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Summagz

The Hooke's joint is one of the several possible means for suspending a
gyro free of torques, This report shows how the cross member of the Hooke's
joint exerts a centrifugal torque on the gyro rotor.

A mechanical way to compensate this torque is the use of the spring torque
of flexural pivots. Besides these torques a damping torque will be discussed

which interferes with the ideal functioning of the suspension.

The experimental Hooke's joint gyro.
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1. Introduction,

I.1. Rotor suspension problems.
The gyroscope based on'the principle of a spinning rotor is being
widely used nowadays as inertial direction memory and as rotation
sensor. The fields of application comprise stabilizationm, attitude

control, and navigation of water, air, and space vehicles (SAVET).

Among the various design approaches the free rotor gyro, alsoc called
"the two degrees of freedom gyro, is the most ancient. It is still in

use to-day.

Such a free rotor gyro actually is a vector memory in inertial space,
provided it is kept free of torques. By effectively suspending it in

its centre of gravity torques due to gravitation and other accelerations
can be well nigh eliminated. Using a Cardanc gimbal system we can achieve
this, at the same time isolating the gyro from rotation movements of the

base or vehicle on which it is carried (MAGNUS, SAVET).

Of course any practical gimbal will have moments of inertia that can
become disturbing, and the pivots necessary to realize the gimbal joints
will always exhibit spurious torques however refined the execution may be.
Designers have had to give this problem very much attention. They have
been using ball-bearings, jewel pivots, gas bearings, magnetic bearings,

flexural pivots. Each design principle has its own merits and disadvantages.

Recently, attention has increasingly been drawn to the flexural pivot
sugpension, as it can eliminate the need of lubrication and suspension
fluids and gases. Also this type of joints makes it feasable to use
internal, rotating gimbals which have certain advantages above the external,
stationary gimbal systems., The flexural pivots, however, can hardly be made
free of serious elastic torques, but fortunately these can be used to

compensate certain mass torgques.

The following treatise will examine the torques involved in the use of

rotating gimbals, and the aspects of achieving torque compensation.



1.2, The aim of this article.
In the past only very few articles have appeared on the behaviour of
gyros with flexural pivots suspension. They discussed experiments "(ARNOLD)
and they gave mathematical explanations (HOWE). We too have been ex-
perimenting with a model of this type of gyro and will give some results
thereof, but the most important part of this treatise will show an
explanation of the dynamical behaviour, based on the geometrical deri-
vation of the motion of the several parts of the gyro. Some rules of
vector calculation relating to perpendicular vectors are used to simplify

the derivation.

It will appear that the rotating gimbal always exercises a centrifugal
torque on the rotor when the spin axis of the rotor and the driving
shaft axis do not coincide. In the case of flexural suspension a spring

torque is available to compensate this centrifugal torque.
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In fact the rotating gimbal used is a Hooke's joint between the rotor
and the driving shaft, Like an ordinary gimbal it imparts to the gyro
two degrees of freedom. The whole construction consists of three parts
(figure 2.-1), namely: the driving shaft (1) with a fork, which is joined
by a pair of flexural pivots to the cross member (2); another pair of

flexural pivots connects this member with a flywheel (3), the gyro proper.

One pair of flexural pivots is mounted between the fork and the cross
member. We shall call these pivots the "fork pivots™ and indicate them
symbolically by their stiffness Sf' We can also draw an imaginary axis
Af through them. In the same way, between the cross member and the rotor,

we find the "gyro pivots" with stiffness Sg on the axis Ag.

(3) A

driving shaft

™~

(2)

(direction of
the rotor)

(direction of
driving shaft)

fig. 2.-1. A model of a gyro with rotating gimbal,
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In the following paragraphs the axes systems will be defined, and sub-
sequently the angular deflectiens, deviations, and also the velocities will
be derived. With these data the movement of the cross member can finally

be described.
To begin with,it is assumed that the gyro does not make a precession and

80 rotates in a fixed plane.

s e e K ot . S iy s . i P . A S Bl g B ey e S s B e . e S

Figure 2,-2 shows a highly simplified representation of the gyro. Only the
axes Af and A and the flexural pivots Sf and Sg are drawn. Vf and Vg are
the planes in which the fork and gyro pivots, and with them the axes Af

and Ag respectively, keep rotating.
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fig. 2.~2. Planes of rotation of the pivots.

The system of coordinates (x, v, z) is so chosen that the x- and y~ axes

‘are situated in the plane Ve, while the z- axis, perpendicular to this plane,
coincides with the driving shaft axis. Correspondingly, the plane Vg contains
the coordinates x' and y', the orientation being chosen to make the x~ and
the x"~ axes coincide. The z'- axis represents the spin axis of the rotor.

A rotation through an angle o about the x~ axis transforms the one system

into the other. This angle is produced by a deviation of the spin axis of the
rotor
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from the direction of the driving shaft axis, marked by its angular
velocity wy- The direction of the spin axis of the rotor, the gyro
proper, is indicated by the angular velocity mg of the gyro.

Note that both systems of coordinates remain fixed in space as the gyro
is rotating. In this treatise the axes Af and Ag will be considered

to be vectors with lengths Rf and Rg‘ This vector notation has the ad-

vantage that the directions can be calculated simply.

The transformation of any vector Ll(x'y'z') into Ll(xyz) can be cal-

culated by:

—

0 0

cos o~ sin o { . L](x'y'z') ' 2.~-(1)

o

LI(xyz) =

[en]

o cos o

Analogically any vector Lz(xyz) will be transformed into Lz(x'y'z') by:

; 0 0
Lz(x'y'z') =| 0 cosa sina | , Lz(xyz) 2.-(2)
0 -sina cos a

This will be applied to the vectors Ag and Af. The axis Ag is a time

function given as a vector by: (figure 2.-(3)).

cos ngl
Ag(x'y'z') = Rg sin mgt] _2.—(3)
0

Using equation Z,=(1) we get

cos wgt]
Ag(xyz) = Rg €O0s O + sin mgtl 2.-(4&)

sin a - sin w t
g1
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fig. 2.-3. The projection of the gyro pivot axis Ag onto the fork axis

plane Vf.

The same thing can be done with Af. From figure 2.~4 the vector Af can be

seen to be:

cos mdtz

' Af(xyz) = R¢ sin gty 2.-(5)
0

From equation 2.-(2) the transformation produces:

cos wdt2
Tttty = : -
Af(x y'z") Rf cos ¢ sin mdtZ 2.-(6)
-sin o sin w._t

d 2
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fig. 2.-4. The projection of the fark pivot axis onto the gyro plane Vg.

Up to now we assumed the gyro to be rotating in a stationary plane, In
reality it will nearly always make a precession. In our case this is a

rotation about the z— axis {(the driving shaft axis). This means that the
above mentioned systems can be completed by the transformation from the
Xyz— space consisting of a rotatiom, say Bz, about the z- axis. This is

given by the next equation.

cos BZ - s8in BZ 0
L3(x"y"z") = | sin Qz cos Bz 0 . L3(xyz) _ Zo=(7)
0 0 ’

The axes A_. and A are stiffly joined perpendicular to each cother. From

f
vector calculus we know that in this case (éf’ ég = 0. Applying this to

equations 2.-(4) and 2.~(5) we get the following results:
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(A, ég) = Rf.Rg(cos Wt . cOS

t in i . si t.) =
51 5 + ¢cos g sin W t sin w 2) 0

42 g1 d

or: cos wt,. cos w,t, = =~ cos a sin w t_ , sin w,t
g 1% d2 g 1 d 2

From this we get:

-~ cotang wdt2 ] tang(mdtz-n/2)

tang w tl = 2.-(8)
8 cos a cos o
So for £, = t2 = t we can conclude that the relation between mgt and wdt is:
tang(wdt - n/2)
mgt = arct( ) 2.~(9)

cos o
For the case of a small angle a this becomes

wgt = w,t = /2 . 2.1

d

2.3. Mathematical description of_ the movement of the cross member.

In this part we shall concentrate our attention on the motion of the cross
formed by the axes Af and Ag because it will appear that masses outside the

cross member plane defined by A_ and Af transmit centrifugal torques to the

f
rotor. So we are interested in the path and the wvelocity of such a mass. To
avoid unnessecary complexity the following derivation will be given for the

case of small angular displacements a only.

If we consider the line between the mass and the middle of the cross as
a vettor (see fig. 2.-5) then the vector product (éggéf) gives the direction

of this vector.

cos & t sin wdt
ég(xyz) = cos o -sin wgt A |- cos mdt 2.-(11)
gln o-sin w t - o cos wt

Note: Rg is assumed to be of unity length.
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cQs mdt
Af(xy2) = sin w,t with Rf =1 2.~-(12)

0

The vector product of both becomes in the xyz~ plane:

o cos mdt-sin w,t la sin 2 mdt
2
(AxA.) = | - a cos“u t =f{ = ta(cos 2w .t + 1) 2.~(13)
R c052 td+ sin2 t 1 <
“a “a

We have now found analytically the path of the mass to be a circle in
the plane z = 1 with its centre at (0, - o/2,1) and a radius with length

ja. This can be expressed in:

:s:2 + (y + %a)z = u2/4 } 2.-(14)

z =1

Equation 2.-(13) also shows, that the mass rotates along the circle with

double the velocity of the driving shaft.

i =

<< .z

0 |5 J

wdt=3/2v

|

fig. 2.-5. The path of the point mass outside the plane AgAf.
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The whole situation is drawn in figure 2.~4, As a matter of fact the mass
does not really move in the plane z =1, but in a plane making an angle
a/2 with this plane, This negliglble fault arcse from the approximation
in eq. 2.-(10),

2.4. The angular displacement of the flexural pivots

The next important motion will be the momentary angular displacements of

the flexural pivots, because they define the spring torques.

The displacement of Sg can be derived by determining the angle between the
plane Vg and Af (figure 2.-4). This angle, called &, is formed geometrically
by Af and its projection on Vg. From figure 2.-4 and equation 2.-(6) we can

conclude that

--Rf $in o sin wdt
R
f

- £ = arcsin ¢( ) 2.-(15)

For the case of small o this equation can be simplified into:

- &£ = -qg sin w,t 2.-(16)

Analogous to the above reasoning the displacement of Sf, called ¢, can be
found from the angle between A and its projecticn on the plane Vf. With

the help of figure 2.-3 and eq. 2.-{(4) we get:

R sin o sin ?&E

- = aresin (

t in eq. 2.~(8). Then eq. 2.-(17)

mgt is expressed as a function of Wy

becomes:

arct(mdt -1/2)

)) 2.-(18)

- = arcsin(sin a sin(
cos o

For small o this results in

-7 =0 sin(mdt -~ n/2) = - wcos mdt ' 2.-{19)
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3. Torques of the rotating gimbal.

There are three kinds of torques exercised upon the rotor by the rotating
gimbal, i.e.: the flexural torques, a centrifugal torque and a damping
torque. Tn this section we will discuss these torques. The first two
torques will be determined with the help of the equations derived in

the second chapter. The third torque has been shown by experiments and

it will be formulated from these data.

3.1. The centrifugal torque.
The dynamic behavicur of an object can conveniently be examined if it is
represented by an equivalent system of point masses joined perpendicular
to each other with weightless rods (MAGNUS). So we shall do with the cross

member. The equivalent system follows from the next figures and equations.

v J
y
J
m
? J
J a x
=’ m:/ -
I
z N m c b 2
—_*Jz 7 m T
- b z eq
a

fig. 3.~1. The dynamical equivalent of anobject.
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(a2 + b2), 2m

[
il
a3
T

z z eq

2 2
Jx = ..Tx eq m (3" + ¢}, 2m 3.-(1)

J =17 (b-2 + cz). 2m

y 7 eq

il

Jx’ Jy and Jz are the principal moments of inertia of the object.

From this the distances a,b,c follow. For instance:

2 - y 3.-(2)

Remark: m = 1/6 of the total mass of the object.

Applying this transformation to the cross member we get the simplified

model drawn in the next figure. The positions of the masses

fig. 3.~2. The dynamical equivalent of the cross member,

are chosen thus, that four of them are situated on the axes A_ and Ag'

£
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Consequently the point masses Ry and L= rotate in the plane Vf and
? 4
Vg respectively, It will be clear that only the masses m and m are

able to exercise a dynamic torque, The motion of these masses is des-
cribed in section 2,3, Their path is a eircle whiech is followed with

an angular velocity 2md. Each of them senses a centrifugal force for-

= M. dn ¢3

The component of Fc contributing to the torque is perpendicular to the
torque arm l. Since this component isg Fc. cos o

the cosine term can be neglected for small o leaving us with Fc'

y

<

fig. 3.-3. Radius of the path of the point mass.

In the case of a small angle o we get r = lég— (figure 3.-3). Then

eq. 3.-(3) becomes:

_ 2 1l.o -
FC = m.(2wd) . 3.-(4)
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It is not difficult to understand that a torque sensed by the rotor must
have the direction of Ag, for this is the only way to change the path of
the rotor by means of a mass fixed te the cross member. This means that
the torque is caused by that part of FC perpendicular to axis Af. Aiding
to formulate this figure 3.-4 reflects the circle of a rotating mass

in the plane z:= 1 and the projections of the axis Af and the arm 1

on this plane. Besides that the direction of the cemtrifugal force Fc

is also indicated.

v Ag (proj.)

fig, 3.~4. Projection of A, and the torque arm 1. on the plane z = 1.

f

We call the active component of the centrifugal force F,_,. Its magnitude

T
follows from figure 3.-4:

FT = Fc cos wdt 3.~(5)

Then the centrifugal torque of one point mass, sensed by the rotor, will be:

T = Fh.l =1.F cos w
T c

cl at 3.~(6)
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Using eq. 3.~ (4) the torque T , becames
22l }
Tcl 1.m. (Zu}d) « THeT oS mdt

3.-(7)
= 2m mg.lz.u. cos wdt
The total centrifugal torque of both the point masses M and m6 becomes
Tc =2 Tc1 =4m wilza cos w,t
with K = 4 m u’1” 3.-(8)
Tc = K.a. cos wdt

We already had remarked abowve that this torque has the same direction

as Af. Then Tc as a vector follows from eq. 2.-(5)
cos mdt
Tc(xyz) = a.K. cos wdt | sin mdt
0

3.~(9)

On the average over one rotation the rotor senses a rorque exercised

by the masses

which 1s a torque acting solely in the direction of the x-axis.

Looking back to eq. 3.-(2) it will be clear that: 12 =
becomes:
2 .2 2
K=4m Wy 17 = (Jc(a) + Jc(b) Jc(c)). Wy

cz. Then K

3.-(10)

3.-(11)

In this equation the parameters Jc(a), Jc(b) and Jc(c) represent the

three principal moments of inertia of the cross member.



-.]9-_

Egs. 3,~(9) and 3,~(10) then change to

cos wdt
2 .
'I‘c = a.(Jc(a) + Jc(b) = Jc(c)), wys €OS mdt. sin wdt 3.~(12)
0
Or on an average
1 .
— . 2 e
Tc = u/Z.(Jc(a) + Jc(b) Jc(c)). Wy 0 3.~(13)
0

Should Jc(a) + Jc(b) equal Jc(c), then the cross member is a disk of

zero thickness and the mass torque will vanish for all rotation speeds.

3.2, The flexural torques.

The flexural pivots give a torque proportional to their angular deviation.
This torque is formulated by the product of the deviation and the stiff-
ness of the pivots. Its direction is opposite to the angular displace-
ment of the pivot. These displacements are derived in section 2.3. We

can now formulate the torque TV s of the flexural pivot Sg with the

[
help of the equations 2.-(15) and 2.-(16):

Tv g= - Sg.E = Sg arcsin(~ sin o sin wdt) 3.-(14)

For small angles o we can simplify this equation to

Tv g =-q Sg sin wdt 3.-(13)

Note: in these equations Sg represents the sum of the stiffnesses of
both pivots on axis Ag'
From figure 2.-2 we can conclude, that this torque has the same direction

as Ag' Then Tv e as a vector becomes with equation 2.-(4):

cos mgt
TV g(xyz) = Sg arcsin(-sin o sin wdt) cos a sin wgt 3.-(16)

sin o sin w t
b4

It is known from eq. 2.-(10) that mgt = w,t - n/2., Then eq. 3.-(16)

becomes finally in the case of small angles
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sin w,t

d
Tv g(xyz) = - g Sg sin w4t - cos yt 3.-(17)

- & cos w,t
d

It will be clear that the derivation of the torgue 'I‘v £ exercised by

the pivots S_. follows an amnologous way. The angular deviation  of Sf

f
is expressed in eq. 2.-(18) and 2.-(19). With these equations Tv £

becomes
arct(mdt - /)
= - = i i 1 ) -
Tv £ Sf.c Sf. arcsin(sin o sin( o5 & ) 3.~-(18)
For small angles a:
Tv £ = - Sf o cos wdt 3.-(i9)

The direction of Tv is the same as Af(xyz) formulated in eg. 2.-(5).

f
This completes the expression of T, § @S a vector,

arct(wdt - n/2) cos ugt
'I'v f(xyz) = Sf. aresin(sin o sin( o5 o M)} sin wdt 3.-(20)
0
Or for small a:
cos w,t
Tv f(xyz) = - g Sf cos mdt sin wdt 3.-(21)

The total spring torque sensed by the rotor is formed by the vectorial
sum of the torques of both pairs of pivots. This sum becomes in the case of
small a
—aSg sin2 wyt = aSg c052 w,t
T = aSg sin wyt cos w,t ~ aSg sin wit cos wjt
0

Tv(xyz) - Tv;gk+ v £

3.-(22)
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if Sg = §_ = § then this expression changes into

- alS
30—(23)

3
<
o
o
I
~
1]
<

IfE S and S, atre not equal then they can be formulated by

& av 3.-(24)

Sa v is the mean value of both stiffnesses Sg and Sf. The difference

from the mean value is expressed by s, which can be both positive and

negative. Equation 3.-(22) now becomes

. 2 2
~o 5 + a8 s1n w.,t - o 8 cos W,k
av d d

Tv(xyz) -2 a s sin mdt cos wd;
0

-05 a8 cos 2 w.t
av d

0 - o s sin 2 mdt 3.-(25)
0 0

On the average the contribution of the latter column will be zero.

As effective torgue is left

T, L, 02 = |0 3.-(26)

The direction of the average torque appears to be always the same whether

both pivot axes have the same stiffness or not.

3.3. The damping torques.
Besides the aforementioned torques there is a damping torque. This torque
has two causes. First there are the losses in the flexural pivots. Second
the cross member and the rotor experience air friction. In consequence
of this torque the deviation angle o will decrease. From experiments it

is to be seen that this angle expires as an exponentional function of

time and can be formulated by
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In this equation the parameter p represents the damping which experiments
have shown to be a function of the rotation velocity Wy The magnitude
of the torque can be determined as follows. We shall assume that the gyro
makes a precession. In figure 3.-5. the observed path of the spin axis

is drawn. The dotted line is the undamped path.

fig- 39""5-

Damped precession.
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where b = J .
(where by = Jy(e). u,

To change the direction of the spin axis a torque perpendicular to it
is always necessary. From the way the gyro drifts it is clear that this

damping torque points towards the driving shaft. The figure shows that

= angular momentum of the
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From literature about gyroes it is well known that a torque changing

the direction of the spin axis can be formulated as

_db
T=3

With the help of eq. 3.-(27) the damping torque can now be formulated

- - doa _ . _ =et_ - -
Tdamp bg ac - bg. p.aoe bg.p.a. a.Jg.wg.p 3.-(28)

It is not easy to reason the origin, the momentary direction and magnitude
of this torque. Therefore the parameter p can most conveniently be

determinated with the help of experiments.



4, Gyro responses to gimbal torques.

4.1. Responses to the centrifugal and the flexural torques.

From the sections above it appears that the flexural pivots and the
cross member exercise torques on the rotor. These have the character
of positive and negative spring torques. As long as they do not compen-—
sate each other they cause a precession of the rotor. During this motion
the resulting average torque is always perpendicular to bg and Wy
Geometrically we can find the precession velocity with the help of the

figure 4.-1,

The precession can be calculated from T and the component of b_ which

is perpendicular to the driving shaft. The precession velocity then

IY
db
b
g
T
de
/’x
& _ .z
by sine
g
fig. 4.~-1., Precession cone.
follows from
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To change the direction of bg we have to add to bg

db = bg(sin @-d €.

This requires a torque T = g% .

From the combination of both we get

bg @in djd e =T dt 4.=-(2)

With equation 4.-(1) the precession velocity wP becomes

- T _
“ P sin o 4.3
g
For small q:
T
W= 4,~(4)
b -
P g a

The torque T is the sum of the centrifugal and the flexural torques.
Their average values are expressed in the egs. 8.~(10) and 3.-(23).
The magnitude of the total torque in the direction drawn in figure
4.-1 becomes

aK

T == -as 4.=(5)

]

. 2 2
With X =4 m w, 1 or K = (Jc(a) + Jc(b) - Jc(c))md

Substitute eq. 4.-(5) into eq. 4.-(4) to receive

2R -8 _4K-38

¥ 4.-(6)
P bg.a bg

L] i s
EREACKRASREROREND

} EE%ETCM“d_ i g;) vich M = 3(3 (@) + 3. (®) - J (e)) b= (7)
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S . . .
Should M Wy be greater than — then the rotating direction of the
precession is positive, other@¥ise negative. The precession velocity

is independant of the angular deviation a.

4.2. Other oscillations.
If we are interested in the other oscillations, then the gecmetrical
methed becomes intricate. So we have to describe the equations e¢f motion
of the gyro with respect to an inertially statiocnary system. As the
latter the coordinates x"y"z" are so chosen, that the z" axis coincides
with the driving shaft axis. All of the coordinates are fixed in the
intertial space. So also the driving shaft axis. We shall assume that
there are no external torques and that the spin axis has got a small

angular displacement from an earlier cause. The transformation of any

vector L3 of the xyz-space into the x"y"z'"-space is already given in

equation 2.-(7):

cos Bz" -sin 92" 0
L3(x"y"z") = sinnez" cos Gz" o1l . L3(xyz) 4.-(8)
0 0 0

Note: Bz" means the angular deflection about the z"-axis, which coincides
with the z-axis.

The required motion can be approximated by the following two differential
equations. They are described in many books about gyros. Therefore we

shall use them without discussion.

d 9 1 de " de "
TX" Jxll 2X =D _n X = bg
dt dt dt
4.-(9)
2
da"e de ,, de_,,
Tuw-Ju — - D I = - b
y y 2 y g
dt dt dt

BX“ and By" are rotations about the respective axes. Jx" and Jy" are the
principle moments of inertia of the rotor. Dx" and Dy" are damping para-
meters., Tx" and Ty" are the components of the centrifugal and the

flexural torques in the direction of x" and y'".
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Calculating both torques Tx" and Ty" the average torques of Tv(xyz) and
Tc(xyz) have to be transformed from the xyz-system into the x"y'"z"-system.
After vectoriélly suming the flexural 3.-(25) and the centrifugual 3.-(9)

torques we have

]

T(xyz) Tv(xyz) + Tc(xyz) == | 0 + o 0 =
' 0

iR - S A
v
= -0 = 0 4--(]0)
0 0
Then transforming this with the help of equation 4.-(2) we get
A cos GZ"
T(x"y"z") = a | A sin Gz" 4o~-(11)
0

Ta recognize Gx", Gy" and 92" we have to express the angle deviation o as
a vector. From the choice of the xyz system, in section 2, it is clear that

a{xyz) will be

a(xyz) =a | 0

Transformed into the x"y"z"-system we get the components of the deviation

o about the x"-, y'"- and z'"-axes.

Ccos Sz" GX"
a(x"y"z") = o | sin ez" = Gy" .=(12)
0 ez'l

Then eq. 4.-(11) changes into

A Bx"

T(x"y"z") = A GY" 4.~(13)

0
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Note: we shall use in the further part of this section a simplified

notation:

x“%l
y" 2

Substituting eq. 4.-(13) in 4.-(9) and neglecting Dl.and D2 we get

dzel d92
A 91 -J 3 =bh —-—=
LT & dc
4.=-(14)
a%e, a8
AB, -J —==-bp —
22 g2 & 4t
With Laplace transformation:
L8} =8
£18,} = 8,(p)
The equations change into:
4 - 308, () = b_p.8,{)
I ! g2
4.-(15)
2 -
(A = J,p7)8,(p) = bgp-el(p)
The solution of the equations gives
2 2 2
- (bgp) = (A - Jp).(A - Jp7) 4.~(16)
In our case of a symmetrical gyro Jl = J2 = J. This changes the expression
into
354 4 (bj;‘ -2 0p2 + A% =0 4o=(17)

Replacing p2 by a the equation becomes
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J2a2+(b§-2JA)a+A2=O 4.-(18)
—(bz-zJA)+Jb4—4JAb2
a = g - g _g _
1,2 9
2J
2 2 AJ 4 4 ATy
- w21 - 2805 ol (1 - LA
g 52 \/g( b2
= £ & 4.-(19)
2 J2
. 2 AJ . ‘s . . ,
Replacing 5 by v simplifies this equation into
b
g

SRR Sl (RS AURERY 4.-(20)

The magnitude of y easily becomes lower than unity. For our experimental
gyro this point was achieved at a velocity of 120 rpm.

.We can thus approximate equation 4,-(20) by

a9 =—§—Y— ((y 1)+ (1 ~y - 2 ) 4.~(21)

If we neglect all the terms of higher order than two, then the first

oscillation frequency follows from:

Grk -5 ) ,
crfa me g A A Ta v . -
Pr,2 TIN3 T21y73 ibg R b, h.=(22)

This expression is again the precession frequency, that we also found

in section 4.1.

The second mode of oscillation follows from the next calculation.



—._.A_._, 2 - = A -
2TTH AT gy -0
4.-(23)
b2
=-§—(Y-1)
J
- PN
Py g =25 U -3 4] a =iy =
b
, 4o
=+ i (- é% ) (24)
b
g

This is the nutational frequency of the gyro. If the torques, flexural
and centrifugal, compensate each other then this becomes
J w

d 4.-(25)

o

This is the nutational frequency of the technical free gyro, well known

from the literature (MAGNUS).

4,3. Compensation of the torques.

We had already remarked, that the torques exercised by the flexural
pivots and the cross member can be considered as resp. a positive and

a negative spring torque. So on becoming equal they are able to compen-
sate each other. In eqs. 3.-(13) and 3.-(26) both torques are expressed
as the average over one rotation of the rotor. After summing them we

get
1
2
0

This torque becomes zero if:

S, ¢ = K = JefG @) + 3 ) - 3_(e)) b-27)
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Looking back to eq. 4.-(6) it appears that at this point the precession

velocity decreases to zero.

- K-8

b
P g

0

We have now formulated the condition of compensation of the average
torques. More accurate will be to compensate the torques at every
moment. The momentary values of the torques are expressed in eq. 3.-(12)

and 3.-(25)., The totel torque becomes

2
cos w,t aSa v as cos 2 mdt
= 1 B 1 7 =
Ttot(xyz) oK | cos mdt sin mdt +/ 0 as sin 2 mdt
0 0 0
S— SN ——
Tc(xyz) Tv(xyz)
1 - -
i1K cos 2 wyt = 8 cos 2 wyt K - Sa v
= q 1K sin 2 w,t = s sin 2 0yt + a
0
4,.-(28)

From the condition making the torque zero at every moment we get

iK-s 0

1 -
2K =8, 0} 4.-(29)

In fact this means

3 —_— = 1 - =
Sg Sa v s K - JK =0 4.-(30)
R + g = %K + %K = K

So we conclude that the ideal tuning has to obey two conditions,
First the stiffness of the flexural pivots joining the gyro with
the cross member have to be zero. Second the spring torque of the

other has to equal the double of the average centrifugal torque.
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Now there still remains the damping torque discussed in section 3.-(3)
The only way to compensate this torque will be by exercising an external

torque on the rotor, for instance electro-magnetically.
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5. Experiments
The experimental model of the gyro which was used by us was designed

and built by instrument makers of the Technological University of
Eindhoven. The picture on the front page shows this instrument. It is
clearly to be seen that the whole construction consists of three parts:
1) The fork; 2) the cross member , or rotating gimbalyand 3) the

rotor, the gyro proper.

The motion of the gyro is detected using the approximation detector

PR 9373 (Philips made). This instrument measures the distance changes
between itself and a metal object. Because we had six trigger marks on
the rotor, we were also able to detect the angular velocity of the

gyro by means of this instrument.

The distance between the front of the rotor and the detector is plotted
in figure 5.-1. as a function of time. The rotor velocity was 4000 rpm..
The decreasing of the displacement is easily to be seen and appears to
be an exponentional function of time, From this the parameter p can be
determined. The number of oscillations per unit of time forms the pre—
cession velocity. A series of these plots gives the relation between

the angular velocity of the gyro and the precesion velocity. Figure
5.-2, shows the result of this experiment. At the velocity of about

5800 rpm the two torques compensate each other and the precession be-
comes zero. At this point the gyro will be "free". Before this point the

spin axis precesses to the right, beyond this point to the left.
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Fig. 5.-1.

The distance between the front of the rotor and the sensor

as a function of time, This figure shows the precession and the damping
of this precession.

The angular velocity of the gyro was 4000 rpm. (paper velocity: 600 mm/h).
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6. Conclusion.
This treatise has shown. that the cross member of the Hooke's joint
nearly always exercises a centrifugal torque on the rotor. Making use
of the torque of flexural pivots this can be compensated. From experiments
it appears that this theory is right. It is possible to realize a free

gyro in this way.

The practical execution of course poses several problems. Two of these

are:

1. The flexural pivots allow the gyro only a small angular deviation.
Therefore a construction is mnecessary to correct the direction of
the driving shaft quickly and precisely.

2. In the practical realization always an external torque is necessary

to compensate the damping torques discussed in section 3.3.
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Symbols.

Af the fork pivot axis

Ag gyro pivot axis

Rf fork pivot axis vector

Rg gyro pivot axis vector

Sf the stiffness of the pair of flexural pivots on axis Af
Sg the stiffness of the pair of flexural pivots on axis Ag
a angular deviation of the rotor

Wy angular velocity of the driving shaft

wg angular velocity of the gyro

wp precession velocity

£ momentary angular displacement of the flexural pivots S
T momentary angular displacement of the flexural pivots Sf
Fc centrifugal force

TC centrifugal torque sensed by the rotor

Tv g flexural torque exercised by the flexural pivots §

TV £ flexural torque exercised by the flexural pivots Sf

Tv the vectorial sum of both torques Tv g and Tv £t

Td the damping torque

Jg(a), Jg(b), Jg(c) principal moments of inertia of the rotor
Jc(a), Jc(b), Jc(c) principal moments of inertia of the cross member
bg angular momentum of the rotor

Vf plane in which the pivots Sf rotate

X,V.2 coordinate system in the Ve plane

x',v',z’ coordinate system in the Vg plane

x",y", 2" inertial system of coordinates
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