THEORY OF GROUP REPRESENTATIONS AND APPLICATIONS

ASIM O. BARUT
Institute for Theoretical Physics, University of Colorado, Boulder, Colo., U.S.A.

RYSZARD RĄCZKA
Institute for Nuclear Research, Warszawa, Polska

Second revised edition
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>VII</td>
</tr>
<tr>
<td>OUTLINE OF THE BOOK</td>
<td>XV</td>
</tr>
<tr>
<td>NOTATIONS</td>
<td>XIX</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td>LIE ALGEBRAS</td>
<td></td>
</tr>
<tr>
<td>§ 1. Basic Concepts and General Properties</td>
<td>1</td>
</tr>
<tr>
<td>§ 2. Solvable, Nilpotent, Semisimple and Simple Lie Algebras</td>
<td>10</td>
</tr>
<tr>
<td>§ 3. The Structure of Lie Algebras</td>
<td>17</td>
</tr>
<tr>
<td>§ 4. Classification of Simple, Complex Lie Algebras</td>
<td>20</td>
</tr>
<tr>
<td>§ 5. Classification of Simple, Real Lie Algebras</td>
<td>29</td>
</tr>
<tr>
<td>§ 6. The Gauss, Cartan and Iwasawa Decompositions</td>
<td>37</td>
</tr>
<tr>
<td>§ 7. An Application. On Unification of the Poincaré Algebra and Internal Symmetry Algebra</td>
<td>43</td>
</tr>
<tr>
<td>§ 8. Contraction of Lie Algebras</td>
<td>44</td>
</tr>
<tr>
<td>§ 9. Comments and Supplements</td>
<td>46</td>
</tr>
<tr>
<td>§ 10. Exercises</td>
<td>48</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td></td>
</tr>
<tr>
<td>TOPOLOGICAL GROUPS</td>
<td></td>
</tr>
<tr>
<td>§ 1. Topological Spaces</td>
<td>52</td>
</tr>
<tr>
<td>§ 2. Topological Groups</td>
<td>61</td>
</tr>
<tr>
<td>§ 3. The Haar Measure</td>
<td>67</td>
</tr>
<tr>
<td>§ 4. Comments and Supplements</td>
<td>70</td>
</tr>
<tr>
<td>§ 5. Exercises</td>
<td>71</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td></td>
</tr>
<tr>
<td>LIE GROUPS</td>
<td></td>
</tr>
<tr>
<td>§ 1. Differentiable Manifolds</td>
<td>75</td>
</tr>
<tr>
<td>§ 2. Lie Groups</td>
<td>81</td>
</tr>
<tr>
<td>§ 3. The Lie Algebra of a Lie Group</td>
<td>85</td>
</tr>
<tr>
<td>§ 4. The Direct and Semidirect Products</td>
<td>95</td>
</tr>
<tr>
<td>§ 5. Levi–Malcev Decomposition</td>
<td>98</td>
</tr>
<tr>
<td>§ 6. Gauss, Cartan, Iwasawa and Bruhat Global Decompositions</td>
<td>100</td>
</tr>
<tr>
<td>§ 7. Classification of Simple Lie Groups</td>
<td>106</td>
</tr>
<tr>
<td>§ 8. Structure of Compact Lie Groups</td>
<td>108</td>
</tr>
</tbody>
</table>
CONTENTS

§ 9. Invariant Metric and Invariant Measure on Lie Groups .. 109
§ 10. Comments and Supplements ... 111
§ 11. Exercises ... 114

CHAPTER 4
HOMOGENEOUS AND SYMMETRIC SPACES
§ 1. Homogeneous Spaces ... 123
§ 2. Symmetric Spaces ... 124
§ 3. Invariant and Quasi-Invariant Measures on Homogeneous Spaces 128
§ 4. Comments and Supplements ... 132
§ 5. Exercises ... 132

CHAPTER 5
GROUP REPRESENTATIONS
§ 1. Basic Concepts .. 134
§ 2. Equivalence of Representations .. 139
§ 3. Irreducibility and Reducibility .. 141
§ 4. Cyclic Representations ... 145
§ 5. Tensor Product of Representations .. 147
§ 6. Direct Integral Decomposition of Unitary Representations 150
§ 7. Comments and Supplements ... 156
§ 8. Exercises ... 156

CHAPTER 6
REPRESENTATIONS OF COMMUTATIVE GROUPS
§ 1. Irreducible Representations and Characters 159
§ 2. Stone and SNAG Theorems .. 160
§ 3. Comments and Supplements ... 163
§ 4. Exercises ... 164

CHAPTER 7
REPRESENTATIONS OF COMPACT GROUPS
§ 1. Basic Properties of Representations of Compact Groups 166
§ 2. Peter–Weyl and Weyl Approximation Theorems 172
§ 3. Projection Operators and Irreducible Representations 177
§ 4. Applications .. 179
§ 5. Representations of Finite Groups .. 186
§ 6. Comments and Supplements ... 195
§ 7. Exercises ... 197

CHAPTER 8
FINITE-DIMENSIONAL REPRESENTATIONS OF LIE GROUPS
§ 1. General Properties of Representations of Solvable and Semisimple Lie Groups ... 199
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Quantum Dynamical Applications of Lie Algebra Representations</td>
<td>378-386</td>
</tr>
<tr>
<td>13</td>
<td>Group Theory and Group Representations in Quantum Theory</td>
<td>392-418</td>
</tr>
<tr>
<td>14</td>
<td>Harmonic Analysis on Lie Groups. Special Functions and Group Representations</td>
<td>421-435</td>
</tr>
<tr>
<td>15</td>
<td>Harmonic Analysis on Homogeneous Spaces</td>
<td>439-470</td>
</tr>
<tr>
<td>16</td>
<td>Induced Representations</td>
<td>473-487</td>
</tr>
</tbody>
</table>
CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Induced Representations of Semidirect Products</td>
<td></td>
</tr>
<tr>
<td>§ 1</td>
<td>Representation Theory of Semidirect Products</td>
<td>503</td>
</tr>
<tr>
<td>§ 2</td>
<td>Induced Unitary Representations of the Poincaré Group</td>
<td>513</td>
</tr>
<tr>
<td>§ 3</td>
<td>Representation of the Extended Poincaré Group</td>
<td>525</td>
</tr>
<tr>
<td>§ 4</td>
<td>Indecomposable Representations of Poincaré Group</td>
<td>527</td>
</tr>
<tr>
<td>§ 5</td>
<td>Comments and Supplements</td>
<td>536</td>
</tr>
<tr>
<td>§ 6</td>
<td>Exercises</td>
<td>537</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Fundamental Theorems of Induced Representations</td>
<td></td>
</tr>
<tr>
<td>§ 1</td>
<td>The Induction-Reduction Theorem</td>
<td>540</td>
</tr>
<tr>
<td>§ 2</td>
<td>Tensor-Product Theorem</td>
<td>546</td>
</tr>
<tr>
<td>§ 3</td>
<td>The Frobenius Reciprocity Theorem</td>
<td>549</td>
</tr>
<tr>
<td>§ 4</td>
<td>Comments and Supplements</td>
<td>553</td>
</tr>
<tr>
<td>§ 5</td>
<td>Exercises</td>
<td>553</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Induced Representations of Semisimple Lie Groups</td>
<td></td>
</tr>
<tr>
<td>§ 1</td>
<td>Induced Representations of Semisimple Lie Groups</td>
<td>555</td>
</tr>
<tr>
<td>§ 2</td>
<td>Properties of the Group SL(n, C) and Its Subgroups</td>
<td>559</td>
</tr>
<tr>
<td>§ 3</td>
<td>The Principal Nondegenerate Series of Unitary Representations of SL(n, C)</td>
<td>560</td>
</tr>
<tr>
<td>§ 4</td>
<td>Principal Degenerate Series of SL(n, C)</td>
<td>567</td>
</tr>
<tr>
<td>§ 5</td>
<td>Supplementary Nondegenerate and Degenerate Series</td>
<td>570</td>
</tr>
<tr>
<td>§ 6</td>
<td>Comments and Supplements</td>
<td>577</td>
</tr>
<tr>
<td>§ 7</td>
<td>Exercises</td>
<td>578</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Applications of Induced Representations</td>
<td></td>
</tr>
<tr>
<td>§ 1</td>
<td>The Relativistic Position Operator</td>
<td>581</td>
</tr>
<tr>
<td>§ 2</td>
<td>The Representations of the Heisenberg Commutation Relations</td>
<td>588</td>
</tr>
<tr>
<td>§ 3</td>
<td>Comments and Supplements</td>
<td>591</td>
</tr>
<tr>
<td>§ 4</td>
<td>Exercises</td>
<td>593</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Group Representations in Relativistic Quantum Theory</td>
<td></td>
</tr>
<tr>
<td>§ 1</td>
<td>Relativistic Wave Equations and Induced Representations</td>
<td>596</td>
</tr>
<tr>
<td>§ 2</td>
<td>Finite Component Relativistic Wave Equations</td>
<td>601</td>
</tr>
</tbody>
</table>
§ 3. Infinite Component Wave Equations .. 609
§ 4. Group Extensions and Applications 619
§ 5. Space-Time and Internal Symmetries 626
§ 6. Comments and Supplements ... 630
§ 7. Exercises ... 636

APPENDIX A
ALGEBRA, TOPOLOGY, MEASURE AND INTEGRATION THEORY 637

APPENDIX B
FUNCTIONAL ANALYSIS
§ 1. Closed, Symmetric and Self-Adjoint Operators in Hilbert Space 641
§ 2. Integration of Vector and Operator Functions 645
§ 3. Spectral Theory of Operators .. 649
§ 4. Functions of Self-Adjoint Operators 662
§ 5. Essentially Self-Adjoint Operators 663

BIBLIOGRAPHY ... 667
LIST OF IMPORTANT SYMBOLS ... 703
AUTHOR INDEX ... 706
SUBJECT INDEX .. 710