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A detailed interpretation of the kineties of homogeneous nucleation and growth of
erystals of a linear homopolymer from dilute solution is given. The probability of forming
both nuelei with folded che ving, and conventional bundlelike nuelei, from dilute wlutrou is
analyzed. 1t is predieted that at sufficiently high dilution, eritieal nueclei of length L¥ will
be formed from single polymer molecules by she up fnhlmp; of the chain backbone. The
step height of the nueleus is given .meu‘muutel» by Lf=4g/Al. Here g, is the free energy
required to form a unit area of the loop-containing e end surfaces, and AF is the free energy
difference per unit, volume of eryvstal between the crystalline and solution states. The
quantity Af is approximately proportional to the degree of supercooling AT. The growth
of these nuclei is then analyzed. After growth, the resulting crystal is flat and platelike,
the l()np\ formed by the chain folds being on the upper Lmd lower surfaces.  Kinetie factors
determine that the distance between the flat surfaces in the grown crystal will vary over
only & narrow range about a value that is in the vicinity of ¥*=4a,/Af.” (Neglecting effects
due to edge free energies, the theoretical upper and lower limits arel* =4¢g./Af and 1¥* =24,/ Af,
respectively.) In some cases the predicted temperature dependence of the step height of
the grown erystal, I*=const./AT, may be modified by the existence of a constant term result-
ing from the presence of an edge free energy €,. A grown loop-type erystal is predicted to be
stable in comparison with a bundlelike ervstal of the same shape and volume in a sufficiently
dilute solution. The logarithm of the nucleation rate is approximately proportional to

1/(AT)* near the melting point. Theexponent n in the free growth rate law is predicte «d under
various assumptions. To the extent that comparison is possible, the predietions given agree
with the experimental results obtained by Keller and (Y Connor and others on single erystals

of unbranched polyvethylene grown from dilute solution.
A survey iz given of homogeneous nueleation in bulk polymers, where the conventional

bundlelike
essential results compared with those

nucleus containing segments from many different molecules is valid, and the
alenlated for the dilute solution ease.

The theory given for loop nuelei is both general and precise enough at the eritieal points
to suggest that, on erystallization from sufficiently dilute solution, erystals of a definite step
height are commonly to be expected for other erystallizable linear polymers than polyethyl-
ene, provided loop formation is sterieally possible,

1. Introduction

Recently, a number of investigators [1, 2, 3, 4],
have prepared single ecrystals of high molecular
weight linear polyethylene by precipitation from
dilute solution through Sll]l('l't'ul_ihl'lg. As observed
with an electron microscope, these erystals are shaped
like fat parallelepipeds, and the X-ray studies of
Keller [1, 2| show that the polymer chains are oriented
perpendicular to the flat surfaces. The separation
of the flat surfaces is nominally about 120A, and is
sufficiently well defined to produce fourth-order re-
flections with low angle X-rays. The separation of
the flat surfaces, which for convenience will be called
the “step height,” actually depends on the erystal-
lization temperature, the step height being distinetly
smaller at low crystallization temperatures than it
is at high ones. Since the mean length of the poly-
ethylene molecules is far in excess of 120A, Keller has
proposed that the polymer molecules must be sharply
folded in the erystals; the loops resulting from these
folds form the two flat surfaces of the platelike
crystals.

! Figures in brackets indicate the literature references at the end of this paper.
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There appears to be no simple alternative to the
initially somewhat startling proposal that the single
erystals observed involve chain folding, and we be-
lieve that Keller's hypothesis may be accepted.
Keller has indicated that the idea of chain folding
in polymers is not entirely new, and refers to an
earlier suggestion due to Storks [5].

The objective of this paper is to present a theoreti-
cal account of how polymer crystals with chain
folds are formed in dilute solution, and why they
have the properties they do. It will emerge that
crystals with chain folds arise in dilute solution
bee ause a primary (homogeneous) nucleus of this
type is on kinetie grounds the most likely to appear.
Onece such a nueleus is formed, it can be shown that
the subsequent two- dimensional growth will closely
l0|]m\ the pultvm (“-n?tlhll'«}'l(‘(l h\ llw pr imary 11110]0115

fmuul in the ]\muln s (:f nuce le ulmu .lml orow l}l.

The situation ig quite different for homogeneous
nucleation in a highly erystallizable bulk [mlvme--
First, the ]u-im:n'y (homogeneous) nucleus in bulk
polymers is thought to be formed by an alinement
of segments of different polymer chains to form a



bundlelike nucleus without folds [6, 7], and second,
the mean crystallite size in a semicrystalline bulk

olymer that has not reached its equilibrium crystal-
Ete size distribution (a very difficultly achievable
state by any account) is determined largely by the
nature of impingements and chain entanglements,
and possibly certain strain effects, together with the
kineties of nucleation and growth [6].  (The particu-
lar type of strain meant here is that which becomes
increasingly great with radial growth.) Eventually,
of course, the metastable distribution of erystallite
sizes resulting from impingements will change as the
impingements relax, and other mechanisms take
place, and the equilibrium distribution with large
erystallites will be slowly approached, but this does
not alter the fact that impingements, entanglements,
and possibly strain play an important, if not domi-
nant, role in determining the crystallite size in bulk
polymers as they are ordinarily found in the semi-
crystalline state. ITmpingements and entanglements,
play no important role in impeding the erystallization
in dilute solution.

In order to provide a clear development of the
theory of crystallization of chain molecules from
dilute solution, it is necessary first to bring out some
general points connected with homogeneous nuclea-
tion theory. Af the same time, it 1s advantageous
to mention certain general features of homogeneously
induced erystallization in bulk polymers.

2. Homogeneous Nucleation and Crystal
Growth in Bulk Polymers

2.1. Homogeneous Nucleation in Bulk Polymers

According to Turnbull and Fisher [8], the equilib-
rium rate of homogeneous or primary nucleation in
a supercooled bulk phase may be written as

NEkT —ar*pr, —A¢;“,ekr

I="5 (1)

where N is Avogadro’s number, I Boltzmann's con-
stant, & Planck’s constant, 7" the absolute tempera-
ture, AF the free energy of activation of the super-
cooled-liquid—nucleus interface, and Ag¢f the free
energy of formation of a plirmu\' (homogeneous)
nucleus of eritical size. In eq (1), I is in nuclei
mole~!-sec™!. The quantity JJ= (A fﬂ:,)o\])[ AR ET],
which is the jump rate in events per second at the
interface, may be written as (k77h)exp[AS}/k—
AH*/IT], where AS* is the entropy of activation,
and AHY the e11thn1p\' of activation. For a poly-
mer, it may be assumed that the smallest unit that

may ﬂ;'.f“ll:'h to tl'l(" (’]lll)l\(] or T!lll‘]l"i]‘h 1 an I‘I(‘Hli"l'lt-
ary process is a small segment of molecular weight
M and length 7,, Hence we may write eq (1) in

the form i s
J=Te 2 3" e 2% (2)

where I, is (NkT/hMV,)exp(AS%/k) , which has the
units nuclei-cm~%sec™'. The qu‘mt-li}' V; is the spe-
cific volume of the supercooled liquid at the temper-

ature of crystallization. The main item of interest
here is the form of A¢} for bulk polymers. The
Turnbull-Fisher equation is derived on the assump-
tion that many elementary steps are required to
reach Agf.

In a bulk polymer, it is commonly assumed that
the nucleus 1s bundlelike, and is formed through
the alinement of segment-s of different polymer
chains [6, 7]. This hypothesis certainly seems plaus-
ible for a bulk polymer, and can be used to give a
detailed interpretation of the rate of 11110ct10n of
primary nuclei in a bulk polymer.

Two general types of bundlelike primary nuclei
must be considered. The first of these is one where
there is no minimum restriction on the length, or
the number of segments contained in its eross-sec-
tional area. Calculations for this nucleus yield re-
sults that are valid in a temperature range near
the melting point, region A. The second is a nucleus
where the length is restricted to [/, (which is the
length of a segment), but where the number of seg-
ments in the cross section is still unrestricted. Re-
sults obtained for this nueleus are valid in a temper-
ature range, region B, that extends from somewhat
below the mvllmg point to a temperature that is
considerably lower. A discussion of the properties
of these two types of bundlelike nuclei has been
given in an earlier publication [6], and what is given
below is intended mainly as a summary. At still
lower temperatures, region (' type nucleation will
prevail, and this will be brought into the discussion
at the proper place.

Region A: Consider first the nucleus with un-
restricted length and cross-sectional area. The
model used is illustrated in figure la. For this
nucleus, the free energy of formation may be written
in a general way as

Adyeay=2vao,+ Cyvalo,—valAf. (3)
Here » is the number of segments in the cross section
of the nucleus, a the cross-sectional area of a segment,
[ the length of the nucleus, €' a numerical constant
that tlv]u‘lulw only on the shape of the cross section,
and Af the free energy difference per unit volume of
erystal between the hli'[‘t-lt.-ﬂ(ll((l liquid and the erys-
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Figure 1.
(a) Nucleus of length I and “radius"
no minimum restriction on { or »
(b) Nucleus of fixed length Iy and “radius™

Homogeneous bundlelike nucleus (bulk polymer).

v/ valid in région A, where there is

vrf= valid in region 2.
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tal. The quantity va is the area of the end of the
nucleus or embryo. The quantity o, is the work
required to form a unit area of the lateral surface
from the erystal, and o, is the corresponding work
for the end of the erystallite. If at any given degree
of supercooling » and [ are increased, A¢,uy goes
through a maximum where it has the value A¢f .,
and then falls rapidly through zero to strongly
negative values, the latter implying increasing sta-
bility with increasing size. The eritical values of /
and va can readily be determined by setting
'(]OA¢,,M,/€>£)M and (0A¢, .4, /0yra); equal to zero.
"hus,

4o,
A= AF (4)
and
(l-"(.") _(Aj)‘! (5)

Substitution of eqs (4) and (5) into (3) vields the
result
2(%%q,

“@fF ©

Adjay=

Thus, in region A, where both [ and va are not sub-
jeet to a minimum restriction, the rate of homogene-
ous nucleation is?

IA:I'DG—AII;.-'L‘T(,_:—.!(‘%%::,."{Aﬂzk’j" (7)
In this expression
C=2x} (8)
for a eylindrical nueleus, and
2 a3
Om=—2_21Y )

ysin g yay

for a nucleus where the cross section is a parallelo-
gram with sides # and y», and apex angle ¢. The
quantity (va)* is related to the square of the “ra-
dius” of the eritical-sized nucleus.

For a strictly evlindrical nucleus, »*={[(va)* /7]
=2q,/Af, and A¢k oy =8molc,/ '(Af)%,  results that
have been given previously [6,” 9]. The reaction
path on the free energy surface described by eq (3)
for the formation ol the eritical-sized nucleus is
shown in figure 2. The eritical-sized nucleus of
length * and “‘radius” [( va)/x|* is indicated by an
asterisk, and the reaction path is designated by the
heavy line O—+—8. The ])()Illl_ « is at a saddle
pmlll in the free energy surface. The embryo grows
mto a nucleus and 1ht'nu\ into the stable region

* Even I it is assumed that the nueleus is an ellipsoid of revolution, an expres-
sion for fa similar to eq (7) Is obtained. (See 8. Matsuoks nnd I, Maxwell,
Plastics 1. |.lmr.|n|) !-:n:n: 4l Report 53K, Prineeton University, 1969.) When
1I I i ., 8t low supercooling, the ratio of the ||mjnr and minor

5 i mined by m"a. However, such a nucleus will tend to take on the
:,lupe of a disk or pars illelepiped as the dearea of supercooling is incressed so that
region B is approached. Thus, the overall behavior of I, including its tempers-
ture dependence and transition to region B, is unatfected by assumptions eon-
cerning the shape of the nucleus in region A.
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Firaure 2. Free energy surface for formation of a critical-sized
homogeneous bundlelike nucleus for bulk polymers in region

The reaction path is the heavy line 0--F. The nucleus is of critical size at
l.{ll’. 3}1111151' point marked . The free energy surface for region B is similar, except
that I* =1y,

(which is below the /—[we]! plane) by both length-
wise and “‘radial” growth.

Region B: For a bundlelike nucleus, it is necessary
to recognize that ¢, might possibly be considerably
smaller than ¢,. As one traces the environment
of the various segments from the interior of the
crystal out through the lateral surface into the
liquid phase, a sharp and quite large drop in the
degree of order will be noticed just at the erystal
surface. Thus, the wvalue of o, will correspond
reasonably closely to the surface free energy for a
nonpolymeric molecular crystal of the same dwmlcul
type, and will commonly lie in the range 5 to 25
ergeem ™, On the other hand, the drop in degree
of order as one traverses a path from the center
of the erystal out through the end will not be as
sharp as m the case above. Beecause of this fact it
seems plausible to suppose that ¢, will in some poly-
mers be rather smaller than ¢,, However, ¢, cannot
be zero, since this would imply no difference in free
energy between the end of the erystallite or nucleus
and the supercooled liquid.

The significance of the fact that o, may be con-
siderably larger than ¢, for the bundlelike nucleus
characteristic of primary nucleation in region A is
that /*, as given by eq (4), may, at some temper-
ature 7' that is not too far below the melting point,



fall close to the irreducible segment length, /. In
this case, [ must not be treated as a variable near
and below 7,.  Using the relation [10]°

__AhTAT

Af= (10
A T2 0)

where Al is the heat of fusion at the equilibrium
melting temperature, 7, and AT=T,—1T, where
7" i the isothermal erystallization temperature, it
is found to a sufficient approximation that

"l' T1m Ty

Aj = !uﬁ]“f

(11)

Here AT, is the degree of supercooling that cor-
responds to the onset of region 5. At lower tempera-
tures, we must consider a primary nuelens with
fixed length /;, and variable va, as shown in ficure 1b,
In this case we have

Ay =2vac, + 'y valoa,—val A f (12)
which leads to
{ .!".f]ﬂ'\ 2 \
r *: . L :
va) % I:z{ F._._-xvr._.‘_;_gv}] (13)
and
(14)

In region B (or mwre precisely, from somewhat
below 7, on down to considerably lower temper-
atures) the condition [Af > =26, may be expected
to hold.  With this, eq (14) reduces to the simple

form
Adjs) N(J:iﬂ}-ﬁ’ (15)
and the rate of primary nucleation becomes
=g ST ¢=C" lys, (AATKT (16)

The values of € are the same as those given for
region < ; for the particular case of a strictly evlin-
drical nucleus, Agjpy is wlyat/Af [6]. o

Equations of the general form of (15) and (16)
have sometimes been sharply eriticized, apparently
because of the incorrect belief that they could be
derived only on the basis that «,=0, the latter
being generally conceded to be impossible.
ever, the derivation sketched above makes it per-
fectly clear that eqs (15) and (16) hold if ,Af > >24,,
and there is no implication that ¢,=0 [6].

of supercooling of approximately

( _’.-‘U‘ 2 Tﬂe .

e (17)
2Ah (vt) g

AT e

In the case that o, > >0, AT, will be larger than
AT,, with the result that region B will cover a sub-
stantial range of temperature.

The free energy surface described by eq (12) has
a saddle point at I*=I[; and va= (va)*. Thus, both
the embryo and nucleus always have a length {;, but
once of stable size, there is no inherent restriction on
the addition of segments to increase the length.
Lengthwise growth is in fact certain to occur [6].
Such a nueleus will inerease in size by appropriate
erowth mechanisms until stopped by impingements
or other factors (see sec, 2.2).

Region ': At erystallization temperatures below
T.., the “radius’ of the primary nucleus, [(va))'”,
will be close to the size of the unit cell, ie.. it will
contain roughly 5 to 7 segments.  While this radius
is not irreducible in a striet sense, the small size of
the stable nucleug below 7, will lead to an excess
number of nuelei owing to the fact that embryos of
this size in the superheated state will be carried down
in the supercooling process to the supercooled state.
This will cause an enhanced rate of crvstallization
compared with region Bor A. In the particular ¢ase
where a, is larger than envisioned previously, and
exceeds [oCo,/4[(va)g]'?, which is lye,/2r, for a eylin-
drical nueleus of radius rg, region B will be absent,
and the system will go directly from region A tyvpe
homogencous nucleation to that characteristic of
region .

Several mnportant points concerning the nature of
homogencous nucleation in bulk polymers may now
be emphasized. The first is that two types of tem-
perature dependence are to be expected for the rate
of nucleation. Sufficiently near the melting point,
i.e., in region A,

1, AHY @ i
In F=—rl ey (18)
Iy | AR O E:
where the constant « is 20%3q, 1) /ARG, This is

the same general form as is exhibited by nonpoly-
merie systems. At moderate to high degrees of
supercooling, region B, the temperature dependence

1s

I. AH; B8 :
=t 1t

.= %T T°AT L

[ where the constant 8 is C*lai T /4Ahk. Equation

How- |

Region B type primary nucleation will prevail |

down to a temperature 7., corresponding to a degree

"The relation Af=AhdTTwm is usually employed to give the free energy dif-
ference between the supercooled liquid and crystalline states. This expréssion
is not as precise for o glass forming system as eq (10).
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(19) is a special result in that it reflects the segmental
nature of the polvimer chain, having been derived as-
suming /, was a constant. In the special case where
oo = loos/2ry, region B will be absent, and the system
will exhibit a temperature dependence of the form of
eq (18) down to the A—C" transition. However, in
some cases it is to be anticipated that o, will be
sufliciently less than ¢, to cause region B to make its
appearance. Region A will be large if o, ~0..



Both eqgs (18) and (19) lead to a maximum in /1
when plotted as a function of temperature. The
terms exp|—ea/T*(AT)?% and exp[—@8/T?AT] lead to
strongly negative temperature coeflicients for the
rate of injection of nuelei, but this effect is eventually
overwhelmed by the term expl— A5 [FT] that arises
from the jump rate, and which has a positive tem-
perature coefficient.  Henece a maximum exists in
Iy and [p.

The second point is that there is nothing in the
foregoing which suggests a highly uniform step
height of the general character found in erystals
formed from dilute solution. The only feature in
the theory for bulk polymers that is even slightly
suggestive of a pronounced step height, where the
long axes of the polymer molecules are in "the cor rect
configuration with respeect to the erystal surfaces, is
the behavior of [*=4¢,T:/AhTAT in region A,
However, an unaceeptably large value of o, has to
be introduced to cause I* to be anywhere near as
large as is observed for polymer crvstals obtained
from dilute solution. Furthermore, such a nucleus
will certainly grow lengthwise, and it is very difficult
to imagine \vh‘ it would erow to a practically com-
pletely uniform length which would correspond to a
step height. (More will be said of this later. )

The third pmni is that in a bulk polymer, the
bundlelike nucleus, made up from segments of dif-
ferent polvmer chains, is energetically the most favor-
able that can be conceived. Unless prevented by
some factor not vet considered, this is the type of
nucleus that should commonly appear in a bulk
homopolymer. Then if no special strain effects inter-
fere (say in the radial growth), such nuclei should
arow both radially and le ngthwise.

We turn now to some general considerstions that
have to do with the nature of the growth of the
bundlelike primary nuelei, and the effects that cause
such growth to cease in bulk polymers, or at least
slow down to a marked extent. Onee certain general
fentures of the growth process in bulk polyvmers
have been brought out, the discussion of primary
nucleation and growth in dilute solution with chain
folding ean be given.

2.2. Crystal Growth, Bulk Rate Constants, and
Impingements in Bulk Polymers

Two features of the growth process in bulk poly-
mers are of interest here. The first is that the primary
bundlelike nueleus without chain folding can, at least
initially, grow radially and lengthwise. Each of these
cgrowth mechanisms is nuecleation controlled suf-
ficiently near the melting point. The second point
is that the growing erystals will impinge on one an-
other in such a manner as fto essentially stop or
markedly retard lengthwise and radial growth in
a manner that ean hardly lead to a highly uniform
step height of the type found in dilute solution. In
the special case where strain limits radial growth (see
below), only the distribution of lengths will be im-
pingement controlled, but this will still not cor-
respond to an essentially fixed step height.
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Consider first the types of growth that may oceur,
at least initially, for a bundlelike nucleus. Denote
radial growth as @,=dr/dt (where in general
G, ocdlpalt/dt) and lengthwise growth as G=dl/dt.
Ifurther, define the free bulk growth rate as

4

X'=Z,t" (20)
where ¥/ is the mass fraction crystallized, ¢ the time,
and n an exponent that depends on type of nucle-
ation and the mode of growth. The free bulk growth
rate is the rate at which the polymer would crystal-
lize if the growing crystals were independent of one
another. Values of « for various modes of growth
with homogencous initiation (i.e., primary nuclei
born '«pmuduall\ in time) are shown in table 1.
The relationship between Z,, I, G5, and 6, are also
shown,

TasLe 1. Values of n and Z, for various modes of growth of

bundlelike nucler (homogeneous nueleation)

| Form of bulk rate

Mode of growth |
constant *

One-dimensional . __ 2 | Zyeel
Two-dimensional . 3 | Zyxelli2
Three-dimensional b L | Zye TG

s In these expressions I may refer to either f4 or {5,
b If branches develop, and Ziec 1., where Gips. is the mean growth rate in
the radial dimension,

The growth mechanism denoted by @) is to be de-
seribed by an expression of the general form

G;’T?Gnt’_ .-MI;,.'k'."r_.—"r,'?"-_*.'{’ (2”)

so that
N R
G, kT T°AT ‘

Here v 1s a constant similar in character to g, and
AH% is the enthalpy of activation at the super-
cooled-liquid—growth-nucleus interface. The form
of eq (20) arises from the fact that in the experi-
mentally acecessible region the growth nucleus is
characterized by one fixed and temperature inde-
pendent dimension of molecular size, usually a
thickness of one molecule or segment length (cirea
2.5 to 20A). However, the temperature dependence
of the growth mechanism denoted by G, may differ
from that of &}, since the secondary nucleus may be
of a different nature. In general, both @, and @, will
go through a maximum below the melting point, and
will possess a strongly negative temperature depend-
ence near the melting point. In the event that
0. a,, the radial growth nucleus in the experi-
mentally accessible region may have two fixed and
temperature independent dimensions of molecular
size. The radial growth nucleus will generally be
easier to form lhfm the lengthwise o'm\\tlt |m<|t‘n~.
g0 the condition G,> ¢, is mmmonl\ to be antici-
pated. (See, however, remarks below concerning
possible retardation of radial growth by strain.)



We must now ask what processes retard the free
growth rate of the erystals in a bulk phase. Im-
pingements and entanglements are certainly im-
portant factors [6]. The growing crystallites will
run into each other, entanglements will oceur in the
vicinity of such “collisions’, and this will tend to
stop growth. The retardations due to impingements
are relatively weak early in the ervstallization, but
gradually get stronger. The isotherms in this range,
whlth is called “stage 1,” will commonly be super-
posable simply by shifting the time scale [6]. Esti-
mates of the free bulk gmwtll rate constant, 7,
may be obtained by analysis of stage 1 data. How-
ever, the system will approach a degree of erystal-
linity, well short of complete eryvstallization, where
there 18 a massive degree of impingement (fig. 3).
We refer to this as the pseudoequilibrium degree of
erystallinity, x,. Detailed theoretical caleulations
due to Lauritzen [11], and ecertain experimental
studies [6], fully justify the view that impingements
will lead to the effect indicated. Near and above
X, the erystallization process is exceedingly slow.
Other workers have called this “secondary (*I\atulll-
zation” but for convenience we have termed it
“stage 2.7 Relaxation of impingements and en-
tanglements to form crystallites with greater length
and radii is one of the principal erystallization
processes in stage 2. The equilibrium degree of
crystallinity is thus approached very slowly due to
the intercession of a massive degree of impimgement
B X

1.0
!
0 STAGE 2
!
ol
X
STAGE |
0

log t
3. Schematic diagram showing course of erystallization
i a bulk polymer.

x is the mass fraction erystallized and ¢ the time. BStage 1 strongly reflects
the free growth rate x'=Z" The pseudoequilibrium degree of erystallinity is
denoted Xw, and is the result of impingements and entanglements, Stage 2
slowly earries the crystallization beyond Xm.

Fioure

After the stage 2 mechanism has pursued its
course for a sufficient time, the length and radius of
a few of the erystallites will be large enough to melt
quite close to the equilibrium melting temperature,
T,. In the vicinity of X, the erystallites will often
be rather small, and impingements will have set up
a distribution of crystallite sizes. These effects will
cause rather broad and low melting. The particular
distribution that prevails at x,, changes only very
slowly toward the equilibrium one. Neither the

78

distribution of radii and lengths resulting {rom im-
pingements, nor even the true equilibrium one, is
consistent with a uniform step height.

Another effect that may subdue growth of bundle-
like nuelei is strain.  Thus, while bundlelike nuelei
may form easily, radial growth to large size may be
hindered by the strain that results from the mis-
match of the segments in the crystal with those in
the “liguid” just outside the ends. Such a situation
could be treated theoretically in terms of a o, value
that inereased with ». The effect mentioned could
conceivably severely restriet radial growth of bundle-
like nuelel in some cases, causing a nearly constant
erystallite radius to be observed. However, the
stoppage of lengthwise growth will in such a case
still be controlled by impingements, and not cor-
respond to a step height of the type found in folded
crystals.

Much of what has been said concerning the nature
of impingements may be found in more detail in a
previous article [6].

3. Homogeneously Induced Crystallization
of Polymer From Dilute Solution

3.1. Preliminary Analysis of Homogeneous
Nucleation From Dilute Solution

In order to set the stage for the detailed analysis
to follow in subsequent sections, an elementary
analysis of the problem of nuclei with chain folding
18 given first. This has the advantage of permitting
an early emphasis on the simple physical pieture
involved, and has the virtue of clearly indicating just
what points must be subjected to more searching
analysis.

When a polymer is dissolved at high dilution in a
relatively good solvent, the polymer “molecules tend
to be l-ssvnlml]\' isolated from each other. If the
solution is supercooled, the polymer will tend to
erystallize from the solution. The kinetics of this
crystallization will be governed by the nucleation
and growth process. Since the polvmer molecules
are v-a-,i'ntnl]]\ isolated from one another, the primary
nucleus will tend to be formed, if at all possible,
from a single polymer molecule. The formation of
these nuclei is ireated below and it will be shown
that in sufficiently dilute solution these nuelei, char-
acterized by cham folding, are kinetically favored
over bundlelike nueclei containing segments from
many molecules of the type discussed in the previous
section for bulk phases. This treatment explains
the main features of the single erystals obtained by
Keller and others, and predicts other properties
which should be capable of verification.

We shall outline in some detail the characteristies
of the single erystals of polvethylene prepared from
a dilute solution of xylene [1, 2]. These erystals, as
revealed by electron micrographs, are flat parallele-
pipeds which are shown schematically in figure 4a.
The step height, 1*, was measured by low angle
N-ray scattering, and reflections up to the fourth
order were observed. The step height increased
from 90 to 140 A with inereasing crystallization tem-
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erature. The polymer chains lie approximately
perpendicular to the two large flat faces of the
crystal, i.e., parallel to the ¢c-axis in figure 4a. The
loops formed by the folding of the polymer molecules
form the two flat surfaces of the crystal. In figure
4b the erystal is shown as viewed along the c-axis.
The polymer chains intersect the plane normal to
the c-axis at the corners and at the center of the
rectangle. The planes determined by the two rows
of carbon atoms in the zig-zag polymer chain back-
bone are shown as triple dashed lines. 1t has not
been definitely determined which chains in figure 4b
are connected by the loops, but Keller has indicated
that it is sterically possible for the chains at P and
() in the figure to be connected by a loop containing
three to five carbon atoms. The arrangement of the
chains shown in figure 4b is essentially that given
by Bunn [12].
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(b)

Fioune 4. Details of loop-type polyethylene crystals formed
from dilute solution.

(1) Polyethylene erystal with step height 1* shewing orientation of chains.
(b) View of unit cell along c-axis showing orientation of ribbonlike hydro-
carbon ehain ---,

In the discussion of the nucleus with folds the
following definitions are employed. First, » is taken
to be the number of segments in the eross-sectional
area of the nuecleus or embryo, and a is the cross-
sectional area of each segment. The area of the
end of the nucleusisva., The length of the nucleus or
embryo is designated 1,.  All of these definitions are
analogous to those used earlier for the bundlelike
nucleus. Refer to the set of segments comprising
the length of a nucleus or embryo, 1, as a step element;
the step element length includes the (small) length
involved in the folds at either end. The number of
step elements in a nucleus is equal to », and the total
number of folds is equal to »—1.

We now introduce a particular model of the
polyvethylene crystal in order that we may have a
specific picture in mind while caleulating the prop-
erties of crystals formed by the folding of polymer
chains. This model, which is essentially that sug-
gested by Keller and O’Connor, is shown in figure 5.
A single molecule forms the crystal through folding
of its backbone as it progresses outward in a double
spiral from a central position 0. (At a later stage
in the development of the erystal, other molecules
may, of course, participate.)

The above model of the nucleus with a double
spiral is only one of several possibilities, but it still
embodies the important general characteristics of
nuclei with chain folding. These characteristics
apply not only to polyethylene but also_to any
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(a) (b)
Ficure 5. Loops in homogencous nucleus formed from dilute

solution.

(a) View of proposed loop nueleus along e-axis. Loop facing reader —, loop
away from reader, The eross marks near 0 show one unit cell (Cf fig, 4b),

(b) Cut through plane RS showing odd-numbered loops (down) and evens-
numbered loops (up).

polymer that can form such nuclei. First, it is
possible to form nueclei from a single polymer mole-
cule. Second, the crystals formed through chain
folding possess sharp and definite boundaries be-
tween erystalline and noncrystalline regions. This
is in contrast with the end surface of erystallites dis-
cussed in the section on bulk polymers. Third, a
change in any reasonably short period of time* of
the step height requires the melting (or dissolving)
of the erystal and recrystallization with a new “step
height”.  Fourth, if a molecule has formed an array
of » step elements, the v+ 1st step element may be
added simply by the folding of a free end (or ends)
of the polymer molecule. Fifth, when a polymer
molecule forms an array of » parallel step elements
there will be »—1 folds in the nucleus, It is em-
phasized that all five of these items hold for either
a double spiral model, a single spiral model (mot
shown), or any of a number of other configurations.
The rate of formation of nuelei constructed from
a single polymer molecule through chain folding will
be caleulated by a procedure very similar to that
used in section 2. Bold faced symbols are used for
many of the quantities involved i order to clearly
differentiate them from those pertaining to the con-
ventional bundlelike nucleus deseribed earlier. The
free energy relative to the solution state of a primary
nucleus composed of v step elements of length 1 may
be written as
Aqbﬂ:';'vao,—l—C\-"fvaIo's—l—‘ZU\-Ivaep—valAf, (22)
where a is the cross-sectional area of a segment in
the crystal, €' is a numerical factor depending upon
the shape of the nucleus, and Af is the free energy
difference per unit volume of crystal between the
polymer in the supercooled solution and the erystal.
The quantity o, is the work required to form a unit
area of the lateral surface from the erystal and o, the
corresponding work for the end of the erystal. The
quantity e, is the work required to form a unit length
of “edge” from the crystalline phase.
The relative size of e, and ¢, may be estimated
from the following considerations. Both the lateral

4 Over long periods of time, the step height will probably gradually inerease
in an isothermal process by lengthwise diffusion of segments. This point is
treated more fully later,

79



and end surfaces of the nucleus with folds present an
abrupt change from crystalline order with respect to
the solution. In addition, on the end surface, an
amount of work ¢ keal/mole of loops will be required
to form a fold. When there are » segments in the
cross section of the nucleus, there will be »—1 folds,
and area of the two ends is 2 va. Then we have

(v—
ﬂ'e—o'm‘i"q 7;; == anra+%’ (23)

a

where a,, represents the (probably small) contribu-
tion to o, above that of fold formation. We should
expect to find q with a value on the order of magni-
tude of 1 keal/mole of loops.® In mal\mg this mu;_,h
estimate, it was assumed that the prineipal contribu-
tion to q was the energy required to bring the part of
the polymer chain in the folds (ca. five carbon atoms
in the case of polyethylene) into the appropriate
higher internal rotational states. If a=18>x10"'*
cm?, and q=1 keal/mole, g/2a=20 erg-em=—. We
expeet no really large difference between o, and o,
the lateral surface free energies of the nueclei with
loops, and the bundlelike nuelei, respectively. The
important differences in surface free energy between
bundlelike nueclei, and nuelei with loops, can be
summarized in the following way. For the bundle-
like nueleus we have

anga:t f24)
“normal” value, usually in the range 5
For nueleir with loops, we have

where o, 1s a
to 25 erg-em™*
instead

o, >0y, (25)
which is in sharp contrast to (24). Noting that o,
will ordinarily have a “normal” value, we may effect
the comparison between the loop and bundlelike
types of primary nuelei by writing

o,.220, (26)
and
o, >0,. (27)
The quantity Af in eq (22) may be approximated
by [13]
. (T,,—T) AhAT e
Af—Ath - Tm T"l ? (—8)

where Ah, is the heat of fusion per unit volume of
erystal, and T, is the equilibrium melting tempera-
ture of the ecrystal, both in the presence of large
amounts of the solvent.

The presence of the edge energy term in eq (22)
is not essential for the theory developed in this
paper, and the general conclusions drawn about
crystals with folds are independent of €,. Since the
value of €, will depend on the detailed morphology
of the crystals with folds, which is not treated i

i The authors are indebted to Dr, C, W, Beckett for a helpful diseussion con-

cerning the probable value of q.
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this paper, and for the reason that its inclusion at
this juneture would not elucidate any essential
points, it is set equal to zero in the remainder of this
section. Nevertheless this term is included in eq
(22) for completeness, and the consequences of e,
possessing a nonnegligible value will be assessed later,

The energy surface described by eq (22) is shown
in figure 6. It is formally similar to the energy
surface for bundlelike nuclei. In both cases the
most probable nuecleation path passes through the
saddle point. The difference between the two
types of nuclei is that certain restrictions apply to
the paths of nucleation on the surface for nueclei

b,

[va

2

Ficure 6. Free energy surface for formation of critical-sized
homogencous nueler with loops (dilute solution).
The heavy line 0-+-12 shows most pr uh :hll wutmn path; * is the saddle point
across ridge D—E, The dotted line O « € shows an other possible reac-
tion path across ridge D—E, where Aﬁi.s.m;.

with loops that do not apply to bundlelike nuelei.
For nuclei or embryos with folds, the elementary
process is the addition or subtraction of a step ele-
ment. Then the paths by which nuclei with folds
are formed are characterized by a length that is

invariant as the embryo or nucleus grows. Two
paths of nucleation are shown in figure 6. One

path passes through the saddle point, while the other
path passes over a higher energy barrier. It will
be shown subsequently that most of the nucle
formed will pass through or near the saddle point,
and will therefore possess a length close to the value
at the saddle point, I3, The coordinates of the
saddle point may be found by calculating (0Ag¢,/0l),



and (0A¢,/ova), from eq (22), and equating them to

zero, It s found that
. 4o,
=—1, (29)
P Af
and
v (o (30)
pr== 2! oY)
a(Af)?

which lead in a straightforward manner to the result

« 2C%ale,
Ad>="1af)? (31)

Already from eq (29) we can preceive the origin
of a large nucleus length for nuclei with folds as
compared with that for bundlelike nuclei.  From
this expression and Af=AhAT/T,, it is found for
nuclei with folds that

4 0’!' T'Hf

Ah,AT’ (32)

*__
=

whereas from eq (4) and (10) we find, omitting
the relatively unimportant factor 7,/7T, that for

bundlelike nueled

_ AT
o AJ‘ L _r.) :‘"

*

(33)

Since from eq (27), o, >0, it is seen that I} should
generally be  considerably larger than [* under
corresponding conditions of supercooling.  As will
be seen later, our estimate that ¢,~20 erg-cm™
leads to values of 1* in the vicinity of 100A at a
moderate degree of supercooling.  The fundamental
reason for the large value of I} as compared to I* is,
of course, the work q required to form the fold.

On account of the relatively large value of e, com-
pared to a,, it is to be anticipated that the nuclei
formed in the experimentally accessible temperature
range for dilute solutions will not ordinarily be sub-
ject to a minimal restriction of the type that causes
the appearance of region B or €' type nucleation in
bulk polyvmers. Thus, our treatment of nuelei with
chain foldsg is in some respects analogous to region
A type nueleation in bulk polymers.

Equation (32) shows that 1} should increase as
the erystallization temperature inereases. Nuelei
with lengths greater or less than 1} are improbable
for kinetic reasons, as will be brought out subse-
quently. -

It is seen that there is little difficulty in explaining
why a nucleus with folds should have fairly large
dimensions, corresponding in magnitude to the step
height determined by Keller.  The really eritical
issue is why this nucleus of length 1I¥ does not con-
tinue to grow in the 1 dimension, but chooses instead
to grow in the x and y dimensions. This question
will be pursued in considerable detail later, but it is
considered fitting at this juncture to mention the
general nature of the arguments showing that the
crvstal will maintain a length 1* that is close to 13
as it grows. The presence of the folds on the end
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surfaces prevents rapid growth of the nueleus or
embryo in the | direction of the simple type that
can readily oceur for a bundlelike nucleus in its /
direction. The problem then becomes that of
assessing the relative growth rates in the 1 direction,
and on the lateral surfaces, for the loop type nucleus.
Consider first what happens after a critical-sized
nueleus with folds is formed. Since there will likely
be very few other polymer molecules close by, the
molecule already involved in the nuclens will con-
tinue to “erystallize,” forming a primary crystallite
containing one molecule. It can be demonstrated
that the primary ecrystallite which on a kinetic
basis has the highest probability of formation will
in fact possess a length that is elose to 5. 1t i, for
example, highly improbable on energetic grounds
that a new loop will protrude far above the plane of
loops already established. The same i true of the
set. of new loops in a larger body. A quite similar
arcument applies to the growth of the erystallite
when another polymer molecule enters the picture.
Again the energetically least expensive growth nu-
cleus contains a loop, and has a length 1* that is
close to 1%, Growth on the two primary crystallite
faces containing the loops is not impossible, but
will be subdued by the circumstance that a sec-
ondary or growth nucleus on this surface is nearly
as difficult to form as the original primary nucleus.
Considerable attention will be paid to the possible
variation of the step height as the crystal grows,
and this will be shown to be small. The relatively
narrow distribution of step heights around the
mean value of the step height is related to the nature
of the saddle point in the free energy surface deserib-
g the rate of nueleation and growth.

In appendix 5.1 1t is shown that to good approxi-
mation the number of stable nuclei formed isother-
mally per unit volume of solution per unit time is

kT AFS /KT ,—~ AR5 IET a4’
s W (34)
{!
where my 1s the number of polymer molecules

per unit volume of solution and AF% is the free
energy of activation for a polymer molecule forming
an additional step element. The approximate tem-
perature dependence of A¢} can be obtained from
eqs (28) and (31):

2(%cic,Th

* .
Aoy (Ah,)?(AT)?

(35)
Hence,
I AHj o

L= T T(an?

(:36)

where Iy=(kT/h)ny exp (ASHE), and a=20%?
o, T2/(Ah,)* k. (Here we have set AF}=AH%—

TAS%) Equation (36) is seen to be of the same
form as eq (18) except for the relatively unimportant
factor TZ/7%. Thus the temperature dependence
of the nueleation rate at moderate supercooling is
predieted to be similar to that of bundlelike nuelei in
a bulk polymer in region A.



At this point it is convenient to indicate qualita-
tively why the nucleus with chain folds deseribed
by eq (29-31) and eq (34-36) is the most probable
in dilute solution. The basic reason for this be-
havior is as follows: The free energy required to form
a critical bundlelike nucleus in a very dilute solution
is greater than the free energy required to form a
eritical nueleus with loops. This happens because
the selection of segments to form the bundlelike
crystals requires many polymer molecules to be
gathered together. This leads to an important
change in the difference between the configurational
entropy of the erystalline state and the solution state.
The change in entropy increases the free energy re-
quired to form a critical bundlelike nueleus. This
effect is absent or greatly reduced for nuclei with
loops, since such nuclei can be formed with a single
polymer molecule, or a very few polymer molecules.
Then stable nuclel with loops are formed much more
rapidly than stable bundlelike nuelei from a sufli-
ciently dilute solution. To be more quantitative,
it will be shown in section 3.2 that when polyethylene
is dissolved in xylene, erystallization will proceed
primarily by formation of stable nuclei with loops
when 2,=0.001, where », 1s the volume [raction of
polymer. It should be pointed out that while diffu-
sional effects in dilute solutions will tend to reduce
the rate of formation of bundlelike nuclei even
further, these effects are important only at very low
concentrations, where the reduection in configura-
tional entropy has already effectively eliminated the
formation of bundlelike nuclei.

The above arguments, concerning the entropy
contribution to the free energy required to form a
critical nueleus from a dilute solution, also apply to
the entropy contribution to the free energy of a
grown erystal. It will be shown that a loop-type
crystal is more stable than a bundlelike erystal of
the same shape and volume in a sufficiently dilute
solution.

Brief consideration will now be given fo certain
aspects of the overall kineties of erystallization.
When a stable nucleus is formed, the nucleus will
continue to grow until the molecule is consumed,
forming a primary crystallite. At exceedingly low
concentrations, where the polymer molecules are
very widely
portant, it is possible that the crystallization might
proceed mainly through formation of such primary
crystallites.

Since the birth time of such a erystallite s essenti-
ally the time required to form the eritical nueleus,
the time required for complete growth being negligi-
ble in comparison, the process will in effect be
equivalent to sporadie formation of objects (primary
crystallites) that do not grow. In this case, =
would be unity in the free growth rate expression

X'=r g% (37)
(Note that n=1 in this case is not to be interpreted
in the eustomary manner as one-dimensional growth
of objects born at t=0.) At more moderate con-
centrations, where the degree of crystallinity could

separated, and long-range diffusion im- |

be more readily measured, subsequent growth of
each nucleus would proceed through secondary
nucleation of other adjacent polymer molecules.
This nuecleation will oceur principally on the lateral
surfaces of the growing erystal, leading to growth of
the x and y dimensions, because the energy of
formation is much smaller for nucleation on the
lateral surfaces than on the end surfaces, which
contain the folds. The relationship between x’,
and the actual mass fraction of polymer crystallized
will be given in section 3.3. Then we expect the
nuclei, which are born sporadically in time, to grow
prineipally in a two-dimensional manner leading to
an overall erystallization isotherm described by
n=3. As the crystallization proceeds, n will drop
in value due to diffusional effects and the consump-
tion of polvmeric material. The secondary nuclea-
tion mechanism will be discussed further in section
24

3.2. Detailed Analysis of Homogeneous Nucleation
Rate and Constancy of Step Height in the Primary
Crystallite

In section 3.1. we have outlined in simplified form
the prineipal features of homongencous nucleation
from dilute solution. In the present section we
shall treat the nucleation process in greater detail
with particular emphasis on the variation in step
height of the nuelei. We shall at first discuss an
ensemble of nuelei, each of which is characterized by
a fixed step height I, where 1 may differ from 1%,
The objective 1s to caleulate the distribution in
step height in the stable nueclei formed in such a
system. Later the assumption that each nucleus
in the set has a fixed step height will be relaxed,
and found not to alter the general findings (see also
appendix 5.1.). In this caleulation the edge energy
e, will be equated to zero. Its inclusion would not
alter the results in an important manner, but would
needlessly complicate the analysis at this stage,

Consider a primary nucleus that is composed of
v step elements, all of length 1. The energy of such
a nueleus was given in eq (22) and is rewritten here
with e,=0;:

A¢,—2vac,+Clva o,—valAf. (38)

The energy surface represented by this equation
is plotted in figure 6. Under the present assump-
tion, a nucleus of » step elements of length 1 can
change by an elementary process only to nuclei of
either »—1 or »-}+1 step elements of length 1. A
stable nueleus of length 1 must be formed through
the progressive addition of step elements until the
free energy, A¢,, is negative. Then the path of
nucleation will be along the points

p:n)"m"‘")‘:vm'"l"? LR T ] (39)
where v, 18 the minimum size of a nucleus. Two
such paths are shown in figure 6, and will be dis-
cussed in more detail shortly

It should be noted that if an embryo is to become

stable, it must possess a length, 1, greater than a



certain minimum. This can be seen clearly if eq (38)
is differentiated with respect to v:

046, Co,\al

2= +a(20,—1Af)-

(40)

\F

It can be seen by inspection that the right hand
side of eq (40) decreases nuummnic:ﬂly with inereas-
ing » for all positive v. 1If the length of the embryo
is so small that 1< 2¢,/Af, then E}A%/bv is nlwnv%
positive, The free energy of such embryos will in-
crease indefinitely with the addition of step elements,

and the embryos can never become stable. Then
stable nuclei can be formed only when
-0'
I>="—= l",‘ 41

When eq (41) is satisfied, 0A¢,/0v decreases mono-
tonically with » from a positive value to a finite
negative value. Under these cirenmstances the free
energy of the embryos, A¢,, mnereases with the addi-
tion of step elements until a maximum value, Ag},
is reached when there are ¢* step elements. The free
energy decreases monotonically as further step ele-
ments are added. Two such paths of nucleation are
shown in figure 6.

The number of step elements in the embryo at the
energy barrier can be calculated by equating 0Ag¢,/ov
to zero in eq (40):

(Ca,1)?

Ta(lal—20,)" (42

The energy barrier is
: (Ca 1) i
A= 1A = (43)

We have already seen that this energy barrier is a

minimum when

da, >
20 ;
l‘J Afl (44)
and that this minimum energy barrier is
20%9, 0,
o el =
AP="Tal) (45)
With wnu- algebraic manipulation of eqs (43), (44)
and (45), we may write the energy barrier, A¢,.,, as
(/1%
Ag,=Ag} |:1+ ;) /[] - —:l (46)

This expression gives the value of the barrier hinder-
ing the formation of a stable nucleus composed of
step elements of length 1; these values of Agl lie on
the ridge D—I on 111{- free energy surface shown in
figure 6. Sinece the energy barrier to be surmounted
is a mirimum at 1=1}, where there is a saddle point

in’ the ridge, it can be seen intuitively that the rate |

83

of formation of nuclei will be largest when the nuelet
have lengths near this value.

The effect of deviations of length from I# on the
rate will now be established. In appendix 5.1., the
rate of formation of these nuclei was caleulated usmg
the procedure of Turnbull and Fisher [8]. It was
determined that the number of stable nuclei with
lengths between 1 and 14+l formed per unit time per
unit volume of solution is

]],r'_}"_ Ty e
i (Ddl— Eﬂ nj__ : AF? kT P AGCIET (47)
where
e a‘y ’0', {lAf— ’ar
N ] Cowlk 1")

The value of £ may be considered valid at best to
within an order of magnitude. However, it varies
slowly with 1 compared to the factor exp [—Agbf,/,’.,T]
Substitution of eq (46) into eq (47) leads to

nle 7' I:_QF’:: Ad:*:l

T eXp
#* — 132
K exp { Ay I: Af;—1)’

Y ey ) 1)]} (48)

This equation shows clearly that the nucleation rate
is most rapid when 1=, and that the distribution
in the lengths of the nueclei formed will become
sharper as the height of the barrier at the saddle
point, A¢¥, increases,

The derivation given above can be generalized
further to include various step heights I,, |
for each individual nucleus, rather than just one.
The general conclusion is that eq (48) is a reasonable
measure of the variation in length of the stable nuelei
formed. The fraction of stable nuclei with lengths

](wt\\vun I, and L ecan be caleulated directly from e
48
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The lower limit of the integral in the denominator
represents the smallest possible size of a stable
nucleus. This expression will prove useful in esti-
mafting the percentage variation of 1 about its
probable value, 1%,

The total nucleation rate is obtained by integration
of eq (48). When (A¢}/kT)>>1, the number of
stable nuclei formed per unit time per unit volume of
solution is

I= z(l dl=K n“;" e~ AFY/AT o~ AGY KT

(50)
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where K= (20,)! (Af)a%/x Ca,(kT)%. For most cases
of interest, K is within an order of magnitude of
unity, and following Turnbull and Fisher, we shall
set A equal to unity. Then we have for the nueclea-
tion rate

kT
AU

h

AFL/RT o~ ABH/KT,

= (51)

Substitution of eqs (45) and (28) into eq (51) yields
nok T’ _2C*sio, T

.—_\]‘— '\
I "’[ T(Ah,)? (AT}:I

(loop nuelei in dilute solution)
At temperatures near T,, it i1s clear that the last
factor furnishes the principal temperature depend-
ence of 1.

We turn now to some numerical values to illustrate
the general characteristies of the nucleation of
erystals with loops.  Unlortunately, no complete set
of experimental data is available, so we must be
satisfied with estimates.  Attention will be centered
on the case of the ervstallization of polyethylene from
xylene at 90° C, for Keller and O’Connor [1] have
measured the step height as formed under these
conditions and found it to be about 140 A. Ii
should be noted that xylene is a reasonably good
solvent, so that there is no separation into two liquid
phases at low concentrations. This condition must
be satisfied for the theory given here to be applieable.
An estimate on o, may be obtained by combining
eq (28) and eq (29) so that

I;

Ah L (AT/T,.), (53)
where we have approximated the step height of the
crystal by I¥in this equation. Quinn and Mandelkern
[14] have measured the heat of fusion of polyethylene
and have found it to be 67 cal-e='. IFrom Bunn's
X-ray data [12] on bulk erystalline polyethylene
at room temperature, it may be estimated that
the cross-sectional area of the chain segment is
18:5<10°" em?® and that the wvolume of each
~CH,CH,~ unit is 47><107** em?®. (These values
are adjusted to be correct at 90° C.) Tt is deter-
mined {from these results t'h.n Ah, the heat of fusion
per unit volume of cerystal, is 2.8 10" erg-em 2. We
will (somewhat arbifrar 11_\_} assume that this is the
heat of fusion Ah, in the presence of large quantities
of solvent. It is then found that

a,—980 [ir—”' ,E;j[—li:l erg-cm =%

The melting point of polvethylene ervstals in very
dilute solutions of xylene is difficult to estimate with
confidence. A lower limit on T, of 95° C may be
caleulated from the theory of the depression of the
melting point of a polymer by diluent [15] with the
interaction parameter x;=0. The true value of T,

(54)

- constant C must be known.
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is very probably somewhat higher, since x, almost
certainly differs from zero. 1t is considered probable
that T, lies between 95° C and 120° C for this
particular solvent. Then e, lies between 13 and 75
erg-em™. A value of o, in this range seems reason-
able, since it corresponds to an energy of loop forma-
tion of 0.7 to 4 keal/mole of loops. We should
expect polymers with stiffer chains to possess higher
vilues of ¢, than polyethylene. In continuing the
numerical analysis e, will be set equal to 30 erg-cm =2,
In eq (54) this implies T,,=374.5° K, and therefore
Af=1.17 }10% erg:em™ at 90°C. To estimate the
value of Ae¢l/kT at this temperature, the shape
If it is assumed that
the shape of the cross section of the nucleus is a
parallelogram with an acute angle, ¢=70°, between
the sides, ('=4.13. Then from eq (45) or (31)

Ao
ET

e
o

=5,

at 7=90° C'. A rveasonable value of o, might lie
between 5 and 20 erg-em ™ (Thomas and Stavely
[16] have found ¢=20.4 erg-cm* for benzene). Then
A¢/kT must lie between 38 and 600.

Crystallization could not be observed if Ae¢j/k7
possessed a value of 600.  For the particular case of
crystallization from a 0.01 percent solution of poly-
ethylene in xylene, A¢}/kT must be well below 100.
If o, lies between 5 and 6 erg-em ™2, Agp/kT lies be-
tween about 40 and 50.  In any case it is clear that
the value of Ag;/kT for slow but measurable crystal-
lization processes is a large number.  This is because
oio, possesses large values for nuclei with folded
chains. One might expeet that ole, lies between
500 and 10,000 erg’em™" for most polymers where
the nuclei involve chain folding. The quantity ole,
relevant to the case of bundlelike nuelel in bulk is
much smaller, values of 25 to 250 erg’.em™" being
reasonable.

The distribution in step heights of eritical nuclei
about I¥ can be estimated {rom eq (49). If when
polyethylene is ervstallized from a 0.01 percent solu-
tion of xylene, I5=140 A and Ag¢;/kT=50, the evalu-
ation of eq (49) shows that 73 percent of the critical
sized nuclei have step heights between 126 and
157 A. This distribution is sufficiently narrow so
that several orders of low angle X-ray scattering
might be expected,® if the grown erystals possess
this distribution.  This is in satisfactory agreement
with experiment.

These numerical values will be discussed further
after the growth of the crystals through secondary
nucleation of other pol\"mvl molecules has been in-

vestigated in the next seetion,

We now wish to show in some detail that the
formation of bundlelike nuelei in sufficiently dilute
solution is negligible compared to nucleation through
chain folding. The nucleation rate of bundlelike

b It is quite possible that local rearrangements of the serments would eause the
step elements in the nucleus to become even more uniform in a relatively short
period of time.



nuclei of ecireular cross section in the presence of
diluent, 7, has been caleulated by Mandelkern [13].
With appropriate changes in notation his result is

:| pl: @ lnguvz]

(56)
(bundlelike nuelei in dilute solution)
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where AFF is the activation energy required for
transport across the nucleus-liquid interface, Af, is the
bulk free energy difference per unit volume of erystal
between the erystalline and solution states, o, is the
free energy required to build a unit area of the lateral
surface from the bundlelike erystal in solution, and
2, 18 the volume fraction of the polymer in the solu-
tion., ¢, is a surface free energy corresponding to
g, the free energy required to build a unit area of
end surface in the bulk polymer. o, must be less
than e, the energy 1‘v(111i|(d to form a unit area of a
surface containing loops. T'he pre-exponential factor,
1,4, is not particularly sensitive to o, varying approxi-
mately as the first power of n,. Tt is to be expected
that a4, Afy, and a should have values very nearly
equal to o, Af, and a, the corresponding terms for
nuclei with folds.  Then the important dependence
of I, upon », oceurs in the last factor in eq (56). The
last factor decreases very rapidly with dec reasing v,
and the nueleation rate for bundlelike nuclei is re-
duced ¢n:li’~1]1¢1:1<|i||“l\ Thus at suflicient dilution
the nuclei with folds are the preferred type, as may
be seen by comparing eq (52) with eq (56).

A more quantitative comparison can be made if

eq (52) is divided by eq (56):

_I.—(-‘ 1y :!: |
fd ‘0 ikl){ '{.'f‘ 1
Ill [‘fl

where Co= kT [h1o,) exp | — (AR —AFY [ET).
(57) it has been assumed that Af=Af, ¢,—e., and
a=a. Here A¢} is the energy required to form a
critical nueleus with loops. When I/1,>1, the stable
nuelei formed ave primarily those with loops. 1t is
instructive to evaluate eq (57) for polyethylene
erystallized from xylene. () is not very sensitive to
either concentration or temperature and probably
has a wvalue between 107 and 1. We find
2nkT/(ae,~1/3, if e, is assigned the value of 30
erg-:em % Then eq (57) becomes

(I/1)=Chexp{— (AdX/kT)|

2wk T

Ara ., kT ‘
ac Illg_\ ¥

o,

+-3 ]"'gr‘-‘”z_ (4maq/C “a,)] :
(58)

It has been shown that A¢f/kT is a large number.
If 9,=0.001 and Cy=10"", I/1, lies between 102 and
10° as Aoy /T varies between 40 and 80. Thus in
a 0.1 percent solution of polvethylene in xylene,
crystallization should definitely oceur through the
formation of nueclei with loops.
near 10 percent I/1,<1, and bundlelike nuelei will
dominate the erystallization process. The transition

At concentrations |
- ('1\-~l=tl
' molecules.
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between the two types of erystals oceurs near
r,=—=0.01. Equations (57) and (08) must be applied
with caution near this transition region for two
reasons: (a) the nucleation rate for L'-}‘ysllll]_ll.-(!b with
loops was derived for very dilute solutions and is
probably inaccurate at higher concentrations; (b) I
and /Z, are rates for extreme types of nucleation, and
in the transition region the stable nuclei formed are
probably partially bundlelike and partially formed
through chain folding. Nevertheless eq (57) indi-
cates that there is a fairly sharp value of the volume
fraction of polymer, #,,, such that when o, >»,,
bundlelike nuclei are formed, and when »,<7vy.,
nuclei with loops are formed. If there is some
restraint on the radial growth of bundlelike nuelei,
such as the type of strain mentioned earlier, stable
bundlelike nueclei may be even more difficult to form
than has been indicated, and #, would have a
higher value than that deduced from eq (58). Even
without this, the important point remains that loop-
type nuclet will predominate at low conecentration.

In extremely dilute solution the preponderance of
nuclei with loops over those that are bundlelike is
enhanced even further by diffusional effects.  Since
at higher concentrations loop nuclei are already the
most important in the system, we see no compelling
need to give a detailed analysis of the effect of long
range diffusion.

The above comparison naturally raises the question
of why the configurational entropy contribution to
the free energy of formation of a bundlelike nucleus
is 80 much more sensitive to the concentration of
the solution than is the corresponding term for a
nucleus  with folds.  Qualitatively this ecan be
answered as follows. In forming a eritical bundlelike
nucleus the segments of many molecules must be
brought toge sther. The entropy reduction in bringing
lngvtlm different polymer molecules in dilute solu-
tion is sensitively dependent upon the concentration,
In forming a critical nucleus with folds from a single
polymer molecule, the segments of this molecule
must be brought together in an appropriate manner.
There is a corresponding entropy contribution but
this contribution does not depend upon the concen-
tration of the solution. This qualitative explanation
can be placed on a quantitative basis if a lattice
model 18 used. The lattice model is not accurate for
dilute solutions, but ealeulations based upon it should
be roughly correct. It is found that the reduection
in entropy due to the gathering of molecules in a
bundlelike erystal is — & In v, per segment in the cross
section of the erystal. This result vields an end
surface energy of the form o,— (k7/2a) log, v, and
leads to eq (56). By analogy, for

a crystal with
folds, the reduction in entropy is —k& In v, per polymer
molecule contained in the nucleus.  If a single poly-
mer molecule is involved in the formation of a eritical
nucleus with folds this contribution need not be
considered and eq (52) results. If many molecules
are involved in the erystal the free energy contribu-
tion per unit area of surface of the erystal is
— (/L) (kT/2a)log 2., where 1 1s the step height of the
umI L is the mean length of the polvmer
This term is unimportant for high molee-



ular weight polymers. In any case since this “surface
energy’’ term is proportional to the step height of the
crystal, it will be included in the bulk free energy
difference per unit volume of crystal, Af.

It has already been shown that for kinetic reasons
almost all of the eritical nuclei possess lengths very
close to I5=4¢,/Af. The critical nucleus can often
be formed from a single polymer molecule. After
these nuclei are formed, the remainder of the polymer
molecule forming the nucleus will “erystallize’” onto
the nucleus until a primary crystallite is formed by
a single molecule, which has a erystalline volume al
where L is the length of the molecule. The distri-
bution in step heights of this primary erystallite will
now be briefly considered.

It will be assumed that the primary crystallite will
be formed from the eritical nucleus by the addition
of step elements in the manner shown by figure 5a,
so that the step elements are added in a mono-
molecular layer to the existing already “crystallized”
nucleus. This monomolecular layer will be added
to one side of the nucleus until a “corner” of the
nucleus is reached. At this stage the step height
may be maintained near 4¢,/Af although lower values
may be attained. When the monomolecular layer
of step elements reaches the “corner’ of the nucleus,
the next step element must be added so that it
extends beyond the corner of the nucleus. This
situation is shown schematically in figure 7a and
;('b, \Ihere the additional step element 1s designated
by A.

/ 0
Al h [
]

h

(b) {e)

The addition of step elements around a “corner”
of a nucleus.

i

Fraure

(a) and (b): Perspective and a top view of the addition of a step element, A,
to a nuelens, The step clement A must be added in order that o monomolee-
ular layer can be established along the face of the erystal.  (¢) Top view of the
stepelements B, ¢, D, . . ., that can be added to the crystal fee after the first
step element, A, has attached to the “corner” of the nuecleus.

A monomolecular layer may then be added along
the surface of the nucleus by the addition of step
elements B, (, D, ele., as is shown in figure 7e. The
calculation of the rate at which this monomolecular
layer is deposited on the surface of the nucleus is
complicated by two factors: (a) an acceurate expres-
sion for the free energy of such a monomolecular layer
is lacking, and; (b) the fundamental expression for
the rate of crystallization of a monomolecular layer
is somewhat different from the expression used for
the primary erystallization.” The first complication
will be avoided by using a purely geometric model for
the free energy of the monomolecular layer. Thus
cach step element will be assumed to be a parallele-
piped which has the surface energies appropriate to

7 The Turnbull-Fisher theory is not applicable when the activated state is
reached in one step, as in the present case of a monomolecular layer. The treat-

ment of the nucleation rate in appendix 5.2 deals with the situation where the
growth noecleus is formed in one step,

the bulk erystal. This model should yield answers
that are qualitatively correct. Then if the step
height of the added step elements A, B, €, D, . .
is less than the step height of the nucleus, the free
energy required to add » step elements around the
corner of the nucleus is

A¢’=2ho 1| 2vac,—valAf (59)
where h= (a/sing)? is the length of the side of the end
surface of the step element. The usual method of
finding the activation energy by setting 0A¢/ol=0,
0A¢/owa=0, and substituting into A¢, is inapplicable
in the case of monomolecular growth with v»=1,
since the free energy surface does not have a saddle
point that corresponds to a minimum activation
energy. Hence we must examine the free energy
ridge for »=1 over which the system must pass in
more detail.

The inerement of energy required to add the step
element at the corner of the nueleus is obtained by
setting »=1 in eq (59):

A¢p'*=2hes l—a(lAf—2q,). (60)
At the degree of supercooling in the range of experi-
mental interest, 2he, >aAf, and therefore A¢™ in-
creases with increasing 1. Of course, if the length of
the step element becomes larger than the nucleus,
additional terms increase A¢’”* even more rapidly

with 1. The addition of further step elements B,
C, D, ., change the free energy by a constant
amount

Ad.. ., —A¢p,—— E——a(laf—2q,). (61)
[t is clear that the step element must have a length
oreater than 2e¢,/Af or the resulting erystal is un-
stable.

The addition of the corner step element < requires
an activation barrier A¢’*.  Addition of further step
elements of this length reduces the free energy by an
amount /' per step element. In appendix 5.2 it is
shown that the equilibrium rate of deposition of
inmm]rloloclll&r layers of step heights between I and

+dl is

sy
rdl—=dl = st A

[/
{ } (62)

where AF* is the activation energy of the elemen-
tary process of adding the step element, N is the
number of primary nuclei which are growing, and
', is a normalization constant.

4 A . S T . y :

['he rate of deposition of the monomolecular layer
depends upon the step height, 1, of the layer. At
|=20,/Af this rate is zero and as | inereases the rate
increases until a maximum 18 attained and then the
rate decreases with a further increase of 1. 1t will
be shown that the rate is appreciable in only a narrow
range of values of 1.

2 sinh (E/2ET)

14-2¢720 25T sinh (E2kT)




A numerical analysis shows that for the case in
which we are interested, the rate in eq (62) can be
approximated by

o KT oy oWkt —ag i s E
r=2 i N, e sinh [Qkﬂf_’]
=2 Ec_?_ .N(_'!I(,I—Al‘"”‘Tﬁ—l(Zha.—uar}a’k’!‘e--Eur,,u'J'.'T
sinh a(laf—20,) (63)
) - %T :

The mean length of the step height of this layer can
be taken as

'ﬂ Ir 1
2, /AL

f I
20,141

Similarly, the mean square deviation is

2kT
4ho,—aAf |

2kT

4ho,—3aAf (64)

f (1-T)*rdl
e e
J rdl
J 20, /AT
N (2kT)? (2kT)* o
n { (4ho,—3aAf)? T teth.r,—ahf_af’} - ool

The{square root of eq (65) can be usedTas a measure
of the deviation of the step heights from the mean

value, 1

When ho, > >aAf eqs (64) and (65) become

1= ::;.‘+£L (66a)
and
<A ’) (66b)
' 2\ ho, '

Now if h=4.2 A, ¢,=6 erg-em~%, and T=363° K,
then kT/he, is about 20 A. The mean deviation
about this average value is about 14A. Then \\'lu--n
the monomolecular layer passes around the “corner’
the length of the step height falls from 4o ,/Af to a
value «-l]tr]]llv greater than 2¢,/Af. The distribution
of step h(m‘nt‘- about this mean value is quite sharp.
]' very l]III(‘ the monomolecular layer reaches a
“corner” this identical situation “1Il be repeated.
It might be expected that there is a tendency for
the step height to increase, as the monomolecular
layer is being erystallized along the side of a primary
nucleus.  An analy sis of this process shows that the
step height will remain near that given by eq (66a).
In summary, it can be said that if the edge energy
€, 18 ne\gllulh]v the primary crystallite will have an
interior section which has a step height 1*!=40,/Af,
and the outer section will have a step he ight near

1=20,/Af+1T/ho,. More will be said of this process
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in the next section. If the edge energy e, is not
negligible it will affect the growth of the critical
nucelus into a primary crystallite. This effect will
also be discussed in the next section.

3.3. Constancy of Step Height in Overall Growth
Process and Volume Increase of a Folded
Crystal Dilute Solution

When a primary crystal has been formed, it can
grow by the addition of other polymer molecules
upon it, one by one. This erystallization will
proceed by the formation of a secondary nucleus by
a single molecule upon the lateral surface of the
erystal. This growth of the ecrystals is treated in
this section with emphasis on two points. First we
wish to demonstrate that the step height of the
growing crystal has a tendency to remain at a
constant value 1* for kinetic reasons. Second, it is
desired to obtain appropriate expressions describing
the volume rate of growth of these erystals.

Before we discuss growth through secondary
nucleation on the lateral surfaces, our neglect of
nucleation of the end surfaces must be justified.
The end surface of the primary crystal is composed
of loops formed by the folding of polyvmer molecules.
The end surface of a secondary nucleus is also com-
posed of folds. Thus there is a distinet boundary
between the erystal and such a secondary nueleus.
The effect of any aflinity between the loops in the
two end surfaces upon the free energy required to
form a sccondary nucleus is probably small.  Then
the free energy required to form a secondary nucleus
upon the end surface of the erystal is almost as
great as that required to form a primary nueleus.
Some growth on the end surface will, of course,
occur. However, by the arguments given above,
the step height will be plnctl(ulh identical to that
of the primary crystallite.  Secondary growth of
this type can lead to small patches of secondary
egrowth on the primary ervstallite, or in other eases
to a distinet pyramidal appearvance due to sucecessive
layvers being formed. These effects should be sub-
dued by fmnnng crystals at very low concentration.

The free energy required to form a secondary
nucleus upon the lateral surface of the crystal i
considerably smaller than that required to form a
primary nuecleus. The volume growth of a erystal
proceeds through the formation of a stable secondary
nucleus on the growing (lateral) surface of the erystal
followed by complete “erystallizacion” of the entire
new molecule.  The rate of addition of molecules to
the crystal will be the average number of molecules
in contact with the growing surface times the rate
at. which one of these molecules forms a stable
nucleus, p,.  The quantity, p, can be caleulated by
the method of Turnbull and Fisher [S].

kT
h

R T Al il % & il d
p.= ¢ AR, ABY kT (67

where Ag¢f is the free energy required to form a
secondary or growth nucleus of critical size. The



process of the formation of a fold by a molecule

should be the same in primary and secondary
nuclei, so that we n.nt.u-llpal.v. AFi=AF;. This
expression holds for growth where the activated

state is reached through many successive elementary
processes.  Later, the case of growth through addi-
tion of a monomolecular laver will be considered,
and eq (67) will be modified accordingly.

The free energy of secondary nuelei of eritical
size, Agj, will be considerably smaller than the cor-
11-»,pnmlmg energy for primary nuclei. The caleula-
tion of A¢} requires an accurate expression for the
free energy of a secondary nucleus, A¢,. We can
obtain such an expression when the shape of the
secondary nucleus is known and the number of
segments in a cross-sectional area is large. It is
[Jmhnhlv that neither condition is satisfied for the
secondary nucleus. We will, however, consider two
extreme cases: (1) the eross section of the secondary
nucleus has the same shape as that of the primary
nueleus, and, (2) the secondary nucleus consists of a
single layer of enfolded sections of a polymer mole-
cule upon the surface of the crystal.

The former case where the shape of the cross sec-
tion of the secondary and primary nuclei are the
same is not likely to be correct, but it has the ad-
vantage that an accurate expression for its free
energy may be written down explicitly. In figure S,
a secondary nucleus of this type is shown on the
lateral surface of the larger primary erystal. The
free energy required to form this nucleus is the differ-
ence between the free energy required to form the
total erystalline region -8 shown in figure 8, and
the free energy required to form the erystal, P, 1If
there are » step elements in the secondary ecrystal,
the [ree energy required to form the secondary
nucleus is

Aadl=—2 _(r fom % * AR

o, —2vao,+ va ol —val Al (68)

The equation above applies to the case where both
the erystal and the secondary nucleus possess the

Fiaure 8. Schematie diagram of primary crystal, P, wilth a
hypothetical secondary nucleus of the same cross-sectional
shape, S, wpon lateral surface of the crystal.

A secondary nuclens or embryo where Al£0o is shown in the text to be consider-
ably less stable than one of length 13,
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critical length 5. Tt should be noted that the sec-
ondary nuclens possesses only one-hall as much
lateral surface energy as a primary nucleus of the
same size and shape.  We easily find that

_Agh

1 (69)

Agt

Then the activation barrier of a secondary nucleus
would be only one-quarter of that required to form
a primary nucleus, If the height of the step ele-
ments in the secondary nucleus is allowed to be
-+ Al the free energy required to form such a
secondary nucleus ean be caleulated by the usual
methods. It is found that the energy barrier Ae¢'}
which such a nueleus must surmount 1s

Aqh;"=;]i Aqb,*.,‘—i—-A‘?" i*Lfm Al>0),
g (70)
Ao¥  (Al)?

gk
Ad[ =y APEHL [y ey o AISO.
The variation in lengths of secondary nuclei will thus
be small, since we have seen that Aej is large.

If the primary nuecleus has a length I which is
oreater than 1%, the secondary nucleus will possess a
length very close to I, It is clear that if the see-
ondary nueleus has the same cross-sectional shape as
the primary nueleus, the step height of the erystal
will not inerease as the latter body grows,

The activation barrier required to form a eritical
secondary nucleus of the same shape as the primary
nucleus is large. It is therefore probable that the
secondary nueleus of eritical size is a monomolecular
layer of step elements that lie along the growing
ervstal face. An accurate expression for the free
energy of such a nucleus is not available, but the
same assumptions that were used in the previous
section may be applied here.  The free energy
required to nucleate on the growing crystal face is
the same as that required for a monomolecular layer
to turn a corner and grow on a new erystal face.
Thus Ag¢, is identical to A¢’ in eq (59). From the
results of the previous section concerning the forma-
tion of a primary crystallite it can be concluded that
if the edge energy, e is negligible the crystal will
erow with a constant step height, I*, which is given
approximately by

kT
+h0'3

.,ag

1)

When the monomolecular layers have completely
encireled the growing erystallite, it is improbable
that additional layers will have step heights ap-
preciably lareger than 1* since such layers would
extend above the growing erystal face and therefore
would require more free energy to construet. Thus
the distribution will be somewhat sharper than that
implied by eq (65), and the step height may decrease
slightly from the value given by eq (71). In any
case the erystal will grow with a very narrow distri-



bution of step heights about 1*, and the variation
of step height should be approximately 1/2" (k7 /he,).

For this type of secondary nucleus, p, is obtained
by the integration of (r/N)dl over all permissible
values of 1. With a suitable choice of ) in eq (63)
we have approximately

=i Gaa) oo (=37 e { -
“ ' (72)

In this case log p, varies approximately as (AT)"!
for moderate supercooling.

Price [19] has independently considered the growth
of crystals with folds through nuecleation of mono-
molecular layers.

At this point it is appropriate to discuss the
possibility of an edge free energy affecting the
growth process appreciably. An edge free energy in
8 monomolecular secondary nucleus can be consid-
ered to arise as follows. If the growing crystal has
flat surfaces containing loops, the }mt]\mlf of l]u'
loops increases the wlilh]l]l\‘ of the erystal. If «
monomolecular layer is placed upon the gum‘iug
surface of the erystal, where the step height of the
growing surface differs from that of the layer, the
loops in the monomolecular layer cannot be as
efficiently packed as if they coinecided with the flat
surfaces of the erystal. This will lead to an edge
energy appearing in the expression for the free
energy required to form this monomolecular layer

aAfl”
2ho,.

4ho o
LTAf

p.=

A¢) =2heo -+ 2vac,+ vhe—valAf (73)
where e is the free energy required to form a unit
length of “edge’ in the monomolecular layver. The
introduetion of the parameter e in eq (73) will not
affect the general conclusions previously obtained,
but will affect the quantitative results,

We are justified in considering this case since it
will be shown in section 3.5. that it can be experi-
mentally determined whether e is negligible or not.
Equation (73) applies to a layver where the step
height of the monomolecular layer is less than that
of the growing erystal surface.

The free energy required to form a monomolecu-
lar layer with a larger step height than the growing
rystal  surface requires the addition of a term
2vheo,Al to eq (73), where Al is the difference in
step height.  The free energy required to form a
monomolecular layver with the same step height as
the growing erystal surface is

A¢;'' =2he |+ 2vac,—ralAf, (74)
e, no term in e appears,

Ina]u\rlmn of eq (73) shows that when 1< 2a /Af+
he/aAf, A¢, increases with inereasing v. This \\IH
hold true until the monomolecular layer extends
around the entire ervstal when a maximum free
energy will be attained. Further additions of step
elements would then reduce the free energy. The
activation barrier would be very large particu-
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larly if the erystal were large. The formation of a
stable nueleus with a step height less than 2¢,/Af+4
he/aAf would undoubtedly pn_n,vud through the for-
mation of a differently shaped nucleus, but would in

any case require a very large activation barrier. We
see therefore that we need only consider the case
..c.r y

(75

1> Af+a AT 75)

Inspection of eq (73) shows that it is identical to
eq (59) if o, in the former equation is replaced by
(6,-he/2a) in the latter. It is therefore unneces-
sary to repeat the ealculations, and the step height
of the monomoleuclar layer will be

2a,

.
P=3f aAf+h:r,

(76)

After the step height given by eq (76) is established,
additional monomolecular layers of this step height
will require the free energy given by eq (74), W hile
any deviation from this value will 1 require a free
energy that ineludes the edge free energy. Then
the distribution in step heights will be sharper than
that ealculated previously.

We have not considered explicitly the case where
the monomolecular layer has a step height greater
than the growing erystal face, but it can be shown
that the rate of deposition of such a layer is negli-

gible, if there is an appreciable increase in step
height.  Thus while the step height of the primary

critical nucleus may persist for a time, it is expected
that as the erystal grows the step height will be
reduced to 1* as given by eq (76) and the grown
ervatal will possess the step height 1%

The above remarks apply when the edge free
energy, €, is not so large that the right hand side of
eq (76) 1s larger than %, the step height of the erit-
ical nucleus, I, however, the value of 1* as given
by eq (76) is larger than I¥ then the grown erystal
will have a step height 1§, characteristic of the
homogencously formed eritical nueleus.

It should be mentioned that if the edge free energy
in the primary nueleus, €, is included in our caleu-
lations it 1s found that

1o,
Af

J( E,

= (77)

It must be understood that e, and € are in general
different and in fact it is likely that e is appreciably
larger than e,. Similarly, the free energy required
to form a critical nucleus is

2(%¢  a,

i }( o’ Ep
(Af)®

(af) (78)

Ag}=

[t may be stated in summary that, independent of
the value of e, the grown crystal will have a step
height that is quite uniform due to kinetic factors
that arise from the nature of the saddle point in the



free energy surface of forming stable growth nuclei.
However, the step height of the grown erystal will be
numerically different for different values of e: (1) If e
is negligibly small the step height of the grown erystal
ig given by eq (71). (I1) If e has a moderate value
the step height of the grown crystal is given by eq
(76). (ILI) If € is very large the step height of the
grown crystal is equal to that of the primary nucleus,
and is given by eq (77). Case 1 can be distinguished
from II and 11T by a determination of the melting
point. of these erystals that will be described in
section 3.5. Cases 11 and I1I may be distinguished
by an accurate measurement of the melting point of
the crystals combined with an aceurate measurement
of the variation of step height with the temperature
of crystallization.

In order that the overall kinetics of erystallization
can be caleulated, it 1s necessary to caleulate v (¢, 7),
the volume at time ¢ of a erystal that was nucleated at
time 7. The volume growth in a erystal proceeds
through the formation of a stable secondary nucleus
on the growing (lateral) surface followed by the
“erystallization” of the entire new molecule. The
rate of addition of molecules to the ervstal will equal
the product of the average number of molecules in
contact with the growing surface, p, and the rate at
which one of these molecules forms a stable nucleus,
P.. Then the rate of volume inerease of the erystal
will be,

(79)
where al is the average crystalline volume of a poly
mer molecule. In section 2, the growth rate of the
linear dimensions of a polymer crystal in a bulk
phase was nucleation controlled and independent of
time, unless impingements or chain entanglements
between different ervstals occurred. Impingements
can be neglected in the growih of crystals in dilute
solution. However, the growth rates are determined
' v both diffusion and nucleation processes, and are
not in general independent of time for the loop
nucleus, The number of polymer molecules per unit
volume of the solution at the growing surface of the
crystal, n(t, 7), will depend upon diffusion processes
and the consumption of polymer molecules. Never-
theless, since only a rough estimate of the erowth
rate will be attempted, it will be assumed that

n(t, r) =mn,. (80)

We can estimate p by assuming that every polymer
molecule that approaches the edge of the erystal by
a distance closer than one-half its mean end-to-end
distance in solution, A, can form a secondary nueleus.
Then, if A>1%,

p=P(x\*)n, (81)
where P is the perimeter of the erystal and ny is
taken as the average number of polymer molecules
per unit volume at the growing surface of the crystal.

It is assumed that the shape of the cross section
of the crystal is a parallelogram with an acute angle
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between two sides, ¢y=70° Experimental values of
Y=066° to 74° have been found by Till [3] for linear
polyethylene erystals obtained from dilute solution,
This is approximately the shape of the single crystals
of polyethylene obtained by Keller [1]. It is also
assumcd that all four sides of the parallelogram have
the same length, X, i.e., X=x=y. This assumption
simplifies the following caleulations, and is a con-
sequenc * of the double spiral model used (it is clear
for figs. 4b and ba that x=y). Many other models
also would lead to the same result. Then the volume
of the growing crystal is

v.=1* X?sin y. (82)
The perimeter of the growing crystal is
P—4X, (83)
Combining eqs (79), (81), and (83),
DY enialn Xy (84)
dt
Integration of eq (84) gives immediately
vy
v.(t,7)=al-+4rAalp,n, l Xdr'. (85)

Substitution of eq (82) into eq (84) yields after some
manipulation

_dX  2rAalL

fis sy P (86)

Under the approximations employed above, the
growth rate, G, of the sides of the crystal is in-
dependent of the time. Integration of eq (85) yields

2rAal

I* sin ¢

X(t,7)= pony(t—r7) (87)

where X(7,7) has been equated to zero.
Substituting eq (87) into eq (85) it is found that

o SrA(al)X(p)? . ., (t—7)?
ch,f):afl'l'ww‘g_ (ng_}' 9 : (88)
Equation (74) gives us our desired result. It must

be remembered that this equation is valid only in
the early stages of the ecrystallization process, and
only when diffusional effects are negligible. The term
aL is the volume of the primary erystallite, and the
second term represents the additional volume at
time ¢ due to aceretion of new molecules on the
lateral surfaces.

3.4. Value of n for the Overall Crystallization
Process From Dilute Solution

In discussing crystallization from dilute solution
we define the quantity, x, as the mass fraction of
the total amount of polymer in the solution that is



erystalline. x will then be zero when no erystals
have been formed, and will attain the value of unity
if all the polymer present has entered the erystalline
state. The crystalline mass is

Mr—"Pcvc (89}
where p, and V, are the density and volume of the
crystalline phase. The total number of polymer
molecules is mV,, where V, is the initial volume of
the solution and m, is the initial number density of
polymer molecules. If all polymer molecules were
crystallized, the crystalline volume would be ap-
proximately n,V.al, where L is the mean length of
a polymer molecule. Henece the total mass of poly-
mer is

M,,.—pnoV,aL, (90)

and by definition

M, V.

B ot il 91
X M., n,alLV; (01)
Since (malV,) is independent of time, the time
dependence of y is determined by the time depend-
ence of V.. The erystalline volume as a function of
time is

il
vczv,J I()v.(t,7)dr (92)
(1]

where VI(7)dr is the number of stable nuelei formed
between 7 and 7-+dr, and v.(¢, 7) is the volume of a
erystal that was nucleated at 7. From eqs (91)
and (92).

1

X=aal (93)

J.-‘If'r)\’c(i,r;}(lr
0

Both the nucleation rate and the erystal growth rate
will be reduced as erystallization proceeds due to
the depletion of crystallizable material. Also v.(f, 7)
will be reduced in value if long range diffusion effects
are important, and at the beginning of the erystalli-
zation process the nuecleation rate I(r) will not have
attained its equilibrium value. These circumstances
introduce serious difficulties into an accurate evalua-
tion of x from eq (93). Instead of attacking these
problems, we shall limit ourselves to the presenta-
tion of an approximate expression for x in a form
that has been widely used in the interpretation of
experimental data.

In order to introduce this approximate expression,
we define a new quantity, x’, which is the value of
x that would result if all erystals were growing in a
solution where the number density of unerystallized
polymer molecules remained at the constant value
n,. From its definition it is elear that x’ may take
on values from 0 to . We shall assume that an
adequate representation of the effect of the depletion
of erystallizable material is given by

dx__dx’
df — dl 4

X

=

(94)

g1

Here X, is the limiting value of x. In dilute solution
it is expected that X, is very close to unmty, and it
will be assumed henceforth that X,=1. (In the
corresponding expression for bulk polymers [6], X,
can be considerably less than unity as a result of
impingements). Equation (94) is clearly accurate
at small values of t, and probably reasonably ac-
curate up to moderate values of x. From an inte-
gration of eq (94) it is found that

"

(95)

We have cast our expression for x into this form for
convenience in comparing our results with experi-
mental data. Expressions of the form of eq (95)
with x’=Z,t" have been derived phenomenologically
by Mandelkern, Quinn, and Flory [9] and others [6],

y=1 — ¥

and have been widely used in mterpreting experi-
mental data. These expressions are plotted for
various integral values of n and comparison is made
with experimental isotherms. The value of n which
vields the best fit provides information concerning
the geometry of the erystal growth. For example,
if the crystals are nucleated sporadically in time and
exhibit lineal two dimensional growth, n will be
equal to three. It should also be noted that if
x'=1Z,1", the isotherms defined by eq (95) obtained
at various temperatures should be superposable
simply with a shift in the time scale.

The quantity x’ is defined as that value of x
which would result if all erystals were growing in a
solution of constant number density m, of polymer
molecules, Then the equilibrium nucleation rate is
given by eq (51) and v,(¢,7) by eq (88). Substituting
these values in eq (93) it is found that

X' = Zyt +Zat? (96a)
where
Z]:f'}f_ e—a.p;..u'.':'e—m;,,rr.-?‘ E'E}{ih)
'
_-('_’wlgnn)"l al, (.'"i.‘T) 0, —AFIKT ,—AB5 KT
T3 PFeinyg \ k (p,)% :

(96¢)

where p, is probably of the form given by eq (72).

It can be shown that the linear term (Z;f) often
lies in an experimentally inaccessible region. Then
[‘ 2#)\!““}") aL -!I?.r{r-

a

—AFYIET ,—ABSIKT

=z P [ )%e
x =t 3 I* sin ¢\ A ,)(p"*r ¢
(97)
Substitution of eq (97) into eq (95) yields
x=1—e¢ (98)

Tt is in order at this point to mention the principal
approximations made in deriving eq (98) for simple
loop-type crystals: (a) the depletion of erystallizable
material was approximated by eq (94); (b) the growth
of the crystals was assumed to be nucleation con-



trolled instead of diffusion controlled; (¢) the equilib-
rium nuecleation rate was assumed to hold at all
times: and (d) nucleation on the end surface of the
erystals has been neglected.

The approximation for depletion of erystallizable
material should be reasonably accurate for small
and moderate values of x, although not valid for
values of x near unity. Since at sufliciently low
concentrations of erystallizable material the crystal
growth must become diffusion controlled, eq (98)
cannot be accurate when x is near unity. The
validity of the assumption of nucleation controlled
agrowth for low and moderate values of x 12 more
difficult to evaluate. It is believed reasonable by
the authors that, except at very low concentrations
ot the erystallizable material, the effects of long
range diffusion will not predominate. When these
effects do predominate, the exponent of the time in
eq (98) will be lowered somewhat. Finally, it is
expected that the growth rate of the crystals is
much more rapid than the primary nucleation rate.
Under these circumstances the effects of the transient
nucleation rate may be observed for low values of x.
This could cause the observed exponent of the time
in eq (98) to be quite large for small values of x,
even exceeding n=4. (In this region, the value of
n is fictitious in the sense it does not reflect the type
of nucleation and growth of the erystals.) If
growth through secondary nucleation on the end
surfaces is important the value of the exponent will
be increased over what it would have been in the
absence of such growth.

Our results may be summarized as follows: If the
phenomenological expression

x=1—e %" (99)
is fitted to experimental data, we should expect that
the best fit at moderate values of x should be
obtained for values of n near three. If long range
diffusion limits crystal growth, somewhat lower
values of n can be expected, whereas growth of the
cryvstals through nucleation on the end surfaces will
raise the value of 7. At low degrees of crystallinity,
higher values of n might be observed due to the
effects of a transient nueleation rate. The wvalue
n=3 18, of course, that appropriate to (lineal)
two-dimensional growth of objects born sporadically
in time.

These results agree reasonably well with the
experimental isotherms obtained dilatometrically by
Mandelkern and Quinn [17, 18] on erystallization of
polyvethylene from a 0.25 percent solution of
a-chloronaphthalene. Mandelkern has not investi-
gated the morphology of the resulting polyethylene
crystals, but he states that this concentration is
comparable to that in which platelike crystals are
formed. Superposable isotherms were obtained for
crystallization temperatures from 97° to 104°C.
The superposability of these isotherms in
marked contrast to the results he obtained with
more concentrated solutions, but similar to that
obtained for bulk crystallization. In addition,

18
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Mandelkern compared eurves of the form of eq (99)
with his isotherms and concluded that if the first 5
percent of the transformation is neglected, an almost
exact fit is obtained for the major portion of the
process if values of n=3 and n=4 are used. The
first 5 percent of the erystallization process would
require considerably higher values of n for a proper
fit.

The agreement between our results and the
experimental isotherms is consistent with the assump-
tion that these isotherms result from the formation
of crystals with folds. We shall proceed on this
assumption and investigate the temperature depend-
ence ol the rate of overall erystallization in section
3.6. In order to perform this analysis we must
estimate the equilibrium melting temperature, T,,.
In estimating T,, certain pitfalls can be avoided
by elucidating some properties of crystals with folds
that result from their metastability. This is done
in the next section.

3.5. Metastability of Crystals Formed by Chain

Folding

In previous seetions the nucleation and growth
of polymer erystals with loops has been discussed.
We shall now give a brief treatment of the metasta-
ble character of these crystals. It will be demon-
strated first that erystals with loops formed isother-
mally will have a relatively sharp melting point
T,.. appreciably below the equilibrium melting tem-
perature in  the presence of solvent, T,. The
possibility that erystals with loops may have a
tendency to inerease their step height when stored
at elevated temperatures will also be discussed.
Before these points can be treated, it is necessary
to consider the free energy difference between the
crystalline state and the solution state for a crystal
with loops.

If a erystal has » step elements of length 1, its
free energy with respect to the solution state is

A¢.—2vac, - Coqval—rvalAf. (100)
Equation (100) is formally identical with expressions
for the free energies of nuclei that have been pre-
sented in previous sections, but several important
distinetions must be noted. The erystal under con-
sideration has been formed with a length 1 in an
isothermal manner. We redefine the temperature
of cerystallization as T,. Equation (100) represents
the free energy of the crystal at a temperature 77,
which 18 not necessarily the same as the temperature
of ecrystallization, T,. The variation of the free
energy of the erystal, A¢., with temperature is pri-
marily due to the variation of the thermodynamic
driving force, Af, with temperature. The approxi-
mate variation of Af with temperature was given in
eq (28) which is rewritten here for convenience

Af=ah, (=7

(101)



Finally,
applies to a crystal, not a nucleus,

The volume of the erystal is val.  Then the free
energy difference per unit volume of er ystal between
the crystalline and solution states is

=Tt ab (Mo )

m
Since the erystal has a large number of step elements,
v~ is small, and the second term on the right hand
side of eq (102) will be neglected.  Then

(88 (50

The most stable erystal at any temperature will be
that erystal which has a minimum value of A¢./rval.
It is elear from eq (103) that eryvstals with large step
heights are more stable than erystals with smaller
step heights, It 1s, of course, not surprising that a
larger crystal is more stable than a smaller one.
However, when a loop-type erystal of length 1 and
of a given volume has been formed, it will probably
be difficult for the step height to increase simply
by having the crystal (hzlnlrv its shape. Such an
inerease nl step ]mullt would lmld to be slow because
of the complicated diffusion mechanism with length-
wise “sliding” of the polymer chains that would be
involved. The ensuing discussion 18 carried out on
the assumption that, in a melting experiment of
sufficiently short duration, 1 will not inerease
appreciably.

Il crystals with loops with length 1* are formed
isothermally at a temperature of erystallization, T,,
they will melt at a temperature appreciably below
the equilibrium melting temperature.
find the melting point we shall first derive an
expression valid for any L The temperature at
which a erystal melts can be deduced from eq (103).
A crystal with loops, which has a step height 1, is
stable at its temperature of formation with respect
to the solution state. If, after the erystal was
formed, the temperature is inereased, the free energy
increases.  When the free energy of the erystal with
respect to the solution state vanishes, the crystal
will melt, Then the temperature of melting of a
crystal with step height, 1, is obtained by equating
eq (103) to zero and solving for the temperature:

A¢r

(—-— (102)
val

|+
\Pa

Ad,

(103
val )

2a,

T =T, I_Al]f-l' (104)

We see that T, is the melting temperature of a
crystal with infinite step height.

The above expression, eq (104) has been derived
with two tacit assumptions. It has been assumed
that the rate of heating in the melting experiment
is sufliciently rapid so that the step height, 1, does
not increase and sufficiently slow so that the actual
melting temperature of the erystal will be observed
to a close approximation. The recrystallization at

v is a very large number since eq (100) |

In order to |
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greater step heights after melting need not be con-
sidered since the large negative temperature coefli-
cient. of the erystallization process ensures that
reerystallization is very slow.,

We have seen that in an isothermal erystallization
the step heights of the erystals will be very close to

characteristic value, 1*. Thus all the ecrystals
formed in an isothermal ervstallization will melt at
almost the same temperature.  This temperature,
T,, which is where these crystals melt, i.c., redis-
solve, is obtained by substituting the appropriate
value of 1* into eq (104):

T:,t-—Tm[l—-——

Let us first consider the case where the edge free
energy, of nucleating a monomolecular layer is

(105)

negligible.  Then from eq (71) and eq (28)
n) T
l*z_ __im (106
Ah,T,—T, +( o, L06)

Sinee ET,/Co, 18 20 A or less and 1* is characteris-
tically near 120 A, it follows that when eq (106) is
substituted into eq (105), then T, is only a few
degrees greater than T,. Thus, if the edge energy
is negligible, the erystals formed at a temperature of
erystallization, T,, will melt only a few degrees
above T,. Hence, an investigation of the tempera-
ture at which the erystals melt in solution can de-
termine whether e is negligible or not.  The com-
bination of these results with an accurate determi-
nation of the variation of step height 1* with the
temperature of erystallization, T, s should determine
the importance of e and e,. If the step height of
the crystal is as large as that of the eritical primary
nucleus with e, neglected, then

4, T,

l*zhh T (107)
f Am— Ag

Substituting this value in eq (105) it is found that

1

Tow=5 (T4 Tw) (108)

Then even if the step height is as large as that of a
primary nucleus the erystal will tend to melt at a
temperature approximately midway between the
equilibrium melting temperature in the presence of
solvent, and the temperature of crystallization.

The presence of a substantial number of crystal-
lites with a small number of step elements would
tend to broaden the melting curve, and imperfections
due to branches might have a similar effect. It is
to be understood that Tj, is to be measured under
conditions where the warming rate is slow enough
so that thermal equilibrium is established, but not
so slow that 1¥ has time to increase appreciably,

A direct determination of the equilibrium melting
temperature in dilute solution, T,,. by slow warming
may prove very difficult because of the persistence



of the step height. The “T,”" value so obtained
could easily be somewhat low.

The above results were derived for crvstals in
solution, but it is believed that they would be quali-

tatively true if the erystals were removed from the |

|

solution and the solvent eliminated from the crystals, |

For example, a mass of dried loop-type crystals,
previously initiated and grown to large x and y
dimensions in an isothermal manner from dilute
solution at a temperature below T,, should melt
fairly sharply and well below 7),, the (bulk) equi-
librium melting temperature.

It is not difficult to show that e erystal with loops
s more stable than a bundlelike erystal of the same size
and shape in a sufficiently dilute solution. The
free energy difference between a loop-type crys-
tal and the solution state is given in eq (100)
The free energy difference between a bundlelike
crystal of the same size and shape and the solution
state is obtained by replacing a, Af, o, and o, in
eq (100) by a, Afy, 6w, and (sea—kTlogen,/2a).
The quantities @, Afy, and oy are comparable to
a, Af, and o, The end surface free energy for a
bundlelike crystal in dilute solution was seen to
be (ggq— (kTlogew:/2a) in  section 3.2, and in
a sufficiently dilute solution this surface energy
18 greater than o, Then in a sufficiently dilute
solution the loop-type crystal is more stable than
a bundlelike crystal of the same shape and volume,
because the end surface energy contribution to
the bundlelike crystal is much larger. In fact
if the solution is sufficiently dilute so that loop-type
nuelei are kinetically favored over bundlelike nuclei,
the grown loop-type crystal are at the same time
more stable than a bundlelike erystal of the same
shape and volume. This result applies to crystals
in solution.

If a loop-type erystal of a given volume and cross-
sectional shape 1s in a dilute solution, the step height
of this erystal will eventually approach an “equilib-
rium” value, where the total surface energy of the
crystal’'will !be minimized. The “equilibrium’’ value
of the step height can be obtained by differentiating
eq (100) with respect to 1 with the volume, wval,
held constant, and then equating this result to
zero. If the resulting equation is solved for 1, it
is found that the “equilibrium” value of the step
height is (40,/Ca,)** VY where V is the volume of
the crystal. This result is based on the assumption
that the polymer chains are much longer than the
step heights considered. From this formula it
follows that the “equilibrium” value of the step
height is roughly equal to the lateral dimensions
of the erystal. From this it is elear that the
experimentally observed polyethylene crystals with
characteristic step heights near 120 A have not
attained their “equilibrium” step height through
“sliding” diffusion.

3.6. Kinetics of the Overall Crystallization Process
for Dilute Solution

In this section the theoretical expressions for the
rate of overall erystallization are compared with the
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available experimental data with particular emphasis
on the temperature dependence of the rate expres-
sions. Unfortunately there are no available rate
data in those systems where erystals with loops have
been identified through morphological studies. The
only aceurate rate data for erystallization from dilute
solution are the dilatometric measurements of
Mandelkern and Quinn [17, 18] on the erystallization
of linear polyethylene from a 0.25 percent solution
of a-chloronaphthalene. The morphology of these
crystals was not investigated, but Mandelkern states
that the concentration range is comparable to that
in which platelike erystals are developed. This en-
courages the belief that crystals with folds were
predominant, especially since the temperature de-
pendence of the shape of the isotherms is in marked
contrast to results obtained for crystallization from
more concentrated polymer solutions.  An analysis
will be performed on the assumption that ecrystal-
lization through chain folding was predominant.

In preparation for an analysis of the experimental
data a brief discussion will be given of the temper-
ature dependence of the overall crystallization rates,
Expressions for the overall erystallization rate were
presented in eq (97) and (98) and will be rewritten
here for convenience:

=1t (109)
where
2rA'ny)? a BTN
Za“( 11-3 o l*gﬁ;lw 5 ) D0 e BT AR
(110)

When the temperature of crystallization is not too
far from the melting point so that AT is small, the
principal variation of Z; with temperature is due to
the factor pj exp{—Ae¢j/kT}. The quantity A¢}
has been previously obtained:

20% oo, T

(4h)*

1

Ag,= @an? (111)

The temperature dependence of p, is much smaller
than exp{—A¢#/kT}. Tn fact it seems more likely
that log p, has a different temperature dependence
than A¢}. In anyv case we may write

F:
o

Zy—=Zye TGN (112)
where at low degrees of supercooling, Zi varies
slowly with temperature compared to exp {—a’/
T(AT)*}. In the case where p, does not contribute
appreciably to «,” we have

9122 M2
20%aa, T2,

(Ah)?2k

7
o

12

T

(113)

For the remainder of this section if will be assumed
that eq (113) is valid, although this is not essential
to our analysis.



It has been shown that eq (109) is an adequate
description of the isotherms of erystallization at
moderate values of x for the erystallization of linear
polyethylene from a dilute solution of a-chloro-
naphthalene. If the temperature of crystallization
is changed, the value of Z; is changed. The shape of
the isotherm remains unchanged although the time
scale is shifted. This allows us to specify the rate
of the crystallization process by the time required for
the value of x to reach 0.5. Then from eq (109)

2
o2

Zs(ty)*=lo (114)
If the logarithm to the base 10 is taken of both sides,
and eq (112) is substituted into the result, it is found

after some manipulation that:

1 1

It is elear from eq (115) that if experimental values
of log(1/ty) were plotted against 7-'(AT)~* for
various erystallization temperatures, an approxi-
mately straight line should be obtained. The value
of the produect (e e,) could be obtained from the
slope of this straight line. Since AT=T,—T, it is
clear that the equilibrium melting temperature, T,,
must be known before such a plot could be con-
structed.

Mandelkern and Quinn [17, 18] have observed the
isothermal crystallization of linear polyethylene
from a 0.25 percent solution of a-chloronaphthalene
dilatometrically. The shapes of their isotherms
agree at values of moderate x with eq (109), so that
it seems reasonable to apply eq (115) to the tempera-
ture dependence of these isotherms. Mandelkern
has tabulated the values of #,; for one degree inter-
vals of the erystallization temperature between
97° C and 104° C. He also quotes the equilibrium
melting temperature as being between 109° C and
110° C [18], and presents a plot of log(1/4;) versus
100/(AT)* which is based on this value of T,. In
figure 9 a similar plot is presented. Figure 9 is con-
structed from the tabulated values of Mandelkern,
plotting log(1/t) against 10°/T(AT)* with T, =110°
C. The curve shown in figure 9 is certainly not a
straight line, but is rather concave upwards. More-
over, the slope at the lower degrees of supercooling is
smaller in magnitude than the corresponding slope
for bulk polyethylene which would appear to indicate
that oo, is smaller than the corresponding product
for the bulk polymer. These facts stand in apparent
contradiction to the theory presented in this paper.

The morphology of the erystals was not investi-
gated by Mandelkern and Quinn. It is therefore
possible that the theory developed in this paper is not
applicable to the data plotted in figure 9. However,
it is no easier to explain the curvature in figure 9 if
one assumes that bundlelike crystals were nucleated
either homogeneously or heterogeneously. Since
the deviation from a straight line of log(1/t.,) plotted
against 7'AT-% or T'AT™' is not accounted for
by the hypotheses just given, a further discussion of

2y
log,2

1 e log,e
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the data will be given. This discussion will show
that the experimental data are not necessarily incon-
sistent with the theory presented in this paper and
will serve the useful purpose of emphasizing the
care required in obtaining experimental evidence
that provides a critical test of this theory.

\

log

N ' S e s
Clo%/1(aT)2]

Ficure 9. Plot of log (1/{) against [105 T(AT)%] for o 0.25
percent  polyethylene  solution in a-chlorcnaphthalene with
Pa—=120% €,

(After Mandelkern, see ref, [18]),

1 |

Upon reflection, a possible resolution of the
apparent diserepancy ecan be seen. Suppose that
the value T, =110° C was obtained by dilatometri-
cally observing the melting of the crystals in the
solution. In the previous section it was shown that
crystals formed in dilute solution may melt sharply
well below the equilibrium melting temperature for
dilute solution. Then the correct value of T,, might
be appreciably higher than 110°. Rough estimates
of T,, can be made by two separate methods. First,
if it is assumed that eq (108) is accurate, and that
the observed melting temperature, T, is 110° C,
the equilibrium melting temperature is obtained if
the erystallization temperature is given. For ex-
ample, if it is assumed that for a sample crystallized
at 96° C the observed melting temperature of these
erystals is 110° C, then T, =124° C. If the tempera-
tures of crystallization and observed melting were
103° and 110° C, T,=117° C. This method of
estimating T, has two drawbacks: (a) the estimate
furnishes a range of values of T,, instead of a single
value, and, (b) eq (108) is probably not very accurate.
Another method of estimating T,, 1s to plot log,o(1/£,/2)
against (10%/7T(AT)*) for wvarious values of T,,.
T,, is taken to be that value which yields a straight
line plot, if such a value exists. This method of
estimating T,, is based on the correctness of eq (115).
In figure 10 plots of log(1/t,,) against 10%/T(AT)?
are presented for the assumed values of T,—117° C
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Fiaure 10.  Plot of log (1/ty) against (10°T(AT)?) for 0.2

pereent polyethylene solulion in a-ehloronaphthalene for i‘u 0
assumed values of T, showing approach to straight-line be-
haviar.

Tha slope of the line obtained with Tw=124° C implies a afo’r valne of ~1070
erg! em-",

and T,=124° C. The plot for T,=117° C has
considerable curvature, but the plot for T, =124° C
is fitted well by a straight line.

It is found from the -anv of the plot in figure 10
for T,,—124° C that (ele,)=1070. This value is
much larger than the Lont-spmullng value obtained
from the data on bulk polyethylene where (olo,) ~
100, as ecalculated from the slope of the plot of
(log 1/t,,2) against 100/(AT)* presented by Mandel-
kern [18]. This is consistent with the coneept that
a, >0, eq (27). Then the supposition that T, =
124° C resolves each of the apparent discrepancies
between the theory presented in this paper and the
experimental rates. It is, of course, not clear that
the plot of lug{l /t,12) should be e \.J(ll\ straight since
Zy in eq (115) is temperature depe mndent.  Howeve Y,
even if T,, is as low as 117° C the ]llm in ficure 10
corresponds to a value of ofe, which is lau"vl than
that observed for the bulk pul\mm It is clear that
there is no inconsistency between this data and the
theory presented in this paper if T, is appreciably
larger than 110° C.

Such high values of T, are not inconsistent with
the errors in estimating T,. In determining the
heat of fusion of polyethylene, Quinn and
Mandelkern [14] measured the melting temperature
of polyethylene as a function of concentration in

various solvents, The heat of fusion per mole of
repeat units, A, was caleulated by fitting the
experimental data to the vqunlirm

}- (116)
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Here T, is the equilibrium melting temperature of
the bulk polymer, V, and V, are thv molar volumes
of the repeating unit and the diluent respectively, B
is the interaction energy density characteristic of the
solvent solution pair, and 7, the equilibrium

1
?1!11 (d)

m,_

- ld)
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melting temperature in the presence of diluent. (We
adhere to the assumption that a value of 7)., for
p»—1 obtained under equilibrium conditions is very
{lmv to T,..) While AH, was determined within a
few percent, Quinn and Mandelkern state that 7

could be in error by several cal-em*. For poly-
cehylene in  a-chloronaphthalene they obtain a
value B~0. If a value of B=‘1 cal-em. ™ were

assigned and A, left unchanged 7,,.,->124° C as
n—1. Thus T,(;)=124° C lies within the assigned
experimental error. On the other hand it is some-
what difficult to reconcile the data of Quinn and
Mandelkern for moderate concentrations of poly-
ethylene in a-chloronaphthalene with a value of
T for »,—1 as high as 124° C. In short, no
definite conclusion can be drawn, but the authors
feel that the apparent discrepancy may arise from
an incorrect value of T,,.

dven if the correct value of T, is 110° C for a
dilute solution of polyvethylene in a-chloronaphtha-
lene, the data of Mandelkern and Quinn are not
m-r-.vssmll_\' inconsistent. with the theory presented
in this paper. Equation (115) was derived on the
assumption that the equilibrium nucleation rate
was attained. If, however, the growth rate of the
crystals is so great (.umpm{'cl to the nucleation rate
that the early nucleation transient determines the
overall crystallization rate, a different type of
expression may be expected. No attempt will be
made to obtain an accurate expression for the
transient nucleation rate, but the mfluence of AF%,
the free energy barrier to addition of another step
element, will be very pronounced. This would lead
to a plot of log (1/t;) versus 7T 'AT* similar to that
shown in figure 9. 1t should be noted that the first
5 percent of the isotherms obtained by Mandelkern
secemed to imply a transient nucleation rate. It
should also be noted that if transient nuecleation is
determining the rate of crystallization of crystals
with loops, a reduction in the conecentration of the
golution will reduce the growth rate and straighten
the plot of log (1/f;) versus T-'(AT)=% The curv-
ature of the plot obtained by Mandelkern and Quinn
could apparently be explained if e, were not negli-
gible because then A¢f would be given by eq (78)
and hence a straight line plot would not be expected.
This, however, does not account for the low value of
a’a, obtained from their data when T, is 110° (.
The data of Mandelkern and Quinn may also be
explained by other special assumptions, but these
possibilities do not appear to be as likely as the ones
cited.

Tt

i,

is clear that for a proper evaluation of the

| experimental data an accurate value of T,, must be

obtained. Since it has been shown in section 3.4
that crystals with loops may melt well below equi-
librium melting temperature, it is possible that this
represents a serious problem for dilute solutions.
One possibility is to measure the temperature of
melting and the characteristic step height, 1*, as a
function of erystallization temperature and attempt
to extrapolate to the equilibrium melting temperature
by the use of eq (105).



4. Discussion

4.1. Brief Summary of Results

The general predictions yielded by the present
study can be summarized in the following manner:

When a erystallizable linear polymer is precipitated
from sufficiently dilute solution by supercooling,
platelike crystals with a definite step height 1* waill
form. In these crystals, the chain axes of the polymer
molecules will be perpendicular to the two large flat
faces of the platelike ervstals. The aforementioned
flat faces will contain chain folds, i.e., they will con-
sist of loops. The step height depends on the tem-
perature of crystallization, and on the surface free
energy, a,, of the interface containing the loops. The
step height is larger for higher erystallization tem-
peratures, and inereases with o,.  The latter quantity
will be fairly large, owing to the fact that the work re-
quired to form a loop is involved. (The correspond-
ing quantity for bundlelike nuclei, o, is considerably
smaller since it contains no Innp energy.) At the
degree of supercooling commonly encountered in
practice, AT=10 to 40° C, I* may be expected to lie
in the range 50 to 500A. The most perfect erystals
will be formed from highly dilute solution, and with
unbranched polymer. More imperfect specimens
will be formed from more concentrated solution, and
a threshold will be reached where very poor ervstals
will form. The step height will be remarkably uni-
form if the erystallization is carried out isothermally
from a highly dilute solution. Pyramidal growth,
where one erystal with fixed step height grows on the
flat (loop containing) face of another, is to be ex-
pected at moderate dilution, but single erystals
should be common at low concentration. In excep-
tional cases, erystals consisting of but one molecule
may bhe observed. Much more common will be erys-
tals that have grown to fairly large dimensions by
successive addition of new polvmer molecules through
secondary nucleation on the lateral surfaces. These
will have substantially the same step height as the
primary cryvstallite.  In many eases, distinet protru-
sions on the lateral surfaces due to secondary nuclea-
tion and growth may be seen. The more perfeet
erystals will often have a regular shape of simple
geometrie form when viewed normal to the surface
containing the loops. Depending on the crystal
system, the erystals could, for example, be diamond-
or hexagon-shaped.

The overall rate of crystallization will probably
follow a law where n=3 or n=4, most likely nearer
the former, over the main part of the process, but
deviations from the suggested range in the early and
late stages are a distinct possibility. In the early
stages a steady-state rate of nucleation may take
some time to develop, and in the late stage, where the
majority of the molecules have already been swept
from the solvent, n may fall.

The crystals containing chain folds formed in
dilute solution are metastable: Iven in the case
where a crystallite of step height 1*, which is formed
in solution at a crystallization temperature, T, is
allowed to grow to very large size in the other two
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dimensions, it will still melt appreciably lower than
T,, the melting temperature in the presence of sol-
vent of a H\Hltl“lll' that is large in all three dimen-
sions. (Crystals free of anl\vnl formed by drying
erystals with loops formed in dilute solution will bo-
have in a qualitatively similar manner, and melt well
below the equilibrium bulk melting temperature, T
The observed melting point, T, of a set of crystai-
lites formed wullwlllm[l\' from dilute solution may
be surprisingly sharp (but low) owing to the uni-
formity of the step height. This will be especially
true for large erystals precipitated from very dilute
solution. 1If a set nl' erystals with loops with charac-
teristic step height If, is formed at an isothermal erys-
tallization tvm]wmtun- 7', and then the temperature
of the ﬂnlutim] misu] to 7., where the characteristic
step height is 1%, I¥ will still tend to persist for some
period of time ul T:. Thus the melting point T,,
characteristic of (1%, T}) will tend to persist even though
the temperature of the solution is raised. The equilib-
rium melting temperature of crystals with loops in
dilute solution may thus be very difficult to deter-
mine accurately in some cases by the conventional
method of slowly raising the temperature.

An isothermal inerease of 1 due to “sliding”
diffusion in the erystal may oceur.

The temperature dependence of the rate of nuclea-
tion for nuclei with loops should follow a law of the
ceneral form In (I/1)ca/T(AT)*. The value of
a’a, that may be l':-%tlnhll!'(i from e should be larger
than the value of ¥, obtained for the bundlelike
nuelei characteristie nf homogeneous bulk nucleation
in the same polvmer. 1In or der to test the tempera-
ture dependence of I/K, it is necessary to have a
reliable value of T,,, so that AT is known aceurately.

4.2. Crystals With Loops in Bulk Polymers, and
Heterogeneities

The theory given in the foregoing sections deals
with homogeneous initintion of loop-type ecrystals
i dilute solution. The theory renders it clear that
near and below some threshold wvalue of the con-
centration, that loop-type nuclet will begin to pre-
dominate, provided that loop formation is sterically
feasible., The theory does not attempt to predict
what type of erystal might tend to form in an inter-
mediate concentration range where bundlelike and
loop-type nuclei compete.  We have indicated that
in erystallizable linear polymers in bulk that the
conventional bundlelike nucleus seems highly prob-
able. It should be clearly understood that what is
meant here is that bundlelike nuclei of homogeneous
origin seem probable in such bulk polymers; this is
not necessarily related to what type of nucleus
might form by lheterogencous nucleation on the
surface of a wettable foreign particle. Moreover,
we do not ineline to the view that erystals with loops
are 1mpossible to form by a homogeneous process
in a bulk polymer, and this subject, though obviously
speculative, deserves brief discussion.

In a bulk polymer, where n,= 1, bundlelike homoge-
neous nucler should certainly ];fvdumumll- if o, >0
(There ig little reason to expect that the free ener gll.‘:«
of activation controlling the jump-rate at the super-
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cooled-liquid—erystal mterface would be such as
to cause a preponderance ol loop-type nuclei in

bulk.) Then if bundlelike nueclei can grow, the
polymer will erystallize without loop formation.
However, if the radial growth of the bundlelike

nucleus is severely impeded by the strain effect
mentioned in section 2.2, which results from the
inereasing difference in the lattice spacing of the
erystal and “lguid’ just outside the ends of the
bundlelike nucleus as it grows radially, actual
crystallization resulting from such nuclei may be
gtml].\ subdued. lhen another erystallization proc-

ess may enter. Since according to our formula-
tion, the formation of few loop-type nuclel is

possible at #=1, and in view of the fact that these
would grow if ervstallizable material were present,
the majority of crystallites actually observed in the
bulk phase in such a case would be of the loop-
containing variety. The hypothesis that bundle-
like nuelei may be prevented from growing to large
size by strain, coupled with the reasonable belief
that loop-type nuclei, once formed, might not be
subject to such a strain effect on growth, thus leads
to the possibility that loop-type erystals could make
up the main part of the erystallization in the bulk
phase. Even then, numerous bundlelike nuelei
would be present. The main point of the present
theory, however, is that loop-type nuclei (and sub-
sequently erystals derived from them) are quite
certain to appear at sufficiently great dilution,
provided that loop formation consistent with crystal
structure is sterically possible. The theoretical
prediction  of homogeneously induced  loop-type
crystals in bulk t]tp(‘llil‘w on aulfllllmml factors, and
is altogether more of an open question.

At various places in the literature, evidence has
been given suggesting that (I\ﬁltlf'« with folds may
arise in bulk pnl\muu (see ref. [1]). The presently
available evidence that such “structures” as are seen
in bulk polymers may be associated with a step
height resulting from nuclei with chain folds that
are of homogeneous origin is incomplete. If it is in
fact true that step structures associated with folds
actually exist in the bulk phase, we believe full con-
sideration must be given to the possibility that
heterogeneities or surfaces may be imvolved. We
consider it possible that nuelei with folds may form
at the surface of a heterogeneity in a bulk phase,
some or nearly all of the energy deficit arising from
the bending energy g being made up by the interac-
tion energy of the polymer molecule with the hetero-
ceneity. Also, speeial structures may tend to develop
at the surface of a bulk polymer specimen.

From a theoretical point of view, very consider-
able confusion ean be caused by assuming that any
structure seen in a bulk polymer, or on its surface,
is a result of homogenecous initiation. It is now
known that quite stringent measures are frequently
required to develop the intrinsic nucleation mecha-
nism in a bulk polymer. For example, careful filtra-
tion and selection of samples coupled with strong
superheating prior to erystallization is evidently
advisable in some instances. Precautions of the

type just mentioned, which are designed to enhance
the homogeneous nucleation mechanism, do not seem
to be commonly emploved in morphological studies
on bulk polymers.

Our views concerning the existence of loop-type
crystals in bulk polymers may be summarized as
follows: (a) While the evidence that loop-type
erystals exist in bullkk polvmers is mmmtin , proof
lhal such erystals are of homogeneous origin is lack-
ing; (b) if such loop-type cr \'Hllli‘w are in some polymer
pm\vd to be of homogeneous origin, consideration
should be given to the ])nwllnlllv that strain subdues
or prevents the growth of bundlelike nuelei and, since
a few lunp—npv nuelei will be present, thus allow the
predominant crystalline form to possess loops; (e)
a likely source of loop-type nuclei is a heterogeneity,
and full consideration must be given to this fact n
interpreting data on bulk polymers that have not
been subjected to special tre: itment; (d) a proof that
crystals with chain folds oceurred in a bulk polymer
by either homogeneous or heterogencous initiation
would not invalidate the general approach here for
the formation of loop-type nuclei and erystals from
dilute solution.

With regard to the effect of heterogeneities in
dilute solution, it is clear that they will aceelerate
the erystallization process. [Imw\t'[ by eareful
filtration, centrifugation, or previous plc-: lpltnlmn it
should be possible to eliminate the effect of foreign
bodies to a degree sufficient to permit the intrinsic
mechanism fo manifest itself. Judging from the
remarks of Keller and O'Connor [1] concerning their
technique and results, it would appear that many
of the erystals that they discussed were formed in the
body of the solution, and not on motes in the solu-
tion, or on the container walls. There is also reason
to believe that some of the other work cited, notably
the rate studies of Mandelkern [17, 18], may refer to
homogeneous initiation. Nevertheless, it is manda-
tory to exercise considerable care in carrying out
rate experiments in dilute solution in such a way as
to subdue the effect of foreign bodies.

4.3. Concluding Remarks

In this paper, a point of view is expressed that
leads to a number of definite predictions concerning
the formation of polymer crystals with loops from
dilute solution. Perhaps the most important and

| compelling prediction is that crystals of this type

will be deposited from sufficiently dilute solution
if it is physically possible to form a fold that is con-
sistent with lattice structure and steric considera-
tions. Definite predictions are also given, under
certain assumptions, concerning the variation of
step height with erystallization temperature, meta-
stability and melting point, the # law connected with
the appearance of loop-type crystals from dilute
solution, the temperature dependence of the kineties
of crystallization, and the constancy of step height
in a erystal grown in an isothermal manner. In
addition, rough numerical estimates of important
fundamental quantities, such as e, are given.
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Insofar as it can be tested, the theory seems to be
in at least approximate accord with the facts
presently known. It is believed that the theory is
sufficiently to the point as to provide a reasonable
framework for future experimental studies even if i
proves not to be quantitatively correct. Moreover,
specific experimental approaches, together with their
attendant (and sometimes formidable) difficulties
are mentioned. No claim is made that the theory is
complete.  For example, it is obvious that the
interesting details of the structure of the fold itself
have been largely passed over, and some of the
possibilities coneerning the growth mechanism which
could, for mstance, lead to a ramp-type of growth
due to spiral disloeations bave not been mentioned.

5. Appendix

5.1. Equilibrium Nucleation Rates of Crystals With
Chain Folds

We wish to caleulate the equilibrium nueleation
rate per unit volume of erystals formed by chain
folding. The method of derivation, which ig merely
outlined below, is that used by Turnbull and Fisher
[8]. The reader is referred to that paper for details.

A nueleus of » step elements of length, 1, can gain
or lose a step element by an clementary process.
This nucleus may be specified by 1 and » where »
may possess the values

2]

ViV i ]-Vm | -
vy, 18 the minimum number of step elements in a
nueleus.  The number of nuclei per unit volume
with » segments and a length between ©and 14-dl is

(v, l)dl.  The free energy of a primary embryvo or
nueleus is
A, (v)= (g lya)yv—[lAf—2g |av. (A-1)
This function has a maximum value at
; (C'a,1)®
e —s 8 = (A-2
¥ = 1a(Al—20,)" P
The value of Ag, when expanded about »* is
. a*(laf—2e,) (v—o")?
Ad,—A¢)—
P, L (Co 12 s
(A-3)
where
. (Ca,l)*
Ap),= (A-4)

10af—2q,)

A nucleus of length 1 can only become stable by |

addition of step elements. 1 cannot vary without
dissolution of the minimum size nucleus.  The free
energy diagram for nuclei of » and v+ 1 step elements
with some fixed length 1is shown in figure 11. The
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Froure 11, Cross section of free energy surface for the most

probable 1eaction path between embryos of ¥V step elements o
length | and embryos of (v+1) step elements of length 1.

The energy minima at (A) and (f) represent the freo energy difference from
the ligquid state of the two different embryos, respectively.

rate that nuelei with » step elements become nuclel

with »-+1 step elements is

whereas the rate of the backward reaction is

1 (v lel(k}:’_) exp {_:1!—}

Then the net rate of nucleation 7(1)dl is

( ) W,
[niv‘lwl exp {_IT}
—qlv-+1,1dl exp {—%}] (A-5)

W,=AF:+-3[Ag,(p+1.)—Ag, (v ])]

W,

rjfl’,lh“ (é;,;{‘)px“ {_._

k1

Al

)

M}rr‘l——*(ﬁh

Now

(A-6)
W= AFS—3[A¢,(v+1,)— Ag, (D],

where AF% is the free energy barrier associated with
addition or subtraction of a segment from the
nuelei.  The value of AF% will be independent of
v and probably independent of 1.



Now if » is a large number we are justified
treating » as a continuous variable. With this
approximation eqs (A-5) and (A-6) become

}ti_ﬂﬁ’“

(A=T)

kTdl -r,- E)(Ag‘.u,,
h ov

i) dl=—

where higher derivatives with respect to » have been
neglected. This equation is easily integrated from
v=s to w=wo. Using the boundary condition
n( @ 1)=0 for the equilibrium case we have

ET [, ¢80 AT
= _‘_cﬁl_—- —

i —AF,/kT
i F
[ d peBp») KT
o

= (A-8)

The right hand side of eq (A-8) may be evaluated
if sis chosen so v,.< <s< <. We find then by
use of eq (A-3) that

-  at(laf—2¢,) ]
Apy ) T o] &\ 14 ABE [ KT
ﬁ dv s —[ w((o'])’kf] it e

(:’\—9)
which is a good approximation when Ael/kT > >1,

We may evaluate n(s,1)if s is sufficiently small that a
Maxwellian distribution holds. Then

sy dl=Adl e~ 28T (A-10)

If s is sufficiently small we may assume that only the
surface energy terms are important. Then
Ap,~A¢,—((al\a)\r+2c,av. (A-11)

Since the sum over all states ¢1 must equal the
number of polymer molecules per unit volume we
may evaluate A. Treating s and | as continuous
variables running from zero to infinity

-] k-] - -1
.-1=n(,{[ JVJ dle " “} . (A-12)
Tl 0

Substitution of eq (A-11) into (A-12) gives us

7(s, 1) AP HT= U6 ay20, ny (A-13)
v Nr kT2

Then substituting (A-13) and (A-9) into (A-8) we
have the desired expression

(1) _[az"@'—“c (laf— ‘-30'._\.)"”2] nok T ¢~ AFkT
e= w(eT) i

At/
e ﬁD,RT.

(A--14)

We may calculate the total nucleation rate by
The number of

integrating eq (A-14) over all L

stable nuclei formed per unit volume of solution
per unit time 1s
I= Knm“ —ARGAT =00 (kT (A-15)
where
A¢;-_o({:;?“" (A-16)
e (20,)"% (Af)a* (A-17)

VaCla, (kT)%*

Throughout this appendix it has been assumed
that each nuecleus is composed of step elements of
uniform length. This assumption has simplified
the derivation of eq (A-15) and has led to an explicit
expression for the distribution of the lengths of the
step elements in stable nuclei in eq (A-14). It is,
of course, possible that an embryo or nucleus could
be composed of step elements of different lengths.
The remainder of this appendix is devoted to dis-
cussing this more general case. This discussion will
support the validity of the above results.

In the general case an embryo or nucleus will have
v step elements which have lengths: 1, L, . . . L.
The principal difficulty in treating this case is in ob-
taining and handling appropriate expressions for the
free energy of such nuclei. Fortunately for the pur-
poses of this paper the problem is considerably
simplified.  When the edge energy, e, needed to form
a monomolecular layer is large, the free encrgy
gained by packing the loops in a flat surface is appre-
ciable. Hence embryos or nuclei with different step
heights 1, 1, . . . 1,, are energetically improbable
t‘ompan-tl to nuclei whose step elements have the
same step height. Then in this case it is clearly
justified to treat nuclei which may be characterized
by a single step height.  But it is only when € is a
Im oe quantity that the distribution of step heights
in primary eritical nuclei need to be considered, for
it is only then that the step height of the evystal will
be determined by the step height of the eritical
primary nucleus, so that the distribution in step
heights of the primary nuelei control the distribution
in step heights of the crystals. 1f eis a smaller quan-
tity the distribution of the step heights of the erystals
will be independent of that of the primary nuclei,
and only the total nucleation rate is of interest.
The total nucleation rate is given by eq (A-15) in
any case.

5.2. Equilibrium Rate of Formation of Mono-
molecular Nuclei on a Crystal Face

We wish to caleulate the equilibrium nueleation
rate of monomolecular nuclei on a ervstal face,
This problem is similar to the one freated in the
previous appendix, except that the free energy sur-
face is different. In particular, the activated nucleus
is reached in a single elementary process from the
supercooled liquid. It will be assumed that the
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nucleus can contain v step elements where » can
possess the values

0% . o (B-1)
The free energy required to form a nucleus of » step
elements is
A =0, y—0
(B-2)
Ap,=A¢" — (v—1) F, T3 i A

Then the activated state is at v=1, where A¢;—A¢'!.
The same method of derivation will be used as in
appendix 5.1.  Then the rate at which nuclei with »
step elements become nuclei with (v-1) step ele-
ments 1s

whereas the rate of the backward reaction is
L7 i T TR — AT
Nt (,; ) e~ AET axp | ae ‘};.?.Aqb A (B—4)

Here #, is the number of nueclei per unit volume
with v step elements.  The net rate of nueleation per
unit volume, r, is

i iy 2 kT
'?a|1(\l‘|: ad :I} (B-5)

If the rate is an equilibrium rate, r does not depend

(Adi - Aqb.’.h:'

A'}bu—[
2%T

on v. Combining (B-2) with (B-5)
].__"‘:f‘(—_u“.-u (BT | o= BT
p=1 2
and (B-6)
r=(""‘;j_) AR KT mir._—:.;_{‘,x:r?'_ mt_.\;s",-zk-r\-, (B-7)

From eq (B-6)

v A l(_.m‘,rr.r'_ l]
— o BT i AR kT el =
W= ’(_x-r) {2 sinh E,-":ZH‘} (B-8)

Since we are concerned with the equilibrium rate,
7, must be bounded as y—>o=. In order that this is

satisfied
'-nl(i”) y—AF*AT Hlll]l()'{-! (B 9)

Combining eq (B-7) and (B-9) we may solve for r:

7} (B-10)

This then is the desired equilibrium rate of forma-
tion of these nuclei.

Three points in this derivation are worthy of com-
ment. First the derivation in this appendix differs
from that in appendix 5.1 in that the activated state
is attained by a single elementary process. Then
the expression obtained in eq (B-10) must be applied
with due caution since more detailed knowledge of
the nucleation process is assumed than in the previ-
ous appendix.  The second point is that by solving
for n, from eqs (B-8), (B-9), and (B-10) it is found
that

g

kT T o
!'_-'-‘?u( -)t_-“' KT o—Ag kT
e
2 sinh (£/2kT)
|+ 2~ A8 V%7 ginh (K/2k

Noe = .Mvi‘ : T

(—Ae 2kT] smb (E2kT). B 1D

=142 exp

Thus 7, i1s independent of », and does not vanish as
v becomes infinitely large.  This raises the question
of whether a very large time is required before the
equilibrium rate is achieved so that the transient rate
cannot be neglected.  This question can be answered
by a solution of the time dependent problem. Tt
can be shown for the case treated here that the
equilibrium rate is closely approached after the num-
ber of nueclet with a few step elements have nearly
reached the value found in eq (B-11). Thus the
equilibrium rate derived in eq (B-10) is applicable
to the case at hand. Thirdly in both appendixes
5.1, and 5.2. it has been assumed tacitly that nuclei
can be initianted at only one point in the polymer
chain. If this assumption is taken into account in
an appropriate manner, a numerical factor will be

introduced nto the nucleation rates obtained.  This
factor will almost certainly be less than 10%,
Kquation (B-10) 1s first used in section 3.2. to

deseribe the formation of a primary erystallite
through monomolecular aceretion from a eritical-
sized loop-tvpe nuclens. It is later used to deseribe
the growth of a erystallite in section 3.3., ie.,
A¢*—A¢l. Since in sections 3.2, and 3.3. the
quantity rdl is taken as the rate of formation of
nuclei with step heights between 1 and 1-4dl, the
quantity g, will contain a normalization constant €,
which arises because the rates of more than one

| competing process are considered.
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