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A theory of correlations between N photons of given frequencies and detected at given time delays is

presented. These correlation functions are usually too cumbersome to be computed explicitly. We show

that they are obtained exactly through intensity correlations between two-level sensors in the limit of their

vanishing coupling to the system. This allows the computation of correlation functions hitherto unreach-

able. The uncertainties in time and frequency of the detection, which are necessary variables to describe

the system, are intrinsic to the theory. We illustrate the power of our formalism with the example of the

Jaynes-Cummings model, by showing how higher order photon correlations can bring new insights into

the dynamics of open quantum systems.
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Photons emerged as a theoretical concept to explain
fundamental properties of the electromagnetic field, such
as the relationship between the energy of light and its
frequency, thermal equilibrium of light and matter, or the
photoelectric effect. With the advances in the generation,
emission, transmission, and detection of photons, quantum
systems are increasingly addressed at the single photon
level and there is a pressing need for generalizations as
well as refinements of the theory of photodetection [1].
For instance, photon correlations combining both their
frequency and time information are now routinely mea-
sured in the laboratory. These experiments have proven
extremely powerful in characterizing quantum systems
such as a resonantly driven emitter [2–4], the strong cou-
pling of light and matter [5–7], to perform quantum state
tomography [8], to monitor heralded single photon sources
[9], or to access spectral diffusion of single emitters [10].

At this level of fine control of the attributes of the
quantum particles, one needs a theoretical description sig-
nificantly more involved than general mathematical state-
ments, such as the Wiener-Khinchin theorem which
assumes abstract and unphysical properties of the light
field. Eberly and Wódkiewicz, for instance, have shown
how the physics of the detector needs to be included if a
more realistic description of the light field is required [11].
In general, the more detailed is the characterization of a
quantum system, the more necessary it becomes to de-
scribe its measurement. A bridge between the quantum
system and the observer can be made with the so-called
input-output formalism: the photons inside the system, say
with operator a (we consider a single mode for simplicity),
are weakly coupled to an outside continuum of modes, with
operators A! (corresponding to their frequency !). In the
Heisenberg picture, the output field allows us to compute
the time-dependent power spectrum of emission as the
density of output photons with frequency !1 at time T1,

i.e., Sð1Þð!1; T1Þ ¼ hAy
!1
ðT1ÞA!1

ðT1Þi. This quantity is

physical only if the uncertainties of detection in both time
and frequency are jointly taken into account [11].
Mathematically, this amounts to adding two exponential
decays in the Fourier transform of the time autocorrelation

Sð1Þ�1
ð!1; T1Þ ¼ �1

2�

RRT1�1 dt01dt
0
4e

�ð�1=2ÞðT1�t0
1
Þe�ð�1=2ÞðT1�t0

4
Þ�

ei!1ðt04�t01Þhayðt01Þaðt04Þi where �1 is interpreted as the line-
width of the detector. This so-called physical spectrum
reduces to the Wiener-Khinchin theorem in the steady state
and in the limit �1 ! 0.
Extending this result for the detection of two photons

was initially motivated by the Aspect et al. experiment [2]
of resonance fluorescence in the Mollow triplet regime
[12], where the peaks of the triplet were found to exhibit
strong intensity correlations. These were described theo-
retically at first by dedicated methods for the problem at
hand, from Cohen-Tannoudji et al. (dressed atom picture)
[13,14] and Dalibard et al. (diagrammatic expansion)[15].
The extension of photodetection in the spirit of Eberly and
Wódkiewicz by considering two detectors with respective
linewidths �1 and �2 was impulsed by Knöll et al. [16]
and Arnoldus and Nienhuis [17]. The expressions were of
general validity, even though, due to their complexity, the
authors still focused on the particular case of resonance
fluorescence for illustration. The mathematical founda-
tions, shaky in their initial development, were firmly
established in the course of the following years [18–20].
The multiplicity of photons requires a careful time
(T�) and normal (:) ordering of the operators [19,20],
and it was realized that it is the time ordering of

h:Ay
!1
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ðT1ÞAy
!2
ðT2ÞA!2

ðT2Þ:i which provides the

physical two-photon spectrum Sð2Þ�1�2
ð!1; T1; !2; T2Þ ¼

�1�2
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ayðt02Þ�Tþ½aðt03Þaðt04Þ�i. Here, we have defined Tþ
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(respectively T�) to order the operators in a product
with the latest time to the far left (respectively, far
right) [1]. Normalizing this expression yields the
sought time- and frequency-resolved two-photon correla-

tion function gð2Þ�1�2
ð!1;T1;!2;T2Þ¼Sð2Þ�1�2

ð!1;T1;!2;T2Þ=
½Sð1Þ�1

ð!1;T1ÞSð1Þ�2
ð!2;T2Þ�. It is positive and finite, and re-

flects that frequency and time of emission cannot be both
measured with arbitrary precision, in accordance with
Heisenberg’s uncertainty principle. The limiting behaviors

of gð2Þ�1�2
defined in this way are those expected on physical

grounds: photons are uncorrelated at infinite delays,

limjT2�T1j!1g
ð2Þ
�1�2

ð!1; T1;!2; T2Þ ¼ 1 [21], and color-

blind detectors recover the standard two-time correlators,

lim�1;�2!1g
ð2Þ
�1�2

ð!1;T1;!2;T2Þ¼gð2ÞðT1;T2Þ. Further gen-
eralization to N-photon correlations follows in this way,
adding pairs of operators with their corresponding
integrals [18,22].

The actual computation of such gðNÞ
�1...�N

, however, has

proven so far to be intractable for N > 2, even for simple
single-mode systems, such as resonance fluorescence or
the single mode laser [23]. The case N ¼ 2 is already
demanding and thus some approximations were made to
simplify the algebra [24,25]. More recently, the resonance
fluorescence problem was revisited without approxima-
tions but still for two photons and at zero time delay
only [26]. The main reason for such limitations is that
all the possible time orderings of the 2N-time correlator
hT �½ayðt01Þ . . . ayðt0NÞ�T þ½aðt0Nþ1Þ . . .aðt02NÞ�i result in

ð2N � 1Þ!!2N�1 independent terms. Furthermore, each of
these correlators requires the application of the quantum
regression theorem 2N � 1 times. This growth of the com-
plexity makes a direct computation hopeless for a quantity
which is otherwise straightforward to measure experimen-
tally, merely by detecting photon clicks as a function of
time and energy, a technology provided for instance by a
streak camera [27].

In this Letter, we present a theory of N-photon correla-
tions, that (i) allows for arbitrary time delays and frequen-
cies, (ii) is applicable to any open quantum system and
(iii) is both simple to implement and powerful. It consists
in the introduction of N sensors to the dynamics of the
open quantum system [noted Q in Fig. 1(a)]. Each sensor
of the set i ¼ 1; . . . ; N is a two-level system with anni-
hilation operator &i and transition frequency !i, that is
matched to the frequency to be probed in the system. Its
lifetime 1=�i corresponds to the inverse detector linewidth.
The coupling "i to each sensor is small enough so that the
dynamics of the system is unaltered by their presence, with

hnii ¼ h&yi &ii � 1. More precisely, calling �Q any transi-

tion rate within Q (either with internal or external degrees
of freedom) linked to the field of interest a, the tunnelling
rates "i must be such that losses into the sensors and their

back action are negligible, leading to "i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�i�Q=2

q
.

Under this condition, we solve the full quantum dynamics
of the system supplemented with the N sensors. The latter
play the role of the output fields A!i

ðtÞ, but instead of

formally solving the Heisenberg equations and expressing
their correlations in terms of the system operators (as in
the standard method exposed above), we compute directly
intensity-intensity correlations between sensors, which is
a considerably simpler task. The main result of this
Letter, which is demonstrated in the Supplemental
Material [28], is:

gðNÞ
�1...�N

ð!1; T1; . . . ;!N; TNÞ

¼ lim
"1;...;"N!0

hn1ðT1Þ . . . nNðTNÞi
hn1ðT1Þi . . . hnNðTNÞi ; (1)

where the left-hand side is the time- and frequency-
resolved N-photon correlation function as defined
previously [29]. The Supplemental Material [28]
establishes that, for open quantum systems described by

Lindblad type master equations, hn1ðT1Þ . . . nNðTNÞi ¼
"2
1
..."2N

�1...�N
ð2�ÞNSðNÞ

�1...�N
ð!1; T1; . . . ;!N; TNÞ to leading order

in the "i, which proves Eq. (1). The equality is of general
validity with no approximations or assumptions on the
system. With this result, the complexity of computing

gðNÞ
�1...�N

ð!1; T1; . . . ;!N; TNÞ is greatly reduced as no inte-

gral needs to be computed and the quantum regression
theorem needs to be applied N � 1 times only. For the

important case of zero delay, gðNÞ
�1...�N

ð!1; . . . ;!NÞ reduces
to a single-time averaged quantity. N degenerate sensors
with frequency ! and linewidth � also provide the Nth-
order correlations of a single harmonic oscillator with
frequency ! and linewidth �, corresponding to the case
of correlations measured after the application of a single
filter. This method is also useful to derive analytical results
(as shown in the Supplemental Material [28]).
We now illustrate its efficiency and ease of use by

applying it to the Jaynes-Cummings model [30], which is
both an important and fundamental quantum description of
light-matter interaction [31], is much more complex than
resonance fluorescence as it also quantizes the light field
[32], and is particularly suited to generate strongly corre-
lated photons [33,34]. Our method recovers exactly the
known results for the Mollow triplet [24–26], and extends
them effortlessly.
At resonance between the light mode (a) and the two-

level emitter (�) both with bare frequency !a, the Jaynes-
Cummings Hamiltonian reads H ¼ gðay�þ a�yÞ. The
master equation that describes decay (�a, ��) and
incoherent pumping of the emitter (P�) has the form

@t� ¼ i½�; H� þ ½�a

2 La þ ��

2 L� þ P�

2 L�y�ð�Þ, where
LcðOÞ ¼ ð2cOcy � cycO�OcycÞ and � is the density
matrix for the emitter and cavity system [35]. The new
density matrix that includes the sensors, �sen, follows a
modified master equation where the photonic tunnelling
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terms, Hsen ¼
P

N
i¼1½!i&

y
i &i þ "iða&yi þ ay&iÞ�, are added

to the original Hamiltonian, and the sensor decay termsP
N
i¼1

�i

2 L&ið�senÞ are added to the dissipative part. The

level structure of the dressed states jn;�i with n
excitations is given by the dissipative Jaynes-Cummings
ladder [35], which is shown in Fig. 1(b) at low pumping,
P� ¼ ��, and in the strong-coupling regime with �� �
�a < 4g. This gives rise to the transition frequencies

R�
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ng2 � ð�a���

4 Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn� 1Þg2 � ð�a���

4 Þ2
q

between

rungs for n � 2 with broadening �n ¼ 2ðn� 1Þ�a þ ��

[35]. The Rabi splitting 2R, which arises from transitions

j1�i ! jvaci, is given by R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � ð�a���

4 Þ2
q

with �1 ¼
ð�a þ ��Þ=2. These transitions result in peaks in the power
spectrum, as seen in Fig. 1(c) for the three cavity decay
rates �a=g ¼ 0:01, 0.1, and 0.5 that are chosen to corre-
spond to cavities embedding superconducting qubits [36],
atoms [37], and quantum dots [38], respectively. They all
show the first rung transitions at �R, the so-called Rabi
doublet, and one can distinguish outer peaks at �Rþ

n and

inner peaks at�R�
n , up to the third rung for the best system

(solid line) and to the second rung for the intermediate one
(dashed line). In Fig. 1(d), we set the linewidth of the
sensors � at a value around �2 and compute the two-photon

correlation at zero delay, gð2Þ� ð!1;!2Þ, between a photon

with fixed frequency at the Rabi peak,!2 ¼ R [solid arrow
on the left of Fig. 1(b)], and a photon with variable fre-
quency !1 which scans the spectral range (curved arrows).
When the scanning frequency !1 matches the second rung
transitions that are precursors of the Rabi transition R, the
probability of joint emission is enhanced relatively to other
frequencies. The filtering then tracks photons in the cas-
cades j2þi ! j1þi at !1 ¼ R�

2 and j2�i ! j1þi at

�Rþ
2 . This is a common feature to all three systems, which

shows that even if broadening is too large to observe
explicit features from higher rungs in the power spectrum,

gð2Þ� ð!1;!2Þ allows us to uncover them in the photon

correlations. On the other hand, we obtain the expected
strong suppression when the first photon is detected at the
other branch of the Rabi doublet,!1 ¼ �R. More features
can be observed for the better systems such as dips at the
two remaining transitions from the second rung, j2�i !
j1�i at !1 ¼ �R�

2 and j2þi ! j1�i at Rþ
2 . In the best

system, we can even resolve the dips for the third rung
transitions at !1 ¼ �R�

3 . All these transitions do not form

a consecutive cascade with the one we fixed and therefore
have less probability to occur within the considered small
time window 1=�2.

Instead of making a comprehensive analysis of gð2Þ�

specifics, we now turn to higher order correlation func-
tions, such as the simultaneous three-photon correlations

gð3Þ� ð!1;!2;!3Þ, which are exceedingly hard to compute

with previous methods. We fix two frequencies of detection
at !2 ¼ R�

2 and !3 ¼ R [solid arrows on the right of

Fig. 1(b)] and again let !1 vary. A strong enhancement is
also observed for all systems, now at !1 ¼ R�

3 which

monitors the cascade j3þi ! j2þi ! j1þi ! jvaci de-
picted in Fig. 1(b) and at !1 ¼ �Rþ

3 which starts it with

j3�i ! j2þi. Other transitions show dips that are also
clearly understood. This hints at the possible characteriza-
tion of the level structure of an open quantum system. In
general, however, one cannot draw conclusions from the
zero-delay case only, in particular for small features, such

as the small enhancement at !1 ¼ �Rþ
2 in gð3Þ� (for the

dashed line only) which is not necessarily a bunching peak
and reveals itself in the � dynamics to be antibunched, as
discussed later.

In Fig. 2(a), we explore another important aspect of gðNÞ
� ,

namely the dependence of correlations on the sensors line-
widths, which is related to the complementary uncertain-
ties in time and frequency. In the case � ! 0 of perfect

detectors, gðNÞ
0 ¼ 1 for all N with nondegenerate frequen-

cies, since the complete indeterminacy in time leads to
averaging photons from all possible time delays. For M

FIG. 1 (color online). (a) Scheme of our proposal to compute
N-photon correlations between photons emitted at different
times and frequencies from an open quantum open system Q.
N two-level systems of ascribed frequencies are weakly coupled
to Q and serve as correlation sensors at these frequencies, with
their decay rate providing the detector linewidth. (b) Dissipative
Jaynes-Cummings ladder up to the third rung with two of the
cascades probed in panels (d) [with two sensors] and (e) [with
three sensors]. Solid arrows show the fixed frequencies. Curved
arrows show the scanning frequency !1, at the transitions where
the joint emission is strongly enhanced (dashed) or, on the other
hand, suppressed (dotted). (c) Power spectra of emission probed
by weak incoherent excitation (P� ¼ �� ¼ 0:01g) for three
cavities of decreasing quality �a ¼ 0:01 (solid), 0.1 (dashed)
and 0:5g (dotted). (d) Two- and (e) three-photon correlations at
zero delay for the three cavities, with sensor linewidths � ¼ �2

(solid) and �2=2 (dashed and dotted).
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degenerate frequencies out of N, photon indistinguishabil-
ity results in M! ways for the sensors to measure the same

configuration, that is, lim�!0g
ðNÞ
� ¼M!. This limit has been

misunderstood in the literature [39]. The effect has other-
wise been reported for the case M ¼ N ¼ 2 by converting
laser light into chaotic light with narrow filters [23]. The
other limit �!1 corresponds to the opposite situation of
exact � delay between photons of completely indetermi-
nate frequencies. This is of more interest, in particular at
zero time delay, which is the case of Fig. 2(a). For the
Jaynes-Cummings system at low pumping, this recovers
results derived by other approaches [40,41].

The intermediate case of finite linewidth of the sensors is
the most interesting. Features are the most marked when
detector linewidths are of the order of those of the tran-
sitions involved, since the peaks of the spectrum are best
filtered. Smaller linewidths (longer times) are to be favored
for bunching and larger linewidths (smaller times) for
antibunching. One sees, for instance in Fig. 2(a), that
consecutive transitions, forming a cascade—such as those
sketched in panel i (with three photons) or ii (with two
photons)—show an enhancement. Conversely, the simul-
taneous emission from both Rabi peaks, in the configura-
tion sketched as iv, is substantially suppressed, leading to
strong antibunching. This observation with a microcavity

containing a single quantum dot has been used to demon-
strate the quantum nature of strong light-matter coupling
[6] (with detuning to better separate the peaks). Further
theoretical investigations with this formalism (to be dis-
cussed elsewhere) may help to elucidate the nature of
spectral triplets also observed in such experiments
[6,42,43].
Figures 2(b) and 2(c) show an example of the � depen-

dence of the correlations, for the case � ¼ �2, both at
positive and negative delays. The configuration ii has the
typical shape of a cascade between consecutive levels, with
antibunching for � < 0, a step at � ¼ 0, and bunching for
� > 0. This behavior is well known, for instance from the
biexciton-exciton cascade [9]. It is also observed for N
photons in any consecutive transitions, such as is shown
in i for three photons starting from the third rung. In con-
trast, the filtering of peaks which do not belong to the same
cascade exhibit antibunching, as seen in iv for the two Rabi
peaks or iii for one of its three-photon counterparts: the
order of the transition does not matter anyway and the cases
�� show qualitatively the same behavior. These results are,
to the best of our knowledge, the first computations of
three-time frequency-resolved correlation functions. They
are easily extended to higher orders (a fourth order example
is given in the Supplemental Material [28]).
In conclusion, we have presented a theory to efficiently

compute correlations between an arbitrary number of pho-
tons of any given frequencies and time delays. All three
aspects of the detection, namely frequencies, time delays,
and linewidths of the detectors, are needed to characterize
meaningfully the system. The method allows us to com-
pute exactly, with low effort and for general open quantum
systems, properties of output fields that are otherwise
defined in terms of complicated integrals. Its ease of use
enabled us to present the first computation of three and four
time-resolved and frequency-filtered correlation functions.
Its application will allow the interpretation of experiments
which are routinely implemented in the laboratory but
which lacked hitherto an adequate and tractable theoretical
support, and to design new ways to unravel and/or engineer
the quantum dynamics of open systems.
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[19] L. Knöll, W. Vogel, and D.G. Welsch, J. Opt. Soc. Am. B

3, 1315 (1986).
[20] J. D. Cresser, J. Phys. B 20, 4915 (1987).
[21] R. J. Glauber, Phys. Rev. 130, 2529 (1963).
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93 (2012).

[35] E. del Valle, F. P. Laussy, and C. Tejedor, Phys. Rev. B 79,
235 326 (2009).

[36] C. Lang, D. Bozyigit, C. Eichler, L. Steffen, J.M. Fink,
A. A. Abdumalikov, Jr., M. Baur, S. Filipp, M. P. da Silva,
A. Blais et al., Phys. Rev. Lett. 106, 243 601 (2011).

[37] M. Koch, C. Sames, M. Balbach, H. Chibani, A. Kubanek,
K. Murr, T. Wilk, and G. Rempe, Phys. Rev. Lett. 107,
023 601 (2011).

[38] M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and
Y. Arakawa, Nature Phys. 6, 279 (2010).

[39] In Ref. [26], only the frequency convolution is performed
and, in the absence of time convolution, photon counting
diverges in the steady state. A generalized Mandel Q

parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð1Þ� ð!1ÞSð1Þ� ð!2Þ

q
ðgð2Þ� ð!1;!2Þ � 1Þ (in our no-

tations) is used to bypass this difficulty, but for the small-
est � considered, the filtering of the peaks is too narrow
and the structures obtained are those of the prefactor only
(uncorrelated photons).

[40] E. del Valle and F. P. Laussy, Phys. Rev. A 84, 043 816
(2011).

[41] P. Gartner, Phys. Rev. A 84, 053 804 (2011).
[42] Y. Ota, N. Kumagai, S. Ohkouchi, M. Shirane, M. Nomura,

S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, Appl.
Phys. Express 2, 122 301 (2009).

[43] A. Gonzalez-Tudela, E. del Valle, E. Cancellieri,
C. Tejedor, D. Sanvitto, and F. P. Laussy, Opt. Express
18, 7002 (2010).

PRL 109, 183601 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

2 NOVEMBER 2012

183601-5

http://dx.doi.org/10.1103/PhysRevLett.67.2443
http://dx.doi.org/10.1103/PhysRevLett.67.2443
http://dx.doi.org/10.1038/nphoton.2012.23
http://dx.doi.org/10.1103/PhysRevLett.98.117402
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1103/PhysRevB.77.161303
http://dx.doi.org/10.1103/PhysRevB.77.161303
http://dx.doi.org/10.1103/PhysRevLett.96.130501
http://dx.doi.org/10.1103/PhysRevLett.87.183601
http://dx.doi.org/10.1103/PhysRevLett.87.183601
http://dx.doi.org/10.1038/nphoton.2010.174
http://dx.doi.org/10.1364/JOSA.67.001252
http://dx.doi.org/10.1364/JOSA.67.001252
http://dx.doi.org/10.1103/PhysRev.188.1969
http://dx.doi.org/10.1098/rsta.1979.0092
http://dx.doi.org/10.1098/rsta.1979.0092
http://dx.doi.org/10.1051/jphys:0198300440120133700
http://dx.doi.org/10.1088/0022-3700/17/24/020
http://dx.doi.org/10.1088/0022-3700/17/24/020
http://dx.doi.org/10.1088/0022-3700/17/6/011
http://dx.doi.org/10.1088/0022-3700/17/6/011
http://dx.doi.org/10.1088/0022-3700/19/18/012
http://dx.doi.org/10.1364/JOSAB.3.001315
http://dx.doi.org/10.1364/JOSAB.3.001315
http://dx.doi.org/10.1088/0022-3700/20/18/027
http://dx.doi.org/10.1103/PhysRev.130.2529
http://dx.doi.org/10.1103/PhysRevA.42.503
http://dx.doi.org/10.1103/PhysRevA.42.503
http://dx.doi.org/10.1016/0030-4018(93)90591-R
http://dx.doi.org/10.1016/0030-4018(93)90591-R
http://dx.doi.org/10.1103/PhysRevA.47.510
http://dx.doi.org/10.1088/1464-4266/2/2/317
http://dx.doi.org/10.1103/PhysRevLett.102.018303
http://dx.doi.org/10.1103/PhysRevLett.102.018303
http://dx.doi.org/10.1038/nature08126
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.183601
http://link.aps.org/supplemental/10.1103/PhysRevLett.109.183601
http://dx.doi.org/10.1109/PROC.1963.1664
http://dx.doi.org/10.1080/09500349314551321
http://dx.doi.org/10.1103/PhysRevLett.105.233601
http://dx.doi.org/10.1103/PhysRevLett.105.233601
http://dx.doi.org/10.1002/lpor.200810046
http://dx.doi.org/10.1038/nphoton.2011.321
http://dx.doi.org/10.1038/nphoton.2011.321
http://dx.doi.org/10.1103/PhysRevB.79.235326
http://dx.doi.org/10.1103/PhysRevB.79.235326
http://dx.doi.org/10.1103/PhysRevLett.106.243601
http://dx.doi.org/10.1103/PhysRevLett.107.023601
http://dx.doi.org/10.1103/PhysRevLett.107.023601
http://dx.doi.org/10.1038/nphys1518
http://dx.doi.org/10.1103/PhysRevA.84.043816
http://dx.doi.org/10.1103/PhysRevA.84.043816
http://dx.doi.org/10.1103/PhysRevA.84.053804
http://dx.doi.org/10.1143/APEX.2.122301
http://dx.doi.org/10.1143/APEX.2.122301
http://dx.doi.org/10.1364/OE.18.007002
http://dx.doi.org/10.1364/OE.18.007002

