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The effect of fluctuations on the Peierls transition in quasi-one-dimensional systems is 

investigated within a renormalizecl random phase approximation in the half-filled tight-binding 

model. The fluctuations are divided into two parts; thermal fluctuations and zero point 

fluctuations. It is shown that the effect of the thermal fluctuations is always dominant even 

if the transition temperature is extremely low. 

§I. Introduction 

The effect of fluctuations on the Peierls transition m strictly one-dimensional 

systems has been investigated by many authors above and below the Peierls 

transition temperature TP. n." 

Suzumura and Kurihara3J and the present authors4J have recently studied this 

problem in a renormalized random phase approximation (RRPA). We have con

cluded that the Peierls transition does not occur in one-dimensional systems, because 

zero point fluctuations break clown the Peierls transition. 1J 

On the other hand the effect of fluctuations in quasi-one-dimensional systems 

also has been investigatecl. 5 J~sJ In the present paper we study this problem above 

TP in RRP A. We divide fluctuations into thermal and zero-point fluctuations and 

investigate which fluctuation becomes dominant when the magnitude d of electron 

hopping integral between linear chains changes. 

Our theory includes electron-electron, ion-ion and electron-ion interactions in 

a half-filled tight-binding model. On the assumptions that the coupling strength 

of the electron-ion interaction is constant and phonon dispersions come only from 

renormalized phonon polarization parts, we can show that thermal fluctuations are 

dominant even if the transition temperature is extremely low. With respect to the 

case that the above assumptions do not hold, that is, the Coulomb interaction 

contributes dominantly to phonon dispersions, we shall investigate in the next 

paper. 

When d tends to zero, TP becomes zero, but as far as d is finite, there 

n Part of this work was clone during the authors' stay at the Research Institute for Fundamental 

Physics, Kyoto University. 
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Theory of Fluctuations in Quasi-One-Dimensional System 29 

exists a finite transition temperature. 

In § 2 we introduce electron and phonon Green's functions in RRPA including 

Umklapp processes. The dynamical dielectric function is obtained. In § 3 the 

electron Green's function is obtained and the single particle properties are discussed. 

Then we calculate a bubble diagram consisting of one-electron and one-hole Green's 

functions and examine the behavior of the bubble diagram with small wavenumber 

and small frequency. In § 4 by the use of the above results we obtain the phonon 

spectrum near the Peierls temperature. In § 5 we investigate the self-consistent 

equation of fluctuations and study which fluctuation, the zero-point fluctuation or the 

thermal fluctuation, becomes dominant as the parameter d increases from zero. 

Then we obtain the Peierls transition temperature and the magnitude of the 

fluctuation as functions of d. Finally we give some discussion in § 6. 

§ 2. Ha:rniltonian and Green's functions 

We start with the Hamiltonian 

(1) 

where c"kd and b;. are creation operators for the electron with wavenumber k and 

spin !J, and the A-polarized phonon with wavenumber q, respectively, V(q) is the 

Fourier component of the electron-electron interaction, and wq"' aq" (q + K) and 

rPql are given by 

aq.(q+K)=J~(q+K)·cqlUb(q+K), (3) 

c/Jq.= / 1 (bq.+bt__q.)· (4) 
v 2wq" 

In the above equations, N is the number of ions, M the mass of an ion, eq" the 

polarization vector of phonon. UI and ub are the Fourier components of ion-ion 

and electron-ion interactions, respectively. The electron momenta k' s are consid

ered in the extended zone scheme, but the phonon momenta q's are restricted 

within the first Brillouin zone. The K's are reciprocal lattice vectors. Henceforth 

the spin indices are abbreviated for simplicity. 

Green's functions are defined by 

(5) 
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30 T. Kitamura and E. Sa!wi 

(6) 

where < ) denotes the thermal average, (J)n = (2n + 1) nT and Cm = 2rnnT. The 

Green's functions G(k, i(J) 71 ) and D1 (q, i(m) satisfy in general the Dyson equations: 

c- 1 (k, iuJ") =G'01 - 1 (k, i(J)n) -~(k, iuJn), 

D,- 1 (q, iCm) =D,' 01 - 1 (q, iCm) -II,(q, iCm), 

(7) 

(8) 

where G'01 (k, illl 11 ) is the free electron Green's function, D/01 (q, i("J the free pho

non Green's function, and they are given by 

1 
GCO) (k, iuJn) = . 

lU)n- [:;k 

D co) ( ir ) - - 1 
l q, 'om - r 2 " 

'-om + (J)ql 

(9) 

(10) 

The quantities ~(k, i(J) 71) and II1 (q, i(m) are the electron self-energy and the phonon 

self-energy, respectively. 

We shall calculate the self-energy parts in a renormalized ranclom phase ap

proximation (RRPA), which is given by replacing the free electron Green's func

tions in the bubble cliagram in the random phase approximation with the renor

malized Green's functions. 91 In RRPA ~(k, i(J)71 ) and II,(q, i(m) are expressed 

as follows: 

~(k, i(J)n) = -T~V(q+K)G(k-q-K, i(J)"-i(m)T(q+K, i(",) 
q.I( 

m 

II1 (q, i(m) = 2T~ r' (q + K, iC,) a~, (q + K) G(k, iuJ") G(k -q- K, ioJ" -i(,,). 
. k.K 

k-q-K, iC..ki[,m 

(a) 

n 

k-q-K, iw,-i[,m 

(b) 

Fig. 1. Electron self-energy parts. (a) CoulomlJ 

part. (b) electron-phonon part. 

(12) 

Fig. Z. Phonon self-energy. 

The vertices T(q+K, i(m) and r'(q+K, i(m) are expressed in RRPA as follows: 

F(q+K, Km) =1+r(q+K, iC,) V(q+K) 

+ ~ /1 (q + K, iC,) D1 (q, i(m) a~, (q + K), (13) 
). 
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Theory of Fluctuations in Quasi-One-Dimensional System 

(14) 

where 

r(q + K, i(m) = 2T ~ T (q + K, i(m) G(k, iwn)G(k-q- K, iwn -i(m), (15) 
k,n 

r'(q+K, i("J =2T~ T'(q+K, i(m)G(k, iwn)G(k-q-K, iwn-i(m). (16) 
/r,, n 

(a) A 
k-q-K k, iwn 
iwn- i[,m 

Fig. 3. Verticee;. (a) electron-electron vertex r. (b) electron-phonon vertex r'. 

Now we introduce the dynamical dielectric function as follows: 

(17) 

where 

P(q + K, i(m) = 2T ~ G(k, iwn)G(k-q- K, iwn- i(m). (18) 
k,n 

Using E(q+K, i(m), r(q+K, i(m) and r'(q+K, i(m) can be rewritten as 

r (q + K, i(m) = [1 + ~ r' (q + K, i(m) a~, (q + K) D, (q, i(m)] 
l 

X V-(q~ 1() [ E(q-+k,-i(~:) - 1], 

r' (q + K, i(m) = \1 (q ~ K)[E(q + ~' i(:) -1 J 
and the expressions for .S(k, iwn) and II,(q, i(m) become 

1: (k, iwn) = -T ~ V(q +~)- G (k-q-K, iwn -i(m) 
q;f( E (q + K, z(m) 

(19) 

(20) 

-T~-~~,E~,_(q+K)D,(CJ_,_it;,m)_G(k-q-1( iw -i() (21) 
q,I( E2 (q + 1(, i(m) ' n m ' 

m 

31 
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32 T. Kitamura and E. Sakai 

II,(q,i(m)=:Ea~,(q+K)[ 1 -1]. 
K V(q+K) f(q+K,i(m) 

(22) 

§ 3. Electron Green's function and calculation of bubble diagrams 

For simplicity, we consider a half-filled conduction band with the tight-binding 

spectrum involving the coupling between one-dimensional chains. Then 

(23) 

where cF is Fermi energy, d is the strength parameter of 

integral between chains, a and b are lattice spacing constants. 

njb, 2kF), then we have the relation 

the electron hopping 

If we take Q= (njb, 

(24) 

Near the Peierls transition temperature TP, the phonon frequency at q = Q 

IS expected to become very small, so that the second term on the right-hand side 

of Eq. (21) becomes dominant and the first term may be neglected. In the 

summation of the second term, the factors other than D, change very little near 

q~Q and t:.m~O, and we can make the following approximation: 

I(k, iwn) ~11 2 G(k-Q, iwn), 

,;1 2 = - T :E ~Q' (Q) [D, (Q + q, it;,m) + D, (Q- q, it;,m)]. 
qAm f (Q, 0) 

(25) 

(26) 

Here we neglect the Umklapp process. The quantity J may be thought to express 

the magnitude of the fluctuation. 

Using Eqs. (25) and (7), one obtains 

G (k, iwn) = _(t)~j-_e~:=-_j_(wn 2 + 8k
2
) (wn2 + 8k

2 + 411 2
) 

2112 (iwn- sk) 

from which the spectral density is obtained as 

p (k, w) = - 2_ Im G (k, w + iO+) 
7r 

(27) 

1
_1_j(W+e;.)(sk2 -+4JC(;?) for sk2<w2<sk2+4112, 

= 2-rr 11 2 ())- 8 k (28) 

0 · otherwise . 

The behavior of the spectral density (see Fig. 4) indicates that the electron 

Green's function above the transition temperature has some resemblance to the 

character in the ordered phase because of the effect of the fluctuations. 

The electronic density of states p (w) is calculated as 

p(w) =:E p(k, w) 
k 
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Theory of Fluctuations zn Quasi-One-Dimensional Systems 33 

p(k,w) 

Fig. 4. Spectral density p (k, w) (schematic). 

.i_N (0) ~E (_(I)_) 
rr 2L! 2L! 

(0.97, 1.28) 

I ------------

I 
I 
I -------T--------

p(cv) 

N(O) 

0 

1 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Fig. 5. Electronic density of states p (w). 

N(O) is the density of states of the free 

electron on the Fermi surface. There 

exists a maximum at wj2J=0.97. The 

derivative diverges logarithmically at 

w/2J=l. 10> 

for lwi<2LJ, 

(29) 

for luJI>2LJ, 

·where N(O) is the density of states on the Fermi surface for the free electron 

system and K (k) and E (k) are the complete elliptic integrals of the first kind 

and the second kind, respectively. From Eq. (29), p(w) can be expressed approxi

mately as 

l
N(O)~ 

L1 
p (!i!) = 

lN(O) (1 + _£__ \) 
2uJ 2 

for I w I <( L1 , 

(30) 

for lculyLJ, 

which sho\vs that if L!---->0 then p (w) approaches N(O). Therefore it follows that 

deppressed near the Fermi surface on account of the fluctuations, the density of 

states has a pseudo-gap and vanishes on the Fermi surface. Note that the density 

of states depends implicitly on T and d through L!. 

The same results as those expressed by Eqs. (29) and (30) have been given 

first by Takada10l for the superconductive transition. 

Lee, Rice and Anderson2l also have shown phenomenologically that the density 

of states has the pseudo-gap at temperatures below half the transition temperature, 

assuming the phonon Green's function to be a Lorentzian structure factor. On the 

other hand Rice and Strassler5l have derived similar results, taking explicitly 
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34 T. Kitamura and E. Sakai 

account of the interchain coupling through the soft-phonon frequency. Here we have 

succeeded in deriving the pseudo-gap microscopically. In their vvorks, however, 

the density of states remains finite on the Fermi surface and is proportional to 

~-\ >vhere ~ is the coherent length, while in our treatment the density of states 

always vanishes on the Fermi surface: This results from the approximation in 

Eq. (25) that electron with wavenumber k couples only with electron with wave

number k- Q. Comparing our results with theirs, we find that our treatment is 

appropriate for vF~- 1 4;:_T, which is satisfied in a certain region near the transition 

temperature. 

We turn to the calculation of the bubble diagram. In order to calculate 

P(Q+q, 0) given by Eq. (18) we put 

ck-q =ck +2?7, 

2??=- cF [cos (k,- q.) a- cos k,a J 

- dcF [cos (kx- qx) b- COS kxb +COS (ky- qy) b- COS kyb] 

~ -cFsin q,a-dcF[cos(kx-qx)b-cos k."b 

+cos (ky- qy) b -cos kyb]. 

(31) 

(32) 

In the following calculation, the dominant contribution of the k summation comes 

from the region near the Fermi surface, so that we can neglect k, dependence of ?J. 

Inserting the expression (27) for G, and using Eq. (31) the following expression 

for P is obtained: 

P(Q+q, 0) =2TL;-- -(J)n2-=akbk .·c~~. --

k,n 4L/2.J ((J)n2+ak2) ((J)n2+bk2) 

X ( .JCD,.2+A;;- ..jO)n2 +a~ 2) ( ..j (J)n z-tB~2- ..j (})/+ b ;.2)' (33) 

where ak=ck-?J, Ak=.Jak2+4LI2, bk=ck+?J, Bk=.Jb-;!+4LI 2• Because it 1s 

difficult to perform the summation in Eq. (33) in general, we investigate two limiting 

cases only, i.e., T4;:_LI and T)>LI. Since P(Q+q, 0) is an even function of ?J, 

m what follows we assume ?J>O for simplicity. 

i) Tlze case T4;:_LI 

Because we are interested in the behavior of P(Q+q, 0) for small q, ?7 can 

be assumed to be much smaller than Ll. Replacing the frequency summation in 

Eq. (33) by the contour integration, we obtain 
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Theory of Fluctuations in Quasi-One-Dimensional Systems 35 

- fB\:Zztanh~(z 2 -akbk) /Bk 2 -:i:~]. 
Jbk 2T ~ z 2 -bk2 

(34) 

Under the condition IIJI~LI, Eq. (34) becomes 

P(Q+q o)~-1-I::[ fbkdztanh~- 4L12(z2-akbk) -
' 2nL1 4 k Jlakl 2T V (z2 -ak2) (bk 2 -z2) 

- f Bkdz tanh ~(z 2 -akbk) j Bk 2 -~J. 
Jbk 2T z 2-bk2 

(35) 

Since tanh(z/2T)=1-2/(z), where/(z) is the Fermi distribution function, we 

divide P ( Q + q, 0) into two parts, each being obtained by replacing the factor 

tanh (z/2T) in the integrand of Eq. (35) by 1 and - 2/(x), respectively, and 

denotes each function as P0 (Q+q, 0) and Pr(Q+q, 0). 

Performing the integration with respect to z in P0 ( Q + q, 0) and expanding 

m power series of IJ/ L1 up to second order, we obtain 

Since the dominant contribution of the k summation in Eq. (36) comes from 

the region near the Fermi surface, ek can be replaced by eFa(lkzl-kF) -eFdu, 
where u =cos kxb +cos kyb. Performing the kz summation, we obtain 

Po(Q+q,o)~ I:; - 1 -[(!L) 2 ln~-ln~+ 8 F 2 1J 2 J 
kx, ky 7C8Fa L/ 1J L/ 4L/ 4 

(37) 

for J 2>1JcF. Here we have neglected the higher order terms such as IJ/eF and 

dujeF. 

P0 is a even function of 1J and d is very small, so that we can replace IJ 
by 'ij, which is defined as 

(32a) 
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36 T. Kitamura and E. Sakai 

From now on vve express '7j as r; simply. 

Summing with respect to kx and l?y, the expression for P 0 (Q+q, O) is obtained: 

Po (Q + q, 0) = N(O) [(!L) 2 
ln _£1_ -ln 8 F + c/r;'], 

.d r; .d 4.14 
(38) 

where N(O) = (rrr;;Fab') - 1• 

Next let us consider Pr(Q+q, 0). Because Ak, B,,>.d}>T, and f(z) is a 

rapidly decreasing function, the expression for Pr(Q+q, 0) can be written as 

Integrating first vvith respect to k and next with respect to z, we obtain 

Pr(Q+q, 0) = -N(O) [(!L) 2
ln ~- (\!1__)'- 3((3) (y)· 3], (40) 

.d 2r; + T L1 2 L1 

where ( (3) is the (-function. We have neglected the higher order terms such 

as du/cF. 

Considering that P ( Q + q, i(m) is in yariant with respect to the interchange 

between 2r; and (m, from Eqs. (38) and ( 40) we obtain 

P (q, i(m) -P(Q + q, i(m) - P(Q, 0) 

=]_N(O) [(2r;)2ln __ .d_ + ((m)'ln .d -+ CF2 (4'1)' -i- (m')] (41) 
4 .d J2r;J+T J J(mJ+T 4J 2 .d 2 J 2 

' 

P(Q 0)=-2N(O)[ln CF_ 3(_@2_(Tf]. (42) 
, .d 2 ,dl 

ii) The case .d~T 

In this case we immediately obtain 

(43) 

which giyes 

P (q, i(m) = N (0) [r/J (' ]_ + t;~ -1- 2iy/) + ~J (]._ + (_~=- 2i'f)) - 2rjJ (]_J J 
2 4rrT 2 4rrT 2 

(44) 

where c/J ( x) is the di-gamma function. For later convenience, vve gi ,-e the expres

sion for P(Q, 0) up to order (.d/T)': 
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Theory of Fluctuations in Quasi-One-Dimensional Systems 37 

P(Q, 0) = -2N(O) [rn 2:;F- 7 ~~:) (~)l (45) 

where r is Euler constant. 

§ 4. Phonon Green's function 

In this section we derive the expression for the phonon Green's function 

by using the expressions for P derived in the previous section. We consider only 

the longitudinal mode. 

Let us introduce the quantity t22(Q+q, Km) as 

n- 1 (Q+q, it:;m) = -(m2-t2"(Q+q, it:;m). 

Then t2(Q+q, i(m) is expressed from Eq. (8) as 

tJ"(Q+q, i(m) =(J)Q+q+JI(Q+q, Km), 

(46) 

(47) 

where w'Q+q and II ( Q + q, Km) are given in Eqs. (2) and (22), respectively, as 

the summations over all reciprocal lattice vectors. Since the summands decrease 

rapidly as q + K increases, we retain only first two terms in the summation and 

neglect the other terms. Then t22 ( Q + q, Km) is written as 

.f22 (Q + q, i(m) 

l]+a2 (Q-q)[ 1 -1] (48) 
V(Q-q) f(Q-q, i(m) ' 

w'Q+q=_Z{[(Q+q) ·eQ+qJ"Ur(Q+q) + [CQ-q) ·eQ+qJ"Ur(Q-q)}, (49) 

where Sq =q/ lql and a (q) = -J Nj Mq · SqU1 (q). Expanding t22(Q+q, if:;m) in power 

senes of q and retaining terms up to second order, we obtain 

t22 (Q + q, i(m) = t22 (Q, 0) + ~ {q" ( U r- p~b 2 ) 

+2(q·Q)" (ur+2V2Ub2ps) +_!_Q2(q·1Q)"(Ur+ PUb2) 
Q2 f 3 2 f 

[ PU 2
( PV)] Q2U 2 

} +2(q·Q) (q·,Q) U1+-f-b 1--f- +7P(q, i(m) , (50) 

tJ2 CQ, o) =2:; Q2(u~ + P~b"), (51) 

where we have omitted the arguments of U1(Q), Ub(Q), V(Q), P(Q, 0) and 

f(Q, O). The operator r Q operates U1 and Ub. 

The condition for the occurrence of the phonon softening at q = Q, t22 (Q, 0) 

=0, depends on the behavior of U1(Q), Ub(Q), V(Q) and P(Q, 0). If the ion-ion 

and the electron-ion interaction are taken as Coulombic, i.e., z-2U1(Q) =z- 1Ub(Q) 
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38 T. Kitamura and E. Sa!wi 

= V(Q) =4~:~.'/Q', \vhere ze is the charge of the ion, Q'(Q, O) 1s written as 

2.Nz'Q'V(Q) / i1ic and no phonon softening occurs. This situation holds in the 

jellium model. 81 

In the expression (50) for Q' ( Q + q, i(m) the anisotropy of the conduction 

band appears through c(Q, 0), P(Q, 0) and P(q, i(m), among which the term in

volving the factor P(q, i(m) is of the lowest order. Since vve are interested in 

the effect of the anisotropy of the conduction band on the Peierls transition, we 

retain only the first and last terms in Eq. (50). \Ve shall investigate the effect 

of the Coulomb interaction in the next paper. 

Thus Q' ( Q + q, i(m) is written down as 

Q' (Q+ q, i(m) ~U)o 2 t + 1:._U)o2{(27J) 2
ln j 

4 \ J 12·1I+T 

+ (r;,; r ln lCm~+ T + ! ( ~r[ (2;r + \r;,; )']} for T < J, (52) 

for T )}> j , (53) 

(54) 

(55) 

§ 5. Self-consistent equations 

In Eq. (24) we divide T"L,mD(q, i( 11J into two parts: TD(q, 0) and T"L,m+o 

D ( q, i(m). The first part T D ( q, 0) corresponds to the thermal fluctuation and 

the second one T "L,m""oD ( q, i( 11,) to the zero point fluctuation. vV e can replace 

T"L,m70 D(q, i·(m) by f d(mD(q, i( 11,) /27: for very low temperatures discussed now. 

Then the equation for J' can be expressed as 

1<1 - J'' 1 J + T d:; pdp ----;,- -- , 
0 0 g- (Q + q, 0) 

(56) 

where IC1 and IC2 are cutoff parameters, ~ = sFaq, and p2 = (1/2) 2·/b'q J. 2 • These quan

tities ,dz and Jr correspond to the zero point fluctuation and the thermal one, 

respectively. \V e put 

Q'(Q+q, i(m) =U)o'[t+u(~'+d'p') + (57) 
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·where 15 and 15' are functions of ·:';n, ~ and p. However because of the condition 

/C1
2 ')>d'K2

2, the dominant contribution to J2 comes from small Cm and ~ regions. 

In this case we can take 15 and 15' as constants and we have 

'~ 1 l j 15=15 ~-- n-
8J 2 T 

for T~J exp[- (~)l 
0 

J exp[- (~)] ~T~J, l5=l5'~ cF- for (58) 
16J' 

15= -15' ~ 7( (3) 

8rr2T 2 

for J~T. 

Of course we must note that for J<S(T Eq. (53) has been obtained by expanding 

the first line in Eq. (44) in power series of Cm/T and r;/T. For Cm=PO, since 

Cm/T is larger than unity, this expansion cannot be used. In this case, .Q2 (Q-I-q, 

iCm) depends logarithmically on Cn· Therefore in the first term of Eq. (56), 

Cn, dependence of .Q'(Q-1-q, iCm) can be neglected compared ·with Cm2 for the case 

J<S(T. 

Under the condition K1
2)/d2K2 

2 -1- t /15 we obtain 

Lirz~ _ -.. _]'_[dzK/ + rr(j. t -+ dzK,z-jt)]· 
2rrsF215d2 K1 · 15 15 

(60) 

From the discussion above the factor Vl + oJ0
2cT' m Eq. (59) can be replaced by 

~w/if for T<S(J and by 1 for T')>J. 

Using Eqs. (56), (58), (59) and (60), J is self-consistently determined as 

a function of T. 

Below we determine the Peierls transition temperature TP, at which the com

plete phonon softening, .Q(Q, 0) =0, occurs, as a function of the interchain coupling 

parameter d from Eqs. (54) and (56). 

i) Tp<S(Jp 

In this case, putting t = 0, Liz' and L1r2 are expressed as 

(61) 

(62) 

Here we introduce dimensionless parameters as follows: 

(63) 

\vhere JP 1s the fluctuation at T = TP" 
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40 T. Kitamura and E. Sakai 

a) TP<(flPexp[-(cF/flP)'] 

In this case we can take IJ:;;;:, (8f1P') -J ln flP/TP from Eq. (58). 

(54), (42), (56), (61) and (62), we obtain 

l Z 2a l CF 
n -=- n x+4a-xy, 

y rr K1 

ln_;;:;_+a(Y) 3 :::::::0, 
Zo z 

where 

1 (J) 2 1 
ln -=--Q--=- . 

Zo 2fWo2 A 

A 1s the dimensionless electron-phonon coupling constant. 

The region of x corresponding to this case is given by 

-'"-
1

- exp( ~) <x. 
4acFZo Zo 

Using Eqs. 

(64) 

(65) 

(66) 

(67) 

In this region the thermal fluctuation is dominant and TP and ,:JP are determined 

as*l 

(68) 

(69) 

As d tends to zero, then x becomes infinity and TP becomes zero as expected, 

but ,:JP is almost independent of d. 

b) ,:JP exp[- (cF/flp)']<(TP<(,:JP 

In this case we can put o~c//16f1P 4 from Eq. (58). Using Eqs. (54), (56), 

(61) and (62), we obtain 

2_:::::::4n;alnx+8a 2Fxy, (70) 
z' Kl 

ln _;;:;__+a (X) 3
::::::::0 . (71) 

Zo z 

The regwn of x corresponding to this case is given by 

(72) 

In this region the thermal fluctuation is dominant. TP and ,:JP are obtained as 

(73) 

*l At first we have solved Eqs. (64) and (65), assuming the zero point fiuctuation to be 

dominant by mistake. This mistake has been pointed out by Dr. Suzumura. 
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(74) 

ii) .:Jp~Tp 

In this case the zero point fluctuation and the thermal one are giVen by 

(75) 

(76) 

where !5=7((3)/Srr'TP' from Eq. (58). In this case the thermal fluctuation is 

dominant. From Eqs. ( 45), (54) and (76) we obtain 

(77) 

1 rry ( z )' ~ n --+Cia- -0, 
2rzo y 

(78) 

where !J0 =7((3)/47r2 • Solving these equations vve obtain 

(79) 

(80) 

The regwn of x 1s as follows: 

(81) 

To understand the features of the results obtained above, we put K1 =cF, 

K2 = 1/2 EF. Then the above results can be summarized as Table I, from which 

we can find the following properties: 

Firstly thermal fluctuations are dominant in quasi-one-dimensional systems even 

if TP is extremely low and therefore in real crystals the zero point fluctuations 

play no role in the Peierls transition. Secondly when d tends to zero, TP becomes 

zero, but as far as d is finite, there exists a finite transition temperature. Mean-

1 
0.5dln d 

Table I. Summary of results. 

0.25 exp ( T) · d 

exp( -+) 

1.13 exp( -+-0.54 e- 11'd- 1) 

: 185 exp(-l__)d- 112 

. . 2-l 
I 
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42 T. Kitamura and E. Sakai 

while it should be noted that in exactly one-dimensional systems the zero point 

fluctuations break down the Peierls transition in which case one cannot put t = 0 

in Eqs. (59) and (60) _<J 

§ 6. Concluding remarks 

We have investigated the effect of fluctuations on the Peierls transition m 

quasi-one-dimensional systems in the renormalized random phase approximation 

which is given by replacing the free electron Green's function in bubble diagrams 

in the random phase approximation with the renormalized Green's function. It 

has shown that the electronic density of states has a pseudo-gap near the Fermi 

surface due to fluctuations and that the thermal fluctuations play a dominant role 

even if TP is extremely low. 

So far we have investigated the effect of fluctuations at T=TP, where Q(Q, 0) 

= 0. Near the transition point it is expected that while thermal fluctuations are 

dominant at temperatures where TP'};>Q ( Q, O), zero point fluctuations are dominant 

at temperatures where TP4;;_S2(Q, 0). In strictly one-dimensional systems SJ(Q, 0) 

tends to zero as T approaches zero. As vire examined before (cf. Ref. 4)), when 

T decreases the ratio T/S2(Q, 0) decreases and consequently zero point fluctuations 

break down the Peierls transition. 

In § 4 we have assumed that the main contribution to the phonon dispersion 

comes from the bubble diagram so that the density of states available to the 

nesting of wavenumber Q= (njb, njb, 2kF) becomes maximum and d plays an im

portant role. In the case where the terms except for the last term in Eq. (50) 

are dominant, d is unimportant. Thus instead of d, a new parameter denoting 

the one-dimensionality of the system should be introduced, which is determined 

by the other terms except for the last term and is of order Qx/Q,"'-'a/b. Even 

in this case, however, our result is valid by looking upon d as the new parameter. 

We shall discuss this in detail in the next paper. 
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