact mapping of driven graphene to the Haldane
model, leading to a well-defined nonzero Chern number.

Whereas this envisioned high-frequency strong pumping limit
that is required for nontrivial topological states is currently
experimentally unattainable, a natural follow-up question regards
the engineering of local spectral gaps in realistic pump-probe
experiments. This leads to the question on which time scales the
quasi-steady Floquet regime can be reached when continuous-
wave driving is replaced by a short laser pulse. Moreover, it
requires the investigation of the low-frequency regime, in which

1/O perturbation theory is not applicable. In this regime, the
overlap of different Floquet sidebands prevents a global
topological classification of states.

In this work, we address these problems by simulating the real-
time development of single-particle energy gaps in graphene
coupled to short laser pulses, using realistic parameters for time-
resolved, angle-resolved photoemission spectroscopy (tr-ARPES).
We show that the tr-ARPES band structure shows well-defined
Floquet bands provided that a hierarchy of time scales is fulfilled
between the duration of the pump-pulse, the duration of the
probe-pulse, and the laser period: spump4sprobec2p‘ /O. We
predict the opening of a Dirac point gap and the formation of
Floquet sidebands that form on femtosecond time scales. An
important difference to the high-frequency limit arises from the
overlap of Floquet sidebands. At frequency-dependent critical
driving field strengths, we find a sequence of level crossings and
energy gap closings at the Dirac points. The analysis of snapshots
of pseudospin textures near the Dirac points allows us to identify
optically induced nontrivial changes of sublattice mixing at these
level crossing points, that manifest themselves in Berry curvature
corrections of electrical transport and magnetization. Even
though a global topology cannot be assigned to the low-frequency
driven states, we show that the analysis of level crossings and
energy gap closings leads to a classification scheme in terms of
local gaps and Berry curvatures.

Results
Haldane model. To set the stage for our results, we briefly outline
the basic ingredients for the low-energy physics of Haldane’s
equilibrium model. We start from two Dirac cones with effective
Hamiltonian vD(qxsx#tzþ qysy#I). Here vD is the Dirac point
velocity, the Pauli matrices r label pseudospin arising from the
graphene sublattices A and B, s labels the valley degree of free-
dom corresponding to the Dirac cones around K and K0, and I is
the 2� 2 identity matrix. Electron spin can be neglected in the
absence of spin-orbit coupling. Momentum q is measured from
the respective Dirac points. The pseudospin content P(q) essen-
tially measures orbital band content (see Supplementary Note 1).
For instance, a pseudospin pointing along the þ z (up) direction
means that the band is predominantly of A sublattice character,
while a pseudospin pointing along the � z (down) direction
indicates mainly B sublattice character. Together with the
winding of the Px and Py in-plane pseudospin components
around the Dirac points, Pz determines the local Berry curvature
FðqÞ ¼ @qxP qð Þ�@qyP qð Þ

� �

� P qð Þ26.

k

E
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Figure 1 | Graphene with band gap. (a) Graphene band energy (E) versus momentum (k) dispersion with a band gap D at the Dirac points. (b) Trivial gap

structure in Haldane’s model: The pseudospin Pz(k), indicated by up and down arrows, points in the same direction at both Dirac points K and K0 . The
winding number contributions cancel. This gap structure appears if inversion symmetry is broken, and time-reversal symmetry is intact. (c) Nontrivial gap

structure: Pz(k) points in opposite directions at K and K0, leading to a nonzero Chern number þ 1 or � 1. This gap structure appears if time-reversal

symmetry is broken and inversion symmetry is intact.
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In Haldane’s model, an effective mass term msz#tk leads to
an energy gap D¼ 2m at the Dirac points (Fig. 1a). Its relative
sign between K and K0 is determined by tk and depends on its
origin: If the gap is induced by introducing a staggered sublattice
potential breaking inversion symmetry, tk¼ t0, implying that the
effective mass term has the same sign at K and K0, and the out-of-
plane pseudospin component Pz is the same at both Dirac points
(Fig. 1b). By contrast, if the gap originates from breaking time-
reversal symmetry, tk¼ tz, hence Pz points in opposite directions
(Fig. 1c).

Time-resolved photoemission spectra of driven graphene. We
now come to the discussion of our nonequilibrium results. We
start from the minimal honeycomb-lattice tight-binding model of
graphene. We drive this system by coupling to a time-dependent,
spatially homogeneous electric field modelled as a time-
dependent vector potential A(t), which couples to the electrons
via Peierls substitution. The relativistic magnetic component of
the light field is neglected. The pump-pulse has a temporal width
spump¼ 165 fs, photon frequency O¼ 1.5 eV (laser period of
2.8 fs), with linear or circular light polarization, corresponding to
a femtosecond pump-pulse. The field strength is given by Amax,
which is measured in units of the inverse carbon–carbon distance.
For graphene, the conversion to the peak electric field strength
is Emax¼Amax� 1,060mVÅ� 1 for O¼ 1.5 eV. We track the
time- and momentum-resolved single-particle spectrum of the
pump-driven electrons using a short 26 fs probe-pulse that emits
photoelectrons and thereby generates a photocurrent27,28, as
measured experimentally with tr-ARPES (see Methods).

We first characterize the nonequilibrium band structures using
tr-ARPES spectra. Fig. 2 shows the tr-ARPES spectra on a
momentum cut along the G�K�K0 direction near K at peak
field (Dt¼ 0 fs). We first perform a calculation using pump pulses
with linear polarization along the kx direction for two different
field strengths (Fig. 2a,b). One can see the formation of Floquet
sidebands, but since the pump preserves time-reversal symmetry,
the spectrum remains gapless at the Dirac point energy. The main
effect of the linearly polarized pump is a shift of the Dirac point
location from K towards K0, which increases with increasing field
strength. This Dirac point shift is due to the nonlinearity of bands
and does not happen for perfect Dirac cones.

Floquet spectrum and level crossings. Next, we turn to circular
light polarization, thereby breaking time-reversal symmetry. In
Floquet theory, the quasi-static eigenvalue spectrum at finite
driving field A shows copies of the original bands shifted by
integer multiples of O, the so-called Floquet sidebands. Energy
gaps of n-th order in the field open at avoided level crossings of
sidebands which differ by n photon energies. For circular light, an
energy gap of second order in the field opens at the Dirac point.
In our tr-ARPES simulation, for a moderate field strength and
1.5 eV photons, an energy gap exceeding 100meV at K is induced,
accompanied by avoided level crossing gaps nearby (Fig. 2c). Due
to the aforementioned hierarchy of time scales, we observe an
excellent agreement of tr-ARPES spectra and the quasi-static
Floquet band structure obtained by diagonalizing the Floquet
Hamiltonian involving large numbers of sidebands (solid lines,
see Supplementary Material).
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Figure 2 | Transient angle-resolved photoemission spectrum. (a–h) tr-ARPES spectral intensity of irradiated graphene at peak field (delay time Dt¼0)

versus binding energy o and momentum (k� K)x near the Dirac K point (vertical dashed lines) with Dirac point energy at �0.5 eV (horizontal

dashed lines) on a momentum cut along the G�K� K0 direction. The colour scheme varies between 0 (white) and maximal (red) spectral intensity.

The pump laser field is linearly polarized in panels (a) and (b), and circularly polarized in panels (c–h). The pump-pulse field strength Amax is varied

between panels, with Amax values and laser polarizations as indicated. The driving frequency is 1.5 eV for all panels. The solid curves show the

corresponding quasi-static Floquet band structures. The linearly polarized laser in panels (a) and (b) does not induce a band gap, whereas the

circularly polarized laser in panels (c–h) first induces a band gap at the Dirac point and then leads to a sequence of level crossings (panels (d) and

(f)) and gap closing (g) as the field strength is increased.
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At larger field strength (Fig. 2d), the Floquet bands move closer
to each other and cross. They separate again and the Dirac point
energy gap decreases (Fig. 2e). At even larger fields, there is
another crossing between Floquet bands (Fig. 2f) before the Dirac
point gap closes (Fig. 2g) and eventually reopens (Fig. 2h). At the
largest field strength shown here (Amax¼ 1.00), the bands are
almost flat, indicating that the ac Wannier–Stark limit is
approached. This creation of flat Wannier–Stark bands in the
strong driving limit impedes the continuous growth of the gap
with increasing field strength.

To analyse the pump photon frequency dependence of the
Dirac point level crossings and gap closing in more detail, we
show in Fig. 3 the first two negative Floquet eigenvalues tracking
the position of the first two Floquet bands below ED. Fig. 3a shows
the initial gap opening at O¼ 1.5 eV, which is quadratic in the
field at small Amax, followed by two level crossings between the
two Floquet bands indicated by two arrows. The gap at the Dirac
point is then closed, indicated by the third arrow. For O¼ 3.0 eV,
the field range between the two Floquet band level crossings
increases (Fig. 3b), then decreases at O¼ 4.5 eV, and finally
vanishes for O¼ 5.5 eV. The initial quadratic gap opening is the

same for all photon frequencies due to the linearity of the
graphene bands near the Dirac points. The differences between
different photon frequencies at larger fields then arise from the
nonlinearity of the bands further away from the Dirac points,
which is specific to graphene.

Local pseudospin textures near Dirac points. We now turn to
the discussion of local pseudospin content. Fig. 4a–c present false
color plots of the momentum-resolved pseudospin contents near
the Dirac points for the driven system at O¼ 1.5 eV. At small
field before the first level crossing (Fig. 4a), the Px and Py com-
ponents have two sign changes along a path around K, as
expected for weakly driven graphene. This nodal structure is
directly related to the qxsxþ qysy term in the effective low-energy
Hamiltonian introduced above, which shows that the Px com-
ponent transforms like qx and the Py component transforms like
qy. We coin this state S1, with one nodal line and therefore a
single pseudospin winding in the vicinity of the Dirac points.
Importantly, the Pz component changes sign between K and K0,
which is consistent with breaking time-reversal symmetry.
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crossings between the two Floquet bands are indicated by green arrows, the gap closings at higher field strength for O¼ 1.5 eV are indicated by violet

arrows. Black circles in panel (a) indicate the field strengths used in Fig. 2c–h. The sequence of level crossings and gap closings implies nontrivial changes in

the pseudospin contents due to changes in the sublattice mixing of orbital band contents.
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When the field is increased through the first level crossing
(Fig. 4b), the character of the local pseudospin textures changes.
The effective mass term still changes sign between K and K0.
Remarkably, the Px and Py components double their winding
number, changing sign four times along a path around K. We call
this state S2, since it has two nodal lines in the vicinity of the
Dirac point, which cross at the Dirac point. Although the
corresponding ARPES spectrum for the same parameters (Fig. 2f)
has only little spectral weight near K in the Floquet bands close
to ED, the pseudospin texture is well-defined at all momenta
considered here. Also, other sidebands have higher spectral
weight, and each of the Floquet sidebands carries the same
pseudospin information.

A similar texture is also obtained for Bernal stacked bilayer
graphene29 in a perpendicular electric field30. In this analogy, we
stress that the doubled winding in bilayer graphene persists even
when the energy gap induced by the electric field goes to zero. By
contrast, in our case the doubled winding state S2 vanishes when

the Floquet sidebands cross, and gives way to a single winding
state S1 in the low-field limit. Also the effective perpendicular
electric field generated by the circularly polarized light pulse in
our work points in opposite directions at K and K0, in contrast to
the static electric field applied in ref. 30, which corresponds to the
Haldane mass term. In any case, the observation of state S2
suggests the possibility to dynamically engineer effective models
with higher pseudospin winding numbers, similarly to higher-
order spin-orbital textures in topological insulators31.

When the field is increased further through the second level
crossing and the gap closing, one obtains the pseudospin textures
shown in Fig. 4c. Here all the pseudospin components are flipped
compared to the ones in Fig. 4a, and we coin this flipped state
with single pseudospin winding S’1.

Phase diagram at low-frequency driving. We are now in a
position to discuss the phase diagram of local Berry curvatures,
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p-wave in S’1 (c), with opposite pseudospin direction compared to the original S1 state. The Pz component changes sign between K and K0 since time-

reversal symmetry is broken. (d) Phase diagram of local pseudospin windings near the Dirac points as a function of driving field strength and frequency.

The phase boundaries are obtained from the Dirac point level crossings and gap closings. Black circles indicate the parameter values used in panels (a–c).
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which follow from the pseudospin textures around the Dirac
points, as a function of field strength and driving frequency.
Fig. 4d shows the positions of the Floquet band level crossings
indicating the transition to a pseudospin texture with a doubled
number of nodal lines, as well as the Dirac energy gap closing
leading to a state with inverted Pz component. There is an upper
frequency limit for the former state in the range of field strengths
shown here. This is consistent with the fact that in the infinite-
frequency limit, only states with p-wave pseudospin textures
corresponding to S1 and S’1 were found, which can be understood
from the exact mapping to the static Haldane model in this
limit32.

On one hand, the characterization of nonequilibrium states in
terms of local pseudospin textures is restricted to momenta near
the Dirac points by Floquet sideband level crossings. Such level
crossings generically appear at low driving frequency O because
different Floquet sidebands overlap if O is smaller than the
electronic bandwidth. On the other hand, sideband level crossings
at the Dirac point are the root cause of the appearance of the
exotic pseudospin textures in Fig. 4b. The low-frequency
behaviour of driven graphene is therefore more complicated,
but also contains new states that are absent in the high-frequency
limit. The complete evolution of the tr-ARPES spectra and
pseudospin textures across the boundaries of the S2 state is shown
in the Supplementary Figs 1, 2 and 3 for driving frequencies of
1.5, 3.0 and 4.5 eV, respectively, and discussed in Supplementary
Note 2.

Discussion
Our combined results show that band gaps induced by breaking
time-reversal symmetry in graphene are within reach under
realistic experimental conditions. In particular, the achievable
energy resolution for probe-photon energies which are suffi-
ciently high to reach the Dirac points33,34 should allow for
the detection of photoemission gap sizes exceeding 100meV. The
change in pseudospin texture near critical driving offers the
exciting opportunity of optical manipulation of local Berry
curvatures near Dirac points on ultrafast time scales. Moreover,
the combination of broken inversion symmetry and broken time-
reversal symmetry opens up the possibility of controlling the
valley degree of freedom and inducing different energy gaps at the
two Dirac points35–38.

The spectroscopic detection of pseudospin textures requires
access to orbital band content. To this end, hexagonal structures
with inequivalent orbitals on the A and B sublattices having
different photoemission probe-energy cross-sections could be
examined. A candidate material for this purpose is hexagonal
boron nitride. The demonstration of pseudospin imbalance at the
two Dirac points by circularly polarized light in boron nitride
would be intriguing. Alternatively, artificial hexagonal lattices
with sublattice potentials have already been demonstrated with
cold atoms39. Thus the proposed pseudospin textures could in
principle also be realized in driven ultracold quantum gases40,41.

Methods
Methods summary. The simulations presented here start from a minimal tight-
binding model of spinless electrons with nearest-neighbour hopping on the
honeycomb lattice8,42. The pump-pulse drives the electrons via minimal coupling
to a gauge field AðtÞ ¼ Amaxpspump ðtÞ sinðOtÞex þ cosðOtÞey

� �

, with a Gaussian
shape function pspump ðtÞ ¼ expð� t� tp

� �2
=ð2s2pumpÞÞ for a pulse of width spump

centred around time tp, and photon frequency O. The phase shift of p/2 between
the x and y components, represented by the unit vectors ex and ey, describes
circular light polarization. For comparison we also study linearly polarized
light with vanishing y component. Throughout this work we use units where
e¼ ‘ ¼ c¼ 1. The electric field is E(t)¼ � qA(t)/qt, and we neglect the relativistic
magnetic field of the laser pulse. This means that the electronic spin degree of
freedom maintains its full degeneracy, and it is therefore not explicitly included in

our calculations. In particular, both the photoemission spectra and the pseudospin
textures are identical for both physical spin species.

The tr-ARPES is computed from the trace of the nonequilibrium lesser
Green function by a postprocessing step involving the probe-laser-pulse shape
sW(t) with time resolution W, which leads to an effective tr-ARPES energy
resolution p 1/sprobe27,28. The delay time of a pump peaked at tp and probe
peaked at tpr is given by Dt�tpr� tp.

Simulations are performed for an initial equilibrium sample temperature
T¼ 116K. We typically use 500,000� 1,500,000 time steps for the computation of
the time evolution operator, depending on the field parameters. This corresponds
to a maximal time-step size of 0.0016 fs. Green functions for tr-ARPES
measurements are sampled on a grid with 5,000� 15,000 real-time steps and a
maximal step size of 0.16 fs. The Dirac point velocity is given by vD¼ 4.2 eV aC�C,
where aC�C¼ 1.42 Å is the carbon–carbon distance8. We choose a chemical
potential m¼ 0.5 eV, which sets the Dirac point energy ED¼ � 0.5 eV relative to m.
This choice is motivated by the fact that typical graphene samples on substrates are
doped, and that states both below and above the Dirac point energy are occupied in
the initial equilibrium states and therefore nicely visible in the tr-ARPES spectra.

The simulation parameters for the pump-probe setup are as follows: The
pump laser field has frequency O¼ 1.5 eV, unless denoted otherwise, implying
oscillation periods of 2.58 fs. Its temporal width is spump¼ 165 fs. We vary the peak
vector potential Amax¼ 0.10 y 1.00 in units of aC–C� 1 . This corresponds to peak
electric field strengths Emax¼OAmax of 106 y 1,060mVÅ� 1 for O¼ 1.5 eV and
the graphene lattice parameters. The photoemission probe-pulse has a width
sprobe¼ 26 fs. This choice of parameters is motivated by the hierarchy of time
scales in the system: The oscillation period for the pump laser light, the temporal
width of the probe-pulse, which controls the time and energy resolution for the
tr-ARPES signal, and the temporal width of the pump-pulse, which controls
the nonequilibrium state and ensures a well-defined center frequency for the
pump-pulse.

Model and time evolution. Our goal is to obtain the lesser Green function matrix
Goðk; t; t0Þ in 2� 2 orbital space (see below) with matrix elements

Go

ab k; t; t0ð Þ � i a
y
k ðtÞbk t0ð Þ

D E

; ð1Þ

where ayk bkð Þ is a creation (annihilation) operator for a fermion at momentum k
in orbital a (b) A{a,b}. As shown below, the photocurrent and pseudospin contents
are computed from these lesser Green functions.

Including the field via Peierls substitution, the time-dependent Hamiltonian for
A and B sublattices with corresponding orbitals a and b reads

H tð Þ ¼
X

k

a
y
k b

y
k

� � 0 g k�AðtÞð Þ
g� k�A tð Þð Þ 0

� �

ak
bk

� �

; ð2Þ

with the Hamiltonian matrix elements

gðkÞ ¼V 2cos

ffiffiffi

3
p

kx

2

� �

cos
ky

2

� �

þ cos ky
� �

	

þ i � 2cos

ffiffiffi

3
p

kx

2

� �

sin
ky

2

� �

þ sin ky
� �

� �


;

ð3Þ

where V¼ 2.8 eV is the nearest-neighbour hopping matrix element matching the
graphene bandwidth and Dirac point velocity. In equilibrium, the Hamiltonian has
two Dirac points at momenta K and K0 given by ð� 4p=ð3

ffiffiffi

3
p

Þ; 0Þ � � 2:4184; 0ð Þ,
where momenta and the vector field A(t) are measured in multiples of the inverse
of the carbon–carbon distance aC–C8.

It is convenient to define the Hamiltonian matrix for momentum k in
orbital basis,

H k; tð Þ ¼ 0 g k�A tð Þð Þ
g� k�A tð Þð Þ 0

� �

: ð4Þ

In the absence of a driving field, this Hamiltonian is diagonalized by a rotation
RðkÞ at t¼ 0, which is a time before the pump-pulse is turned on. Note that t¼ 0 is
used here as a notation for the earliest real time we consider, not to be confused
with zero delay time Dt�tpr� tp¼ 0, which refers to the time where the Gaussian
pump-pulse envelope is maximal. For later times, the given rotation does not
diagonalize the Hamiltonian except for accidental cases where the gauge field is an
integer multiple of a reciprocal lattice vector.

The computation of double-time propagators requires the evaluation of the
time evolution operators

U k; t; t0ð Þ ¼ T exp � i

Z t

t0
H k;�tð Þd�t

� �

: ð5Þ

Since Uðk; tÞ at different times do not commute with each other, the time ordering
T in Uðk; t; t0Þ is taken into account by discretization of the real-time axis and
multiplication of the resulting time-step evolution operators. We then obtain the
time evolution operator as 2� 2 matrices in band basis,

U k; t; t0ð Þ �
Y

Nt;t0

j¼1

exp � iH k; t� jdt=2ð Þdt½ 	; ð6Þ
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where Nt,t0 is the number of fine time steps of size dt between t and t0 , and the
product is understood as time ordered with later times to the left.

The lesser Green function matrix results from

Go k; t; t0ð Þ ¼ U k; t; 0ð ÞyGo k; 0; 0ð ÞU k; t0; 0ð Þ; ð7Þ

Goðk; 0; 0Þ ¼ RðkÞ iNðkÞRðkÞy; ð8Þ
where time 0 refers to an initial time where the system is in equilibrium before the
pump-pulse is turned on, and NðkÞ is the time-independent diagonal matrix of
initial equilibrium band occupation with diagonal elements f ðE1ðkÞÞ and f ðE2ðkÞÞ
corresponding to Fermi function filling for the two energy eigenvalues.

Floquet spectra. The Floquet spectra shown in Figs 2 and 3 are calculated from
the Floquet Hamiltonian corresponding to equation (3):

HF ¼ �
X

ma

mO m; aj i m; ah j þ
X

mn

gm� n kð Þ m;Aj i n;Bh jþ h:c:½ 	 ð9Þ

where gm� n(k) are the Fourier series expansion coefficients of g(k�A(t)):

gm� nðkÞ ¼
O

2p

Z 2p
O

0
dt eiðm� nÞOtg k�AðtÞð Þ ð10Þ

¼ ei ky þ
7p
2 ðm� nÞ½ 	 þ ei

ffiffi

3
p
2 kx � 1

2ky þ p
6ðm� nÞ½ 	 þ e� i

ffiffi

3
p
2 kx þ 1

2ky � 5p
6 ðm� nÞ½ 	h i

Jm� nðAÞ ð11Þ
Here Jn(A) is the Bessel function of the first kind. As the pump frequencies

considered in this work are small with respect to the electronic bandwidth, the
corresponding spectrum must be evaluated numerically via truncation of the full
Floquet Hamiltonian. In practice, we achieve convergence for |m|r40.

Time-resolved ARPES formalism. The computation of the time-resolved pho-
tocurrent involves normalized Gaussian probe-pulse shape functions ssprobe(t) of
width sprobe centred around time t. In the Hamiltonian gauge, the photocurrent
(tr-ARPES intensity) at momentum k, binding energy o and pump-probe delay
time Dt�tpr� tp is then obtained from27

I k;o;Dtð Þ ¼ Im
X

a

Z

dt1

Z

dt2ssprobe tpr � t1
� �

ssprobe tpr � t2
� �

eioðt1 � t2ÞGo

aa k; t1; t2ð Þ:

ð12Þ
In the main text (Fig. 2) we show tr-ARPES spectra at peak field strength with false
colour plots of the tr-ARPES intensity I(k,o,Dt¼ 0), that is, intensity variations as
a function of binding energy o along selected momentum cuts k. The location of
energy bands E(k) can be obtained from the maxima in the ARPES intensity as a
function of binding energy at constant momentum, the so-called energy
distribution curves. As seen in Fig. 2 of the main text, these bands are in excellent
agreement with quasi-static Floquet bands, whose calculation is described below.

The photocurrent as defined in equation (12) is computed from the lesser Green
function in a fixed gauge. We would like to point out that this quantity is not
gauge-invariant. In fact, the general definition of a gauge-invariant photocurrent
that fulfills the positivity criterion I(k,o,Dt)Z0 for all k,o,Dt in the presence of a
field is an outstanding research problem43. The problem likely lies in the neglect of
photoemission matrix elements, which can be momentum and field dependent.
The photocurrent according to equation (12) manifestly fulfills the positivity
criterion. In addition, it also matches the Floquet band structure, as shown in the
present work. The Floquet band structure is not gauge-invariant either.
Importantly, general conclusions drawn from the analysis of Floquet sidebands,
level crossings and gap closings are valid even in a fixed-gauge calculation. This is
due to the fact that the time-resolved, momentum-integrated photoemission
spectrum (tr-PES) is always manifestly gauge-invariant and positive. The tr-PES
signal is obtained by integrating the tr-ARPES spectrum in any gauge over all
momenta. Hence, conclusions about the presence or absence of energy gaps can be
drawn even in a gauge-variant formalism.
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