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Soomary 

The Hooke's joint is one of the several possible ~eans for suspending a 

gyro free of torques. This report shows how the cross ~e~ber of the Hooke's 

joint exerts a centrifugal torque on the gyro rotor. 

A ~echanical way to co~pensate this torque is the use of the spring torque 

of flexural pivots. Besides these torques a d~ping torque will be discussed 

which interferes with the ideal functioning of the suspension. 

The exper~ental Hooke's joint gyro. 
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I. 'Introduction. 

1.1. g~~~r_~~~E~g~i~~_Er~El~~~. 

The gyroscope based on'the principle of a spinning rotor is being 

widely used nowadays as inertial direction memory and as rotation 

sensor. The fields of application comprise stabilization, attitude 

control, and navigation of water, air, and space vehicles (SAVET). 

Among the various design approaches the free rotor gyro, also called 

the two degrees of freedom gyro, is the most ancient. It is still in 

use to-day. 

Such a free rotor gyro actually is a vector memory in inertial space, 

provided it is kept free of torques. By effectively suspending it in 

its centre of gravity torques due to gravitation and other accelerations 

can be well nigh eliminated. Using a Cardano gimbal system we can achieve 

this, at the same time isolating the gyro from rotation movements of the 

base or vehicle on which it is carried (MAGNUS, SAVET). 

Of course any practical gimbal will have moments of inertia that can 

become disturbing, and the pivots necessary to realize the gimbal joints 

will always exhibit spurious torques however refined the execution may be. 

Designers have had to give this problem very much attention. They have 

been using ball-bearings, jewel pivots, gas bearings, magnetic bearings, 

flexural pivots. Each design principle has its own merits and disadvantages. 

Recently, attention has increasingly been drawn to the flexural pivot 

suspension, as it can eliminate the need of lubrication and suspension 

fluids and gases. Also this type of joints makes it feasable to use 

internal, rotating gimbals which have certain advantages above the external, 

stationary gimbal systems. The flexural pivots, however, can hardly be made 

free of serious elastic torques, but fortunately these can be used to 

compensate certain mass torques. 

The following treatise will examine the torques involved in the use of 

rotating gimbals, and the aspects of achieving torque compensation. 
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1.2. The aim of this article. -----------------------
In the past only very few articles have appeared on the behaviour of 

gyros with flexural pivots suspension. They discussed experiments -(ARNOLD) 

and they gave mathematical explanations (HOWE). We too have been ex

perimenting with a model of this type of gyro and will give some results 

thereof, but the most important part of this treatise will show an 

explanation of the dynamical behaviour, based on the geometrical deri

vation of the motion of the several parts of the gyro. Some rules of 

vector calculation relating to perpendicular vectors are used to simplify 

the derivation. 

It will appear that the rotating gimbal always exercises a centrifugal 

"torque on the rotor when the spin axis of the rotor and the driving 

shaft axis do not coincide. In the case of flexural suspension a spring 

torque is available to compensate this centrifugal torque. 
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2. Kinematics. 

In fact the rotating gimbal used is a Hooke's joint between the rotor 

and the driving shaft. Like an ordinary gimbal it imparts to the gyro 

two degrees of freedom. The whole construction consists of three parts 

(figure 2.-1), namely: the driving shaft (1) with a fork, which is joined 

by a pair of flexural pivots to the cross member (2); another pair of 

flexural pivots connects this member with a flywheel (3), the gyro proper. 

One pair of flexural pivots is mounted between the fork and the cross 

member. We shall call these pivots the "fork pivots" and indicllte them 

symbolically by their stiffness Sf. We can also draw an imaginary axis 

Af through them. In the same way, between the cross member and the rotor, 

we find the "gyro pivots" with stiffness S on the axis A • 
g g 

(3) 

driving shaft 

(2) rr-~~~t-ti---~(:d: ~ rec t ion of 
.-,I----;'Cf.<,---+-.::J ____ the ro tor) 

----A 
g 

Wd 
(direction of 
dri ving shaft) 

fig. 2.-1. A model of a gyro with rotating gimbal. 
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In the ~ollowing paragraphs the axes systems will be defined, and sub

sequently the angular de~lections, deviations, and also the velocities will 

be derived. With these data the movement of the cross member can finally 

be described. 

To begin with,it is assumed that the gyro does not make a precession and 

so rotates in a fixed plane. 

2.1. ~~~_~l~!~~_~~~_!E~~~!~~~!i~~~. 
Figure 2.-2 shows a highly simplified representation of the gyro. Only the 

axes Af and Ag and the flexural pivots 

the planes in which the fork and gyro 

and A respectively, keep rotating. 
g 

y 

r 

--.. ::::--- -

Sf and Sg are drawn. Vf and Vg 

pivots, and with them the axes 

A 
g 

z .. 
-Wd 

~z' 
~W 

g 

fig. 2.-2. Planes of rotation of the pivots. 

are 

The system of coordinates (x, y, z) is so chosen that the x- and y- axes 

·are situated in the plane Vf , while the z- axis, perpendicular to this plane, 

coincides with the driving shaft axis. Correspondingly, the plane Vg contains 

the coordinates x' and y', the orientation being chosen to make the x- and 

the x'- axes coincide. The z'- aXIS represents the spin axis of the rotor. 

A rotation through an angle a about the x- axis transforms the one system 

into the other. This angle is produced by a deviation of the spin axis of the 

rotor 
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from the direction of the driving shaft axis, marked by its angular 

velocity wd • The direction of the spin axis of the rotor, the gyro 

proper, is indicated by the angular velocity w of the gyro. 
g 

Note that both systems of coordinates remain fixed in space as the gyro 

is rotating. In this treatise the axes Af and Ag will be considered 

to be vectors with lengths Rf and Rg • This vec~or notation has the ad

vantage that the directions can be calculated simply. 

The transformation of any vector LI (x'y'z') into LI (xyz) can be cal

culated by: 

o 
LI (xyz) cos a 

o 
- sin 

cos ex 

L (x'y'z') 
1 2.-(1 ) 

Analogically any vector L2 (xyz) will be transformed into L
2
(x'y'z') by: 

o o 
cos ex sin 

- sin a cos 

This will be applied to the vectors A 
g 

function given as a vector by: (figure 

A (x'y'z') = R sin wg~ 
(

COS w tl) 
g g g 1 

o 

Using equation 2.~(1) we get 

Ag(xyz) = R 
g (c~s C< 

Sl.n a . 

cos 

sin 

sin 

and At" The 

2.-(3)). 

axis A 
g 

2.-(2) 

is a time 

2. -(3) 

2.-(4) 



/ 
/ 

v 

sin w t 
g 

x=x' 

_z 

fig. 2. -3. The projection of the gyro pivot axis A onto the fork axis 
g 

plane V f' 

The same thing can be done with Af • From figure 2.-4 the vector Af can be 

seen to be: 

2. - (5) 

From equation 2.-(2) the transformation produces: 

A (x' y' z') = R 
f f 2.-(6) 
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y 
v 

1 

"'---"'---"'---",---
'- it---1f 

Rf ____ ~~~~~~ 

v g y' 

I? jI 

------
x=x' 

fig. 2. -4. The projection of the fork pivot axis onto the gyrO plane 

Up to now we assumed the gyro to be rotating in a stationary plane, In 

reality it will nearly always make a precession. In our case thio is a 

rotation about the z- axis (the driving sha~t axis). This means that the 

above mentioned systems can be completed by the transformation ~rom the 

xyz- space consisting of a rotation, say e , about the z- axis. This is 
z 

given by the next equation. 

- sin e z 

v • 
g 

L (x"y"z") = sin e z 

(

COS e 

3 z 
cos e 

z 
Z.-(7) 

o o 

2.2. !~~_E~!~~i£~_£~~~~~~_~EiY~_~~~_EE~£~~~i£~_y~!££i~i~~~ 

The axes Af and Ag are stiffly joined perpendicular to each other. From 

vector calculus we know that in this case (~f' ~~ = O. Applying this to 

equations 2.-(4) and 2.-(5) we get the following results: 



·(A • A ) ~ 
-f -g 

or: 

From this we get: 

tang W t 
g I 

,.., 11 !""'O 

2.-(8) 
cos a cos ct 

t we can conclude that the relation between Wgt and wdt is: 

W t 
g 

tang(wdt - rr/2) 
~ arct ( ) 

cos ct 

For the case of a small angle a this becomes 

2.3. ~~!g~~!i~~1_~~~~EiE!i~g_~!_!g~_~~~~~~g!_~!_!g~_~E~~~_~~£~!. 

2.-(9) 

2.-"(10) 

In this part we shall concentrate our attention on the motion of the cross 

formed by the axes Af and Ag because it will appear that masses outside the 

cross member plane defined by Af and Af transmit centrifugal torques to the 

rotor. So we are interested in the path and the velocity of such a mass. To 

avoid unnessecary complexity the following derivation will be given for the 

case of small angular displacements a only. 

If we consider the line between the mass and the middle of the cross as 

a vector (see fig. 2.-5) then the vector product (A xA
f

) gives the direction 
-g -

of this vector. 

A (xyz) -g 

Note: R is assumed to be of unity length. 
g 

2.-(1 I) 
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2.-(12) 

The vector product of both becomes in the xyz- plane: 

2.-(13) 

We have now found analytically the path of the mass to be a circle in 

the plane z = 1 with its centre at (0, - a/2,1) and a radius with length 

la. This can be expressed in: 

2 2 2 
x + (y + !a) = ex /4 
z = 1 ) 2.-(14) 

Equation 2.-(13) also shows,that the mass rotates along the circle with 

double the velocity of the driving shaft. 

_ z 

) 

fig. 2.-5. The path of the point mass outside the plane AgA
f

• 
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The whole situation is dl:'awn in l:igul:'e 2.-4. As a matter of J:act the mass 

does not really move in the plane z ~ 1, but in a ~lane making an angle 

a/2 with this plane. This negligible ~ault arose from the approximation 

in eq. 2.-(10). 

2.4. The angular displacement of the flexural pivots 

The next import.ant motion will be the momentary angular displacements of 

the flexural pivots, because they define the spring torques. 

The displacement of S can be derived by determining the angle between the 
g 

plane Vg and Af (figure 2.-4). This angle, called ~, is formed geometrically 

by Af and its projection on Vg . From figure 2.-4 and equation 2.-(6) we can 

conclude that 

- ~ ~ arcsin 
-R sin a sin wdt 

(_-=f_~ __ --=-) 
R

f 

For the case of small a this equation can be simplified into: 

2.-(15) 

2.-(16) 

Analogous to the above reasoning the displacement of Sf' called C, can be 

found from the angle between Ag and its projection on the plane Vf' With 

the help of figure 2.-3 and eq. 2.-(4) we get: 

R 
( g 

sin a sin IJj t 

-~ = arcsin R .g 
g ) 

Wgt is expressed as a function of wdt in eq. 2.-(8). Then eq. 2.-(17) 

becomes: 

-c = arcsin(sin a 
arct (w t -Tr/2) 

sine d )) 
cos a 

For small a this results in 

2.-(17) 

2.-(18) 

2.-(19) 
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3. Torques o~ the rotating gimbal. 

There are three kinds o~ tor~ues exercised upon the rotor by the rotating 

gimbal, i.e.: the elexural tor~ues, a centrifugal torque and a damping 

torque. In this section we will discuss these torques. The first two 

torques will be determined with the help of the equations derived in 

the second chapter. The third torque has been shown by experiments and 

it will be formulated from these data. 

3.1. !~~_~~~~Ei!~~~!_~£Eg~~. 

The dynamic behaviour of an object can conveniently be examined if it is 

represented by an equivalent system of point masses joined perpendicular 

to each other with weightless rods (MAGNUS). So we shall do with the cross 

member. The equivalent system follows from the next figures and equations. 

y J 

rr 
y 

y J 

11 y 
eq 

I m 
I J I J x 
I a 

~ 
y m ~ eq 

\ :::o-'X :::--x 

---~---- _2 m c 
~-

_J ~ ----:r -- I 2 m 
b 2 eq 

I m 
a 

I 
m 

fig. 3.-1. The dynamical equivalent of anobject. 
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J Jz (a 
2 b2), 2m = " + z e'l 

J (a 2 2 
2m m J = + c ). 

x x eq 

(b2 2 2m J = J = + c ). y y eq 

J , J and J are the principal moments of inertia of the object. 
x y z 

From this the distances a,b,c follow. For instance: 

2 
c 

J + J - J 
= --"x,--_",,-y __ .::.z 

4m 

Remark: m = 1/6 of the total mass of the object. 

J. -( 1 ) 

3.-(2) 

Applying this transformation to the cross member we get the simplified 

model drawn in the next figure. The positions of the masses 

--.... z 

fig. 3.-2. The dynamical equivalent of the cross member. 

are chosen thus, that four of them are situated on the axes Af and Ag • 



Consequently the point ~asses ~l 2 and 
• V respectively. 

g 
It will be clear that 

m
3

•
4 

rotate in the plane V
f 

and 

only the masses mS and m6 are 

able to exercise a dynamic torque. The motion of these masses is des-

cribed in section 2.3. Their path is a circle which is followed with 

an angular velocity 2wd, Each of them senses a centrifugal force for

mulated by 

3. - (3) 

The component of F contributing to the torque 1S perpendicular to the 
c 

torque arm 1. Since this component is 

the cosine term can be neglected for small a leaving uS with F • 
c 

y 

t 

F • 
c 

-z 

fig. 3.-3. Radius of the path of the point mass. 

In the case of a small angle ° we get r = 1;0 (figure 3.-3). Then 

eq. 3.-(3) becomes: 

cos ex 

(2 ) 2 1." 
F c = m. wd • -2-- 3.-(4) 
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It is not di~~icult to understand that a tor~ue sensed by the rotor must 

have the direcdon 0:1; A
f

, :ear this is the only war to change the path o:e 

the rotor br means of a mass fixed t~ the cross member. This means that 

the torque is caused by that part of Fc perpendicular to axis Af • Aiding 

to formulate this figure 3.-4 reflects the circle of a rotating mass 

in the plane z ,= 1 and the projections of the axis Af and the arm 1 

on this plane. Besides that the direction of the centrifugal force F 
c 

is also indicated. 

Y Af (proj.) 

I 

I 
I 

I 
I 

FT 

_x 

F 
c 

fig, 3.-4. Projection of Af and the torque arm 1. on the plane z = 1. 

We call the active component of the centrifugal force Fr' Its magnitude 

follows from figure 3.-4: 

3. - (5) 

Then the centrifugal torque of one point mass, sensed by the rotor, will be: 

3. -(6) 



Usins eq, 3.~ (4) the tor~ue Tcl becomes 

3. -(7) 

The total centrifugal torque of both the point masses mS and m6 becomes 

3. -(8) 

We already had remarked above that this torque has the same direction 

as Af • Then Tc as a vector follows from eq. 2.-(5) 

T (xyz) 
c 

a.K. cos wdt 3.-(9) 

On the average over one rotation the rotor senses a torque exercised 

by the masses 

T 
c av 

a.K 
2 

which is a torque acting solely in the direction of the x-axis. 

Looking back to eq. 3,-(2)' it will be clear that: 12 = c 2• Then K 

becomes: 

3.-(10) 

3.-(11) 

In this equation the parameters J (a), J (b) and J (c) represent the 
c c c 

three principal moments of inertia of the cross member. 
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Eqs. 3.~(9) and 3.~(IO) then change to 

3.-(12) 

Or on an average 

T = ~/2.(J (a) + J (b) - J (c». Wd2 • 
c c c c (~l ) 3.-(13) 

Should J (a) + J (b) equal J (c), then the cross member is a disk of c c c 
zero thickness and the mass torque will vanish for all rotation speeds. 

3.2. !~~_E!~~~E~!_~£Eg~~~. 
The flexural pivots give a torque proportional to their angular deviation. 

This torque is formulated by the product of the deviation and the stiff

ness of the pivots. Its direction is opposite to the angular displace

ment of the pivot. These displacements are derived in section 2.3. We 

can now formulate the torque T of the flexural pivot S with the 
v,g g 

help of the equations 2.-(15) and 2.-(16): 

3.-(14) 

For small angles a we can simplify this equation to 

3.-(15) 

Note: in these equations Sg represents the sum of the sfriffnesses of 

both pivots on axis A . 
g 

From figure 2.-2 we can conclude, that this torque has the same direction 

Then T as a vector becomes with equation 2.-(4): 
v g 

cos .") T g(xyz) = S arcsin(-sin a sin wdt) (o~, ex sin w t 3.-(16) 
v g g 

S1n ex sin w t 
g 

It is known from eq. 2.-(10) that Wgt = wdt - n/2. Then eq. 3.-(16) 

becomes finally in the case of small angles 
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3.-(17) 

It will be clear that the derivation of the torque Tv f exercised by 

the pivots Sf follows an anologous way. The angular deviation ~ of Sf 

is expressed in eq. 2.-(18) and 2.-(19). With these equations Tv f 

becomes 

arct ("'d t - 1T /2) 
= Sf· arcsin(sin a sine cos a }) 3.-(18) 

For small angles a: 

3.-(19) 

The direction of Tv f is the same as Af(xyz) formulated in eo.. 2.-(5). 

This completes the expression of Tv f as a vector. 

Sf- arcsin(sin a 

Or for small a: 

arctC"'d t - 1T/2) (COS "'dy sin (----=-----)) sin "'dt 
cos a 

o 
3.-(20) 

3.-(21) 

The total spring torque sensed by the rotor is formed by the vectorial 

sum of the torques of both pairs of pivots. This sum becomes in the case of 

small a 

( , 
2 

00. "~ -aSg ~'n '" t - aSf cos "'d t 
d 

T (xyz) = T "+ "T = as Sln "'dt cos "'d t - aSf sin "'d t 
v V" g v f g 

0 

3.-(22) 
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If Sg ~ Sf ~ S then this expression changes into 

3.-(23) 

If Sg and Sf are not equal then they can be formulated by 

S S - s 
g a v 3.-(24) 

Sf S + s 
a v 

of both stiffnesses Sg and Sf' The difference 

expressed by s, which can be both positive and 

negative. Equation 3.-(2~now becomes 

S is the mean value av 
from the mean value is 

T (xyz) v 

. 2 2 
+ a s s~n wdt - a s cos 

sin wdt cos wdt 

cos 

sin 

On the average the contribution of the latter column will be zero. 

As effective torque is left 

3.-(25) 

3.-(26) 

The direction of the average torque appears to be always the same whether 

both pivot axes have the same stiffness or not. 

3.3. !~~_~~E~~8_~~Eg~~~. 

Besides the aforementioned torques there is a damping torque. This torque 

has two causes. First there are the losses in the flexural pivots. Second 

the cross member and the rotor experience air friction. In consequence 

of this torque the deviation angle a ~il1 decrease. From experiments it 

is to be seen that this angle expires as an exponentional function of 

time and can be formulated by 



-pt 
ex = ex e 

o 
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3.-(27) 

In this equation the parameter p represents the damping which experiments 

have shown to be a function of the rotation velocity hl
d

• The magnitude 

of the torque can be determined as follows. We shall assume that the gyro 

makes a precession. In figure 3.-5. the observed path of the spin axis 

is drawn. The dotted line is the undamped path. 

~ig. 3.~5. Damped precession. 

x 

b 
g 

\ 
\ 
\ 
\ 

cb 

1 _z 

1 I 
\ I 
\ / 
\ I 
\ / 

\ / " / '--_/ 

To change the direction of the sp~n axis a torque perpendicular to it 

is always necessary. From the way the gyro drifts it is clear that this 

damping torque points towards the driving shaft. The figure shows that 

db ~ - b de< 
g 

(where b 
g 

rotor) 
Jg(c). Wg ~ angular momentum of the 
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From literature about gyros it 1S well known that a torque changing 

the direction of the spin axis can be formulated as 

db 
T = dt 

With the help of eq. 3.-(27) the damping torque can now be formulated 

T damp 
-b Ei:= 

g dt 
-b .-p.a e-pt= b .p.a. = 
gog ".J .w .p 

g g 
3.-(28) 

It is not easy to reason the origin, the momentary direction and magnitude 

of this torque. Therefore the parameter p can most conveniently b~ 

determinated with the help of experiments. 
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4. Gyro responses to gimbal torques. 

4.1. ~~~E~~~~~_!~_!b~_£~~!Ei!~~~l_£~~_!h~_f!£~~E£l_!~Eg~~~· 
From the sections above it appears that the flexural pivots and the 

cross member exercise torques on the rotor. These have the character 

of positive and negative spring torques. As long as they do not compen

sate each other they cause a precession of the rotor. During this motion 

the resulting average torque is always perpendicular to b 
g 

GeometricallY we can find the precession velocity with the 

figure 4. -1. 

and w
d

' 

help of the 

The precession can be calculated from T and the component of bg which 

is perpendicular to the driving shaft. The precession velocity then 

fig. 4.-1. Precession cone. 

follows from 

d£ 
W =-
P dt 

b Slna 
g 

db 

d£ 

4.-(1) 
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To change the direction of b
g 

we have to add to b
g 

db = b (sin ex).d E. 
g 

This requires a torque T db 
=-

dt 
From the combination of both we get 

bg (sin a:)d E = T dt 

With equation 4.-(1) the precession velocity W becomes 
p 

T 
W = -;:--;::;-::--
p bg sin ex 

For small ex: 

W 
P 

4.-(2) 

4. -(3) 

4.-(4) 

The torque T is the sum of the centrifugal and the flexural torques. 

Their average values are expressed in the eqs. i.-(IO) and 3.-(23). 

The magnitude of the total· torque in the direction drawn in figure 

4.-1 becomes 

exK 
T = 2" - exS 

With K = 4 m w~ 12 or K 

Substitute eq. 4.-(5) into eq. 4.-(4) to receive 

W 
P 

= ex(jK - S) 
b • ex 

g 

1 
= J (c)(Mwd 

g 

+ J (b) - J (c» 
c c 

s 
- -) = 

wd 

with M l(J (a) + J (b) - J (c» 
c c c 

4. - (5) 

4.-(6) 

4. -(7) 
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S Should M wd be greater than then the rotating direction of the 
wd 

precession is positive, otherwise negative. The precession velocity 

is independant of the angular deviation ~. 

4.2. Q£~~E_2~£i!!~£i2~~. 
If we are interested in the other oscillations, then the geometrical 

method becomes intricate. So we have to describe the equations of motion 

of the gyro with respect to an inertially stationary system. As the 

latter the coordinates x"ytlz" are so chosen, that the z" axis coincides 

with the driving shaft axis. All of the coordinates are fixed in the 

intertial space. So also the driving shaft axis. We shall assume that 

there are no external torques and that the spin axis has got a small 

angular displacement from an earlier cause. The transformation of any 

vector L3 of the xyz-space into the x"y"z"":'space is already given in 

equation 2.-(7): 

L (x"y"z") 
3 

-sin 9 " z 
co s 9 " z 
o 

4.-(8) 

Note: e " means the angular deflection about the z"-axis, which coincides 
-- z 
with the z-axis. 

The required motion can be approximated by the following two differential 

equations. They are described in many books about gyros. Therefore we 

shall use them without discussion. 

2 
de " de " de" 

T " - J " 
x 

- D 
x = b l: 

x x dt 
2 x" 

dt 
g dt 

4.-(9) 

2 
dB " de " d 9 " 

T " - J " 
l: D l: - b ----X 

y y dt 2 y" 
dt 

g 
dt 

e " and e " are x y 
rotations about the respective axes. J " and J " are the x y 

principle moments of inertia of the rotor. D " and D " are damping para-x y 
the components of the centrifugal and the meters. T " and T " x y 

are 

flexural torques in the direction of XU and y". 
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Calculating both torques T " and T " the average torques of T (xyz) and 
x y v 

Tc(xyz) have to be transformed from the xyz-system into the x"y"z"-system. 

After vectorially summing the flexural 3.-(25) and the centrifugual 3.-(9) 

torques we have 

T(xyz) = T (xyz) + T (xyz) = 
v c - --a 

4.-(10) 

Then transforming this with the help of equation 4.-(2) we get 

T(x"y"z") 

cos 

sin 

To recognize a '" a " and x y e " we z 
a vector. From the choice of the 

a(xyz) will be 

4.-(11) 

have to express the angle deviation a as 

xyz system, in section 2, it is clear that 

Transformed into the x"y"z"-system we get the components of the deviation 

ct about the x"-, y"- and z"-axes. 

cx(x"y"z") 
(

COS a ") 
a ~in <" 

Then eq. 4.-(11) changes into 

(

ax" ) 
a " y 

a " z 

4.-(12) 

4.-(13) 
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Note: we shall use 1n the further part of this section a simplified 

notation: 

x" => 1 

y" 92 

Substituting eq. 4.-(13) in 4.-(9) and neglecting DI' and D2 we get 

d
2
9 

A9 -J __ 2=_b 
2 2 dt2 g 

With Laplace transformation: 

f{9
1

} = 9
1 
(p) 

f{9
2

} 9
2

(p) 

The equations change into: 

The solution of the equations gives 

2 - (b p) 
g 

4.-(14) 

4.-(15) 

4.-(16) 

In our case of a symmetrical gyro J
1 

= J 2 J. This changes the expression 

into 

4.-(17) 

2 Replacing p by a the equation becomes 



J
2 2 

a + 

a l 2 ~ , 

~ 

Replacing 
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(b2 _ 2 JA) a + A2 ~ 0 
g 

- (b2 - 2 JA) + J b: - 4 g -
2 J2 

- b:(1 
_ 2 AJ) + b4 (I 2 - g 

b 
~ 

2 J2 

JA b
2 
g 

~ 

_ 4 AJ) 

b
2 
~ 

by y simplifies this equation into 

~-L {(y - I) + I (I - 2y)) 
J.y V 

4.-(18) 

4.-(19) 

4.-(20) 

The magnitude of y easily becomes lower than unity. For our experimental 

gyro this point was achieved at a velocity of 120 rpm • 

. We can thus approximate equation 4.-(20) by 

A 
a l ,2 Jy 

, 2 «y -·1) + (I - y - ,y ... ) ) 4.-(21) 

If we neglect all the terms of higher order than two, then the first 

oscillation frequency follows from: 

A 
~ +-

- b 
g 

~ + j 
(-,'K-S) . a v 

b 
4.-(22) 

g 

This expression is again the precession frequency, that we also found 

in sect ion 4. 1 • 

The second mode of oscillation follows from the next calculation. 
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A (i + 4 y - 4)~ A 
(4 y - 4) a 2 

=--
2 Jy 2 Jy 

b2 
4.-(23) 

= ..JL (y 
J2 

- I) 

b J(I b 
P3,4 = + .~ - y)::: + j -L(I - h) = JJ J 

b 
AJ = + j~ (I 

- b2 ) J 
4.-(24) 

g 

This is the nutational frequency of the gyro. If the torques, flexural 

and centrifugal, compensate each other then this becomes 

b 
w = -'i 
n J 4.-(25) 

This is the nutational frequency of the technical free gyro, well known 

from the literature (MAGNUS). 

4.3. ~2~E~~~~~i2~_2!_~h~_~2Eg~~~. 

We had already remarked, that the torques exercised by the flexural 

pivots and the cross member can be considered as resp. a positive and 

a negative spring torque. So on becoming equal they are able to compen

sate each other. In eqs. 3.-(13) and 3.-(26) both torques are expressed 

as the average over one rotation of the rotor. After summing them we 
get 

4.-(26) 

This torque becomes zero if: 

4.-(27) 
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Looking back to eq. 4.-(6) it appears that at this point the precession 

velocity decreases to zero. 

W 
P 

= !K - S = 0 
b 

g 

We have now formulated the condition of compensation of the average 

torques. More accurate will be to compensate the torques at every 

moment. The momentary values of the torques are expressed in eq. 3.-(12) 

and 3.-(25). The total torque becomes 

Ttot (xyz) = aK 

= a 

rOO'"" "d') ( :'".v) (", cos 

cos wd t sin + as S1n 

0 0 

"---v------/ '--

T (xyz) c 

cos 2 wdt - s cos 2 

sin 2 W t - s sin 2 
d 

--
T (xyz) v 

(

!K -

+ a 0 

o 

2 "") 2 wdt 

...-

= 

4.-(28) 

From the condition making the torque zero at every moment we get 

!K - S 
a v 

!K - s 

In fact this means 

S = S - s !K - !K = 0 } g a v 
Sf = S + S = !K + !K ::I K a v 

So we conclude that the ideal tuning has to obey two conditions. 

First the stiffness of the flexural pivots joining the gyro with 

the cross member have to be zero. Second the spring torque of the 

other has to equal the double of the average centrifugal torque. 

4.-(29) 

4.-(30) 
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Now there still remains the damping torque discussed in sectio~ 3.-(3) 

The only way to compensate this torque will be by exercising an external 

torque on the rotor, for instance electro-magnetically. 
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5. Experiments 

The experimental model of the gyro which was used by us was designed 

and built by instrument makers of the Technological University of 

Eindhoven. The picture on the front page shows this instrument. It is 

clearly to be seen that the whole construction consists of thre~ parts: 

1) The fork; 2) the cross member, or rotating gimbal,and 3) the 

rotor, the gyro proper. 

The motion of the gyro is detected using the approximation detector 

PR 9373 (Philips made). This instrument measures the distance changes 

between itself and a metal object. Because we had six trigger marks on 

the rotor, we were also able to detect the angular velocity of the 

gyro by means of this instrument. 

The distance between the front of the rotor and the detector is plotted 

in figure 5.-1. as a function of time. The rotor velocity was 4000 rpm •• 

The decreasing of the displacement is easily to be seen and appears to 

be an exponentional function of time. From this the parameter p can be 

determined. The number of oscillations per unit of time forms the pre

cession velocity. A series of these plots gives the relation between 

the angular velocity of the gyro and the precesion velocity. Figure 

5.-2. shows the result of this experiment. At the velocity of about 

5800 rpm the two torques compensate each other and the precession be

comes zero. At this point the gy,o will be "free". Before this point the 

spin axis precesses to the right, beyond this point to the left. 
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x 

1 ---

, 

-- , 

, , 

~ ~ 60 sees. • time 

Fig. 5.-1. The distance between the front of the rotor and the sensor 

as a function of time. This figure shows the precession and the damping 

of this precession. 

The angular velocity of the gyro was 4000 rpm. (paper velocity: 600 mm/h). 
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,. 
" 

I ~ _ t " 

; :- • • 1 i, 

,1: 1 ,1 

" l: 

rpm (ang. velocity of the 

rotor) 

Fig. 5.-2. The relation between the angular velocity of the 

rotor and the precession velocity. 
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6. Conclusion. 

This treatise has shown" that the cross member of the Hooke's joint 

nearly always exercises a centrifugal torque on the rotor. Making use 

of the torque of flexural pivots this can be compensated. From experiments 

it appears that this theory is right. It is possible to realize a free 

gyro in this way. 

The practical execution of course poses several problems. Two of these 

are: 

I. The flexural pivots allow the gyro only a small angular deviation. 

Therefore a construction is necessary to correct the direction of 

the driving shaft quickly and precisely. 

2. In the practical realization always an external torque is necessary 

to compensate the damping torques discussed in section 3.3. 
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Symbols. 

Af 
A 

g 
Rf 
R 

g 
Sf 
S g 
0: 

wd 
W g 
W 

P 
~ 

1; 

F c 
T 

c 
T v g 
TV f 
T 

v 
Td 

the fork pivot axis 

gyro pivot ax~s 

fork pivot axis vector 

gyro pivot axis vector 

-38-

the stiffness of the pa~r of flexural 

the stiffness of the pair of flexural 

angular deviation of the rotor 

angular velocity of the driving shaft 

angular velocity of the gyro 

precession velocity 

momentary angular displacement of the 

momentary angular displacement of the 

centrifugal force 

centrifugal torque sensed by the rotor 

pivots on axis 

pivots on axis 

flexural pivots 

flexural pivots 

flexural torque exercised by the flexural pivots S g 
flexural torque exercised by the flexural pivots Sf 
the vectorial sum of both torques T and T v f+ V g 
the damping torque 

J (a), 
g 

J (b), J (c) principal moments of inertia of the rotor 
g g 

Af 
A g 

S g 
Sf 

J (a), J (b), J (c) principal moments of inertia of the cross member 
c c 

b g 
V

f 
x,y.z 

x",y",z" 

c 
angular momentum of the rotor 

plane in which the pivots Sf rotate 

coordinate system in the Vf plane 

coordinate system in the V plane 
g 

inertial system of coordinates 
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