
This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Puska, M. J.; Nieminen, R. M.
Theory of hydrogen and helium impurities in metals

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.29.5382

Published: 15/05/1984

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Puska, M. J., & Nieminen, R. M. (1984). Theory of hydrogen and helium impurities in metals. Physical Review B,
29(10), 5382-5397. https://doi.org/10.1103/PhysRevB.29.5382

https://doi.org/10.1103/PhysRevB.29.5382
https://doi.org/10.1103/PhysRevB.29.5382


PHYSICAL REVIE% 8 VOLUME 29, NUMBER 10

Theory of hydrogen and helium impurities in metals

15 MAY 1984

M. J. Puska
Laboratory of Physics, Helsinki University of Technology, SF 02-150 Espoo, Finland

R. M. Nieminen
Department ofPhysics, Uniuersity of Jyuaskyla, SF 4010-0 Jyuaskyla, Finland

(Received 10 November 1983)

A powerful computational scheme is presented for calculating the static properties of light inter-

stitials in metallic hosts. The method entails {i) the construction of the potential-energy field using

the quasiatorn concept, (ii) the wave-mechanical solution of the impurity distribution ( zero-point

motion" ), (iii) calculation of the forces exerted on the adjacent host atoms and their displacements,

and (iv) iteration to self-consistency. We investigate self-trapping phenomena in bcc and fcc metals

in detail, and calculate both the ground and low-lying excited states. Implications of the wave-

mechanical or band pictuxe to diffusion mechanisms and inelastic scattering experiments are dis-

cussed. Impurities treated are p, H, D, T, and He, and particular attention is paid to isotope ef-

fects among the hydrogenic impurities. It is argued that especially for p+ and H the quantum na-

ture of the impurity is crucial. The calculated results are in agreement with a wealth of experimen-

tal data.

I. INTRODUCTION

The behavior of light impurities (notably helium, the

hydrogen isotopes, and positive muons) remains a subject
of considerable interest in metal physics. It is a compli-
cated subject for two reasons. Firstly, the impurity pro-
vides a large perturbation for the host-metal electrons.
This leads to a strong electronic interaction which may be
basically repulsive in nature, as for inert gases, or a more
involved "hybridization" or "bonding-antibonding" in-

teraction for chemically active species such as hydrogen.

Secondly, the Impurity couples strongly to the host-Ion

coordinates, which leads to polaron-type lattice distor-

tions. The wave mechanics of the degrees of freedom of
the light-mass impurity is important in this context. Both
of these aspects must enter into any satisfactory descrip-
tion of impurity-related phenomena: ground-state elec-

tronic structure, energetics and site assignment, lattice dis-

placements in the self-trapped state, local-mode excita-
tions, diffusion-related effects, etc.

The treatment of the electronic structure of impurities
in solids has shown remarkable recent progress. Tech-
niques for self-consistent ab initio calculations have been

developed with increasing computational power and accu-
racy. However, even within the local-density approxima-
tion for exchange and correlation, such calculations are
still time consuming and costly, and only feasible mainly
for relativdy simple, high-symmetry situations. However,
the progress in this area has made it possible to create
simpler schemes more easily adaptable to complicated
low-symmetry situations. A particularly interesting ap-
proach is the effective-medium or quasiatom theory pro-

posed independently by Stott and Zaremba and Ngrskov
and Lang. In it one formulates the electronic interaction
between the impurity and the host in terms of the
ground-state electron density in the unperturbed host and
some coupling properties of the inserted impurity atom.

The latter can be calculated once and for all for any given

atom, whereafter the electronic interaction terms are nu-

merically easy to evaluate for any system where a reason-

able description of the host electron density can be found.
As will bc dlscusscd below, thc pcrturbatlve interaction
terms can be calculated relatively accurately for inert
atoms, but the situation is less satisfactory for hydrogen.
For the latter no systematic expansion of the interaction
exists and the approach is partly guided by physical intui-
tion. It must thus be remembered that while the
potential-energy surfaces thus obtained are qualitatively

correct, quantitative accuracy in the interaction energies is
significant only at the level of about 0.2—0.5 eV.
Nevertheless, the simplicity of the scheme makes further
work in improving the description very much worthwhile:
It makes it possible to investigate the trends in large
classes of complicated systems where more rigorous ap-
proaches are at present all but impossible. The applica-
tions discussed so far include hydrogen heats of solution
ln transition metals, hydI ogcn at nlckcl and other
transition-metal surfaces, as well as hydrogen at defects
in nickel, trapping of helium in metal vacancies, and
helium surface scattering. '

Very recently, Daw and co-
workers"' have applied a related semiempirical scheme
in their treatment of hydrogen embrittlement and hydro-

gen trapping to interstitial impurities.
The other aspect of light impurities interacting with

solids has received much less attention in the form of
quantitative calculations. A straightforward route to fol-

low would be to describe the impurity-host and host-host
interactions by (semi-) empirical pair potentials, and

search for equilibrium relaxations using either computer-
simulation or lattice —response-function techniques. '

However, a pair-potential description is of limited use for
mcta11ic systems, where vo1umc- of density-depcndeIlt
tcrills 111 tlic total cilcl"gy al'c 1mportant. M01'covcl', cvc11

if satisfactory pair potentials could be defined, these
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methods completely ignore the zero-point motion of the

impurity, which can be important. An extreme example
is the case of a positron, where the quantum kinetic ener-

gy dominates and dictates the basic features of diffusion
and trapping at defects. In important recent publica-
tions, ' Sugimoto and Fukai have considered the
quantum-mechanical nature of hydrogenic impurities in

some bcc transition metals. Their approach is based on

empirical metal-hydrogen pair potentials, but includes a
proper account of the zero-point effects, which can be
substantial. In another recent publication, Casella' has

suggested that the hydrogen states excited in neutron

scattering are wave-mechanical band states, and shows

this to be in accord with experimental findings. Further
evidence for the quantum nature is provided by, e.g. , the
observation' of a tunnel-split oscillator ground state for
hydrogen in oxygen-doped Nb.

In this paper we seek to combine the electronic, lattice-
relaxation, and zero-point effects into a unified theory of
light impurities in metals. %'e describe the electronic in-

teraction in terms of the effective-medium theory, and

calculate a potential-energy field of an impurity in a given
host-ion configuration. In practice, this is facilitated by
constructing the host electron density as a superposition
of atomic densities. The Schrodinger equation for the

impurity-mass coordinate is then solved numerically. The
forces exerted on the host atoms by the impurity are cal-

culated, and the ensuing lattice relaxations are evaluated

by Green-function techniques. A new electron-density

map and potential-energy field are then constructed, and
the process is iterated to self-consistency. The main
difference with the Sugimoto-Fukai approach' is the
potential-energy construction, which we carry out without

any adjustable parameters. We present a number of appli-
cations for both bcc and fcc metals concerning the self-

trapping of helium, hydrogen isotopes, and muons in the
interstitial regions. We also discuss the excited-state
characteristics and the diffusion mechanisms. While the
main emphasis in this paper is on the laying out of the
theoretical principles and assessing the potential and the
deficiencies of the method, we also compare our results

with existing experimental information. The overall per-
formance and predictive power of the method are deemed

good, but directions for further improvements are pointed
out.

II. FORMULATION

We first briefly summarize the main formulas given by

Sugimoto and Fukai' since they also form our starting
point. In the adiabatic approximation, the total energy of
the combined light-impurity —metal system is

E([u(R) j,a)=EL(f u(R)j)+E ([u(R)j),

where j u(R ) j is the set of the host-atom displacements

at lattice positions R, EL is the (lattice) energy of the host
atoms in the presence of the impurity, and E is the im-

purity energy eigenvalue. Fundamentally, all the energies
in Eq. (I) are of electronic origin, but we assume in the
spirit of the Born-Gppenhecmer approximation that they
can be reduced to a simpler representation in terms of

well-defined coupling constants. The key equation is then
the Schrodinger equation for the impurity coordinate,

where Eo is the energy of the undeformed lattice, and

F(R ) is the force acting on the host atom at R,

F~(R )=— BEL
x,y

Bu;(R )
. 0

(4)

The subscript 0 denotes that the derivative is evaluated at
the equilibrium position in the undeformed crystal. Con-

sequently, the forces vanish in the perfect lattice.

P(R', R ) is the dynamic matrix,

QJ(R', R)= Q2E

au, (R )au, (R )

The impurity (defect) brings in two features. The dynam-
ic matrix changes to

and the forces cease to vanish. The equilibrium configu-
ration corresponds to the variational minimum of Eq. (3)

with respect to the displacements u(R ), whereby' '
F(R )= gP*(R,R')u {R') .

The inverse of Eq. (7) reads

u(R) = g G*(R,R')F (R ),

where G* is the static Green function for the deformed

lattice. ' GJ(R,R') gives the displacement in the direc-

tion i for the atom at R when a unit force in the direction

j is exerted on the atom at R'. Combining (6) and {8),one
has (in matrix notation)

u=6(F+5P u ) =GF*,

where G is the perfect-lattice Green function (G=P '),
and F' is the Kanzaki force exerted by the defect on a
lattice atom in the relaxed position. The lattice-
deformation energy is now expressed simply as

where M is the impurity mass and V( r ) is the
potential-energy field "experienced" by the impurity
atom. V(r ) arises from the "embedding" interaction be-

tween the impurity and host, and will be developed below
in terms of the effective-medium theory. The practical
details of the numerical solution of Eq. (2) are discussed
in Appendix A.

In the harmonic solid approximation, the lattice energy

EL is

EL ——Eo —gF(R) u(R)+ —, g u(R')P(R', R)u (R),
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KEI =El E—p ———, g F"(R ).u(R ) . (10)

F*«)=—fd IP ( )I' ~ IR+ «)—
&

I

R+u(R) —r
I

Finally, the Kanzaki forces can be obtained from the im-

purity distribution
I f I

and the potential-energy field
V. The latter is a function of the atomic positions. For
an atom at the relaxed position R+ u(R ),

In other words, Eq. (12) contains the Brillouin-zone (BZ)
integration over the inverse squares of the phonon modes
co (q ) multiplied by the corresponding polarization vec-

tors e; (q ).
The discrete-lattice Green functions are numerically

available for most metals of interest. ' ' ' In cubic crystals
it is straightforward to also derive the following elastic
continuum approximations:

AJ ( q )=~g c kjlgk jl
k, l

(11)
with

The Green function for the ideal discrete lattice can be
written as'

—iq. R

G&(R)=
3 g f dq e; (q )e& (q )

(2n. ) Bz ~~(q )

(12)

where 0 is the unit-cell volume, e; ( q ) (cr = 1,2, 3) are the
eigenvectors, and co are the corresponding eigenvalues of
the matrix P '(q ) when

y(q )= gy(R)e (13)

R

Cikjl c125ik5jl +c44(5ij 5kl +5ii5jk )

+(cl1 —c12 2c44)5ijkl . (15)

Gj(R ) = f y;j(y)dp, (16)

where

Above cii, c12, and c44 are the (Voigt) elastic constants,

j =k =I, or 5;jkl =0 ot
lows for the elastic Green function that

LJ

y;, (y)=
c44 +dKj

KiKj(C44+Cii )

2 44+C12
(c 4+4d K)(c 4+4d K)j1+ g 2 &k

C44 +dKk

d =c 1 1
—c iq

—2c44, Ki =cosy sing+ sinter cos8 cosp, K2
———cosy cosp+ sing cos8 sing, Ks ——sing sin8, (17)

and 8 and P are the polar angles of R. The integral in Eq.
(16) can be carried out analytically only in a few main

symmetry directions, but is easily obtained numerically in

a general direction. The Green function (16) diverges at
the origin, but the 611(0) component needed in the calcu-
lations can be evaluated in the Debye model, in which this
divergence does not exist. ' The final form in the elastic
continuum model reads as

(cii+2c44) 'VD
Gii(0)=

2~'c„(c»)'"
where qD is the Debye wave vector. The agreement be-

tween the elastic and discrete-lattice Green functions is
normally better than —10%. Larger deviations occur for
metals with long-range elastic coupling, of which Nb is a

typical example.
In practice, only few (in our calculations, two) nearest-

neighbor atom shells around the impurity are allowed to
relax. This limitation and the use of symmetry reduces
the dimension of the Green-function matrix consider-
ably. ' The expressions for the resulting reduced Green
functions for the tetrahedral and octahedral interstices in
both bcc and fcc lattices are given in Appendix B.

Equations (2), (9), and (11) constitute a set of equations
which has to be solved self-consistently. What remains is
a description of the interaction energy V. We utilize the
quasiatom concept. First, we assume that a satisfacto-

ry approximation for the electron density np(r ) in the
host (without the impurity, but with atomic relaxations) is

np= 1 r np 1 1 1

This implies a self-consistency requirement for np and

P, ( r ). In practice, this is not very severe since the atom-
induced Coulomb potential P, is a weak function of the
(jellium) density where it is calculated. For further
development, it is important that the quasiatom is neutral
inside R„and also that R, is smaller than any impurity-
host nuclear separation. Because of long-range Friedel os-

cillations, this, in practice, necessitates a renormalization
of the positive charge (see Sec. III A).

With these assumptions, the interaction energy V be-

tween the impurity at r =0 and the host [electron density

np( r )] can be written as a perturbation series,

b,Eh, (np) —a,np+5+he;, (20)

where &Eh, (np) is the immersion energy of an atom

available. We further suppose that the impurity nucleus

is placed at the position r =0. The electronic perturba-
tion due to the impurity atom is, owing to metallic screen-

ing, localized in space. We assume that the impurity-
induced effects are confined within a sphere of cutoff ra-

dius R, . Inside this sphere the charge density p, (r ) and

Coulomb potential P, (r ) are taken equal to those for an
atom embedded in a homogeneous electron gas. The
density np where the embedding is imagined to take place
is chosen by using P, (r ) as the sampling function for the
unperturbed host,
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into a homogeneous electron gas of density no, and

a.=—J„dry.(r)= —f, f„dr dr p, (r )

0 4 0 r —r' (21)

host-imp , host

yell-ImP

(22)

The feasibility of the effective-medium theory as out-
lined above demands that (i) the intrinsic dependence on
the cutoff radius R, in Eq. (20) should be small for
reasonable values of R„and (ii) one should be able to esti-

mate the one-electron term (22) without excessive effort
(that is, certainly short of performing the full calculation
of the energy spectrum in the combined host-impurity

system). We shall examine these questions for hydrogen
and helium in detail below.

In all the applications described below we have simply
constructed the host electron density by superimposing
free-atom (at) densities, i.e.,

no(r )= gn«(r R;),—

where the sum goes over the atomic positions. For thc
present purposes, this approximation is accurate enough:
Comparison with available self-consistent calculations25

shows that the differences in the interstitial regions are
less than about 10% for close-packed metallic elements.
For vacancies and other lattice defects, differences may
become larger but the qualitative features are not changed.

III. HYDROGEN IN METALS

A. Hydrogen effective-medium potential

In the case of hydrogen the covalent term 5+,.he; of
the effective-medium potential is important because the
hydrogen 1s level interacts strongly with the host valence
bands. Therefore the situation is completely different
from that for helium, where the tightly bound 1s level is
nearly inert, also in a metallic environment (see Sec. IV).
In transition metals the hybridization of the hydrogen 1s
and host d levels occurs, and the covalent contribution
can approximately be expressed as a sum of two terms,

is proportional to the mean quasiatomic Coulomb poten-
tial. The last term in Eq. (20) denotes the change in the
one-electron eigenvalue differences when the impurity-

jellium system is replaced by the impurity —true-host sys-

tem,

5+he;= ge;

5+he;= J„[no(r ) —no]EV, (r )dr

—2(1—f)20 ',g, (24)
1

i-r —R, i'
where 6V, (r) is the total effective potential change due to
the hydrogen. The second term is derived in the atomic-
sphere approximation (ASA). In Eq. (24), f is the rela-

tive filling of host d level, C~ —V is the separation be-

tween the d-band center of gravity and the metal effective
potential at the hydrogen site, 6, and b,~ are functions of
the potential and atomic radii in ASA, and finally the
sum in the equation goes over all host lattice sites.

As suggested by N@rskov, ' we have chosen the cutoff
rad|us R, =2.5ao for hydrogen-induced density and po-
tential. The induced density is calculated by embedding
hydrogen in a uniform electron gas with a density param-
eter r, =3ao. We also follow the recommendation of Ref.
7 and renormalize the charge inside the sphere determined

by this radius by adding a uniform neutralizing back-
ground charge dlstrlbutlon. Also, as recommended, kVg
is rigidly shifted so that it vanishes at the surface of the
renormalization sphere. When these instructions are fol-
lowed, the effective-medium potential is relatively insensi-

tive to reasonable variations in the cutoff radius R, . On
the other hand, a different procedure, for example, the re-
normalization of the hydrogen nuclear charge, leads to a
severe dependence on the cutoff radius.

In the actual calculations we have omitted the small
second (hybridization) term in the covalent contribution

[Eq. (24)] and used N@rskov's rough estimate for the first
term

no r —no hV~ r r= —~„&go, (25)

where a„=31cV ao. These approximations are made be-
cause we want to keep the construction of the potential as
simple as possible, and the determination of the hybridiza-
tion term appears somewhat arbitrary against the back-
ground of approximations made in calculating the leading
contributions to the potential. For the same reason, we
have not included the recently suggested correction
which takes into account the orthogonality repulsion be-
tween hydrogen and metal-ion cores. However', these
omissions are not severe, because, as emphas1zed by
Ngrskov, the hybridization and repulsion terms are only
small corrections to the potential energy, introduced in or-
der to get the energy minima to agree with such experi-
mental results as the heat of solution or the binding ener-

gy of hydrogen chemisorbed on metal surfaces. The lead-

ing contnbutions, which we keep, determine, in turn, the
trends and the spatial variation of the potential, which are
essential in our application. Thus, we calculate the poten-
tial for hydrogen in the host from the sampled density

[Eq. (19)] corresponding to a given point using the follow-
ing interpolation formulas (no in ao and ~h, in eV):

V( r )=&Rh, [no(r )] cf,„no(r ) a„no(—r ), —

Pl 0
130noln

EEh, (no)= ~ 0.004
4

398(no —0.0.127) +150no —2.81, 0.0127&no .
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TABLE I. Dependence of the hydrogen effective-medium po-

tential on the cutoff radius 8, . Hydrogen is embedded in the

unrelaxed octahedral site in Cu. no and a, are defined in Eqs.
(19) and (21), respectively. Vis calculated via Eq. (26).

R,
(ao)

2
2.3
2.5
2.7

no

(ao ')

0.0212
0.0221
0.0224
0.0221

Aa

(eV ao)

85.3
93.3
95.1

94.1

V

(eV)

—2.07
—2.21
—2.24
—2.18

Ngrskov's values, n, =88 eVao and a, =31 eVao, are
used.

We have tested the stability of the effective-medium po-
tential against the variations of the cutoff radius R, by

embedding the hydrogen atom in the octahedral site in

unrelaxed Cu lattice. The results are shown in Table I.
The values for a, and no are slightly different from those
represented by N@rskov and have maxima at R, =2.5ao.
Consequently, the effective-medium potential is also fairly
insensitive to the cutoff radius in this region. The in-

crease of R, above =2.7ao gives rise to difficulties be-

cause of the Friedel oscillations overlapping with the Cu-

core region. In these calculations a„ is kept constant be-

cause the changes in the potential due to the variation in

a„are canceled by the changes in the repulsive ortho-

gonality contribution, which we have omitted in our ap-

proach. As will be discussed below, the effective-medium

potential of Eq. (26) gives a good description near the
minima, but is probably too soft near the host-ion cores.

B. bcc metals

-2.0—
Nb octahedrai
site

I I I

0 T H T' 0'

FIG. 1. Self-trapping of hydrogen into the octahedral site in

Nb. The upper solid and dashed curves give, respectively, the

wave function + and the potential VH for the delocalized band

state along the line OO' given in the inset. The lower curves PH

and VH give the corresponding functions for the self-trapped

state. The dashed-dotted lines E' and E' indicate the absolute

energy levels for hydrogen in the band state and the self-trapped

state, respectively.

Figure l demonstrates the self-trapping phenomena for
hydrogen in the octahedral site of bcc Nb according to
our model. The figure shows the potential and wave func-

tion along the line joining the neighboring octahedral and

tetrahedral sites. The upper solid and dashed curves give
the wave function and potential, respectively, for the delo-

calized band state. The wave function has maxima at the

equivalent tetrahedral sites and it vanishes at the octahe-

dral sites. The two lower curves refer to the self-trapped
state. In the self-trapped state, hydrogen has deformed

the host lattice symmetrically around the octahedral site
and caused the lowering of the potential into a local po-
tential well. The hydrogen wave function is relatively flat
in the self-trapped state and has its maximum at the octa-
hedral point. Therefore in this model we shall consider
this state as being self-trapped into the octahedral inter-
stice rather than as being a tunneling state between the
four equivalent tetrahedral interstices around the octahe-
dral site. The energy levels of the delocalized and trapped
states are also indicated in Fig. 1. The potential deforma-

tion associated with the self-trapping lowers the energy
level remarkably. The self-trapping process becomes
favorable if this lowering is greater in magnitude than the

energy paid for the lattice deformation.
Figure 2 shows the hydrogen wave function in two di-

mensions on the plane of the four second-nearest neigh-

bors of the octahedral site. The contour plot clearly
expresses the importance of the zero-point motion for the

light hydrogen. The self-trapping process into the
tetrahedral site of Nb is shown in Fig. 3. The extent of
the wave function is of the same order as in the octahedral

Nb octahedral site

r

FIG. 2. Hydrogen wave function self-trapped in the octahe-

dral site in Nb. The second-nearest neighbors are denoted by
solid circles. The contour spacing in the contour plot is one-

tenth of the maximum value.
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Nb tetrahedral
site

I 1 I

0 H O' T'

FIG. 3. Self-trapping of hydrogen into the tetrahedral site in

Nb, For details, see the caption of Fig. 1.

site, but now the wave function is more peaked due to the

steeper potentiaI mell.

The formation of the self-trapping well in the case of
the octahedral site in bcc metals is mainly due to the re-

laxation of the two first-nearest-neighbor host ions. Ac-

cording to Table II, which lists our results for the relaxed
ion positions for the first-nearest and second-nearest
neighbors of hydrogen in the octahedral and tetrahedral
sites of various bcc metals, the first-nearest-neighbor dis-
tance increases about 7—11% in the presence of hydro-
gen. Around the tetrahedral site the relaxation of the four
first-nearest neighbors is less, about 4—7%. In both cases
the relaxation of the second-nearest neighbors is minor
compared with the first-nearest neighbors. The second-
nearest neighbors can even move inwards. For V and Ta
the calculations are performed by using both the elastic
and the discrete-lattice Green functions. The relaxations
depend slightly on the choice of the response function, but
the characteristic differences between octahedral and
tetrahedral sites are similar at least for the first-nearest
neighbor; for the energetics, the relaxation of the second-
nearest neighbor is unimportant due to its small magni-
tude. Our results for the relaxation are somewhat smaller
than the values obtained by Sugimoto and Fukai, ' and
the experimental results of Behr et al. Sugimoto and
Fukai obtain, with the use of a Born-Mayer —type poten-
tial, relaxations of 6.1% and 8.2% for the first-nearest
neighbors of tetrahedral and octahedral hydrogen in Nb,
respectively. Behr et al. conclude from the static
DebYe-Wailer factoIS of I-Ia) measurements that hydro-

gen induces the first-nearest neighbor relaxations of 8.9%,
6.1%, and 4.6% around the tetrahedral site in V, Nb, and

Ta, respectiveIy. This comparison seems to refIect the
softness of the effective-medium potential.

The results concerning the energetics of hydrogen in the
vanadium-group metals, and in Cr and Fe, are collected in
Table II. The prominent feature is that the self-trapping
energies are nearly equal for the tetrahedral and octahe-

TABLE II. Calculated properties of hydrogen self-trapped in octahedral (0) or tetrahedral (T) sites in bcc metals. I. refers to the
Green functions of discrete-lattice theory and E refers to the elastic Green functions. The former are taken from Ref. 19 and the
latter are calculated using the elastic data collected in Ref. 18. The relaxation is defined as the percentage change in the interstitial-

site —atom distance. hE is the change in the absolute energy level between the band state and the self-trapped state. EI is the ener-

gy stored in the lattice relaxation. Eo is the zero-point energy defined as the distance between the energy level and the minimum of
the potential. Esr ——~ +El. is the energy gain in self-trapping.

Site
Green

function
Eo

(eV)
EsT
(eV)

Displacements (%)
First neighbors Second neighbors

0

0
T

—0,322
—0.303
—0.428
—0.420

0.145

0.123
0.169
0.152

0.118
0.150
0.109
0.129

—0.177
—0.180
—0.259
—0.268

9.3
4.6

11.7
7.1

—0.2
—0.5

1.4
—0.1

0 0.107
0.129

6.9
4.1

0.2
—0.4

Ta 0

0
T

—0.305
—0.295
—0,343
—0.349

0.147
0.123
0.159
0.141

0.113
0.137
0.111
0.134

—0.158
—0.172
—0.184
—0.208

7.6
3.9
8.0
48

0.2
—0.2

0.2
—0.1

0 —0.632
—0.630

0.249
0.222

0.139
0.173

—0.383
—0.408

11.5
7.1

1.6
0.1

0
T

—0.622
—0.589

0.252
0.223

0.156
0.185

—0.370
—0.365

11.5
5.8

—0.2
—0.5
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I l l

Nb octahedral site Nb octahedral site

0'

FIG. 4. Self-trapping potentials for hydrogenic impurities in

the octahedral site in Nb. The line OO' joins the octahedral

sites in the (100) direction (see the inset of Fig. 1). The energy

eigenvalues for p+, H, and D are indicated by dashed-dotted

lines.

dral locations, the tetrahedral site being slightly more
favorable (except in Fe). This degeneracy within -0.02
eV is significant because the potential difference between

these sites in the unrelaxed lattice is much larger (0.2—0.4
eV) in these metals according to the quasiatom model.
The reason for the degeneracy is that the lowering of the
energy eigenvalue AE and the energy EI stored in the
lattice deformation are nearly equal for both sites. The
energy-level change hE is larger in magnitude for the
octahedral site, but the smaller relaxation energy El for
the tetrahedral site makes it the lowest-energy site for hy-

drogen. According to Table II the replacement of the
Green functions of the discrete-lattice theory by the elas-
tic approximations changes the energy terms, but again
the near degeneracy and the important differences be-
tween the octahedral and tetrahedral sites remain the
same. N@rskov has calculated the hydrogen heat of solu-
tion in the 3d transition metals using the effective-
medium theory, but ignoring the lattice relaxation and the
hydrogen zero-point energy. The lowering of the poten-
tial due to the relaxation is of the same order as the sum
of lattice distortion and zero-point energies. Thus, as a
result, the inclusion of these effects changes the heat of
solution typically less than 0.1 eV.

Figures 4 and 5 show, in one special direction, the ef-
fects of the isotope mass on the potential and the wave
function in the localized octahedral state in Nb. A posi-
tive muon p+ (mass equal to one-ninth of the proton
mass) produces a significantly stronger relaxation than the
hydrogen isotopes H or D due to its larger zero-point am-

plitude. Figure 4 also shows that the zero-point energies

0'

FIG. 5. Localized wave functions for hydrogenic impurities
in the octahedral site in Nb. The axis OO' is shown in the inset

of Fig. 1.

of H and D are comparable, but the zero-point energy of
p+ is much higher. The increase of the mass causes the
wave functions in Fig. 5 to be more peaked. Owing to its
lower zero-point energy, D "feels" the details of the po-
tential better than H, which is reflected in the wave func-
tion for D as a weak local minimum at the oct:ahedral
point. However, the potential is not sufficiently strong to
split the wave function into the tetrahedral regions.

Numerical results concerning the hydrogen-isotope ef-
fects in Nb are collected in Table III. The relaxation dis-

placements of the first- and second-nearest neighbors sat-
urate relative rapidly as the isotope mass increases. The
influence of the mass in the energy terms is interesting.
According to the self-trapping energies, the octahedral
site turns out to be the stable one for p+, contrary to the
case in the hydrogen isotopes. The origin of this differ-
ence is that for p+ the deformation work in the
tetrahedral site is nearly as large as in the octahedral site
due to the large range of the wave function, but the defor-
mation does not lower the potential and the energy level
E to the same extent. The self-trapping energy gain de-
creases as the mass of the impurity increases, but at the
same time the difference between the self-trapping ener-

gies corresponding to octahedral and tetrahedral sites in-
creases. This point is important for the diffusion mecha-
nism of hydrogen, as will be discussed below. It should be
also noted that this energy difference saturates between D
and T when the atom begins to resemble a "classical"
point mass without zero-point motion.

Experimentally, the location of hydrogen in bcc metals
has been investigated by ion-channeling techniques. The
results indicate both tetrahedral and octahedral occupan-
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TABS.E III. Isotope effects for hydrogenic impurities in Nb. E is the energy eigenvalue vnth respect to vacuum, Eo is the kinetic
zero-point energy, EI. is the lattice-deformation energy, and Es~ ——hE +El is the self-trapping energy. 0 refers to the octahedral
site and T refers to the tetrahedral site. The Green function of the discrete-lattice theory is used (Ref. 19). All energies are in eV.

Extended s~ate —1.291
0.485

—1.616
0.160

—1.668
0.108

-1,687
0.089

Self-trapped state —1,652
0.352
0.144

—0.217

—1.631
0.399
0.142

—0.199

—1.880
0.107
0.125

—0.139

—1.872
0.129
0.105

—0.151

—1.907
0.074
0.119

—0.120

—1.908
0.088
0.100

—0.140

—1.917
0.063
0.118

—0.113

-1.920
0,071
0.099

—0.133

Displacements (%%uo)

First neighbors

Second neighbors

8.1

0.48
7.7
0.20

4.1

—0.37
7.5
0.19

3.9
—0.36

7.4
0.19

3.9
—0.35

cy, depending on the host metal in question. In Nb, Ta,
and V the assignment is the tetrahedral site, whereas in

Cr, which has a relatively small lattice constant, the octa-
hedral location is found to be more probable. In V, both
sites are possible according to the experiments. Our cal-
culations are in agreement with these experiments, except
for Cr. Table III shows that the tetrahedral site should be
clearly more favorable than the octahedral one in Cr. The
interpretation of the ion-channeling experiments can also
be influenced to some extent by the lattice defects generat-
ed during the implantation of the probe ions. The trap-
ping of hydrogen by heavier impurities might also result
in a location different from the one in the impurity-free
lattice. However, the possibility of both tetrahedral and
octahedral locations of H indicates that these interstices
are generally nearly degenerate in energy, also according
to the experiments. From the muon experiments it is dif-
ficult to determine the stable location due to the strong
muon-impurity interaction, and no reliable results have
yet been found. '

1. Diffusion model for hydrogen in bcc metals

Because the self-trapping energies for hydrogen corre-
sponding to tetrahedral and octahedral sites are nearly
equal, it is tempting to assume (i} that the coherent tun-
neling region for the diffusion of hydrogen in bcc metals
occurs along the path connecting adjacent tetrahedral and
octahedral sites, and (ii} hydrogen is capable of deforming
the surrounding lattice continuously at every point on the
diffusion path. This same conclusion has also recently
been drawn by Emin, who based his investigation on the
small-polaron concept. The activation energy for this
kind of process should be of the same order of magnitude
as the difference between the self-trapping energies for oc-
tahedral and tetrahedral sites, i.e., according to Table III,
approximately 0.01—0.02 eV. These are less than the ex-
perimental values, O.OS—0.1 eV. ' The smalless of the cal-
culated value is mainly due to the underestimation of the
short-range orthogonahty rcpulsj. on experienced by hydro-
gen near the host-metal nuclei. The short-range part of

the metal-hydrogen interaction is important for the exci-
tation energies. ' On the other hand, the effective-
medium potential predicts that the self-trapping energies
are, in every case, much higher than the experimental ac-
tivation energies. Thus during the activation process hy-
drogen cannot be in a state which extends over several lat-
tice interstices, but the hydrogen wave function has to be
relatively well localized.

Furthermore, the comparison of calculated and experi-
mental results for the isotope effects confirms the
"continuous-lattice-deformation" diffusion model. Name-

ly, both the experimental ' high-temperature activation
energies and the difference between the calculated
octahedral- and tetrahedral-site self-trapping energies in-

crease as the isotope mass increases. For example, tbe ex-
perimental ' activation energies for H, D, and T in Nb are
0.106, 0.127, and 0.135 eV, respectively. It is also worth
noting that the experimental values saturate similarly as
the theoretical ones. The trend of the increasing differ-
ence between octahedral- and tetrahedral-site self-trapping
energies originates from the decrease of the zero-point en-

ergy and motional amplitude. It is therefore a universal

property, independent of the details of the hydrogen po-
tential. It is thus not surprising that Sugimoto and
Fukai also reproduce this trend by constructing the hy-
drogen potential from a Born-Mayer —type pair potential,
which shows a remarkably stronger short-range repulsion
than the effective-medium potential. The measured '

temperature-independent prefactor of the diffusion con-
stant in bcc metals does not show the 1/V M dependence
on the isotope mass M, as the classical oscillator model
predicts. This is an indication that the potential for hy-
drogen is indeed strongly anharmonic.

2. Excited states of hydrogen in bcc metals

We have analyzed the excited vibration states for hy-
drogen isotopes self-trapped in the tetrahedral site of the
bcc metal Nb. In the calculations the host-ion displace-
ments of the ground state are used, i.e., the adiabatic
(Born-Oppenheimer) approximation is used. The adiabat-
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FIG. 6. Two lowest-energy A& wave functions for hydrogen

self-trapped in the tetrahedral site in Nb. A~ is the ground
state. The positions of the nearest Nb nuclei are denoted by
semicircles (nucleus on the figure plane) or by dashed circles
(nucleus above or below the figure plane). Negative values are
shown by dashed contours. The contour spacing is one-tenth of
the difference between the maximum and minimum values.

ic approximation implies that the difference between the
excited- and ground-state energies should correspond to
the neutron energy loss in neutron-scattering experiments.
The tetrahedral site in the bcc structure has the symmetry
of the D2d point group. The excited states belonging to
the representations A&, A2, B&, B2, and E were searched
for by imposing the proper boundary conditions, and with
the use of an orthogonalization process. These techniques
are described in Appendix A. The E states are doubly de-

generate, while the other states are nondegenerate. The
At states are the totally symmetric states, and A I is the
ground state. In the case of the Nb host no self-trapped
A2 and B~ states for H exist, i.e., the excitation energies
exceed the self-trapping energy. Figures 6, 7, and 8 show
the hydrogen wave functions for the two lowest A 1, B2,
and E states, respectively. Qualitatively, Bz and E of
the excited states are localized near the (trap) tetrahedral
site. Other excited states are strongly shifted towards the
four tetrahedral sites adjacent to the original one. The en-

ergies of the lowest A t, B2, and E states for the three hy-
drogen isotopes are collected in Table IV.

The comparison of the calculated excitation energies
with the inelastic-neutron-scattering data gives addition-
al information about the potential experienced by the
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FIG. 8. Two lowest-energy E wave functions for hydrogen
self-trapped in the tetrahedral site in Nb. For more details, see

the caption of Fig. 6.

I I I

0 0.25 0.5 0.75 1.0
[100] direction (lattice constants)

FIG. 7. Two lowest-energy 82 wave functions for hydrogen
self-trapped in the tetrahedral site in Nb. For more details, see

the caption of Fig. 6.
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TABLE IV. Energies of the lowest excited vibrational states

for hydrogen isotopes self-trapped in the tetrahedral site in Nb.
For further details, see Appendix A.

Excited state H
Excitation energy (meV)

0

AI

g1

+2

g3

E1

E2

E3

131

48

80

135

73

95

149

69

101

74

109

63

75

101

66

86

31

72

95

53

73

88

self-trapped hydrogen. However, the interpretation of the
experimental results is not very clear due to the role of
hydrogen-hydrogen interactions in the experimentally
studied metal-hydrogen alloys with the necessary relative-

ly high hydrogen concentrations. Both in the energy-gain
and energy-loss spectra, two peaks at —120 and —170
meV are visible, with an intensity ratio of 1:2 for all vana-

dium group hydrides. These results are conventionally
interpreted by connecting the 170-meV peak to a doubly
degenerate state and the 120-meV peak to a nondegenerate
state. Compared with these experimental values the exci-
tation energies of our calculations in Table IV are general-

ly too low. The upper limit of the calculated excitation
energies is the self-trapping energy, 151 meV. Higher ex-
citations are possible in our model if the final state is an
excited band state, as in the model discussed by Casella. '

OIlc obv1ous rcasoll for tllc sIIlallIlcss of tllc 'tllcol'ctlcal

values is the softness of the effective-medium potential in
c 1on-col c rcg ion~ as discussed above. Thc transltlon

probability to the B2 and E states is expected to be much
larger than to the other excited states, which have a small
overlap with the ground state leading to a small transition
matrix element. ' Thus, as also discussed by Sugimoto
and Fukai, ' it is tempting to assign the nondegenerate Bz
and the doubly degenerate E states to the experimental
120- and. 170-meV peaks, respectively. This conclusion is
supported by the fact that the energy-loss and energy-gain
spectra have peaks at the same energies. Thus the lattice
deformation should be similar in the ground state and ex-
cited state. This, in turn, requires the hydrogen distribu-
tions of both states to be nearly equal, which is true only
for B2 and E states. The experimental spectra contain,
in addition, a rather high background. The background
could be due to the less probable transitions to the 3 I, E',
and B2 states. It is interesting to note from the calcula-
tions that these states resemble each other in energy.

The isotope dependence of the excitation energies gives
further evidence for the interpretation that the experimen-
tal 120- and 170-meV peaks correspond to the 82 and
E states. Namely, the isotope dependencies of these exci-
tations are nearer to the experimentally observed
harmonic-oscillator I/~M behavior than those of the

AI, E', and B2 states. The breakdown of the I/vM
dependence for the latter is evident from Figs. 6—8,
which show that the corresponding wave functions are
very far from the solutions to a harmonic oscillator. It is

interesting that, in the case of the E state, the ortho-
gonality repulsion due to the E' state makes the "effec-
tive" potential rather harmonic if we compare the energies
for H and D. It is, of course, difficult to draw firm con-
clusions because the effective-medium theory is not able
to absolutely reproduce the experimental energy scale.
However, the qualitative features of the wave functions as
well as thc tl-cIKIs In thc cxc1tatlon cnc1-glcs arc not very
sensitive to the potential constructio~. Thus, Sugimoto
and Fukai' found qualitatively the same wave functions
using a pair potential fitted to the experiments. One fit-
ting requirement they used was that the energy of the E
state was to be 170 meV. With this potential they were
able to reproduce the 120-meV peak as the 82 state, and
also found the 1/VM dependence for the E and B2
states.

C. fcc metals

Figure 9 shows the hydrogen wave functions along the
three principal directions in Cu when hydrogen is self-

trapped in the octahedral site. The wave function is near-

ly isotropic; it is only slightly enhanced in the (111)
dlrcctlolls w11cfl coIIlparcd. With thc ( 100) alld ( 1 10)
directions. The quantative results are given in Table V.
The self-trapped state for the tetrahedral site was searched
for by requiring that the wave function is localized in a
cube with its center at the tetrahedral site and its corners

'PH Cu octahedral site

11&

10&

00&

0
Distance (a. I

FIG. 9. Hydrogen wave function self-trapped in the octahe-
dral site in Cu. The wave function is drawn along the (100)
(dashed line), (110) (dashed-dotted line), and (111) (sohd line)
directions. Thc dlstancc 1s measured froQ1 thc octahcdI'al po1Ilt.
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TABLE V. Calculated properties of hydrogen self-trapped in octahedral (0) and tetrahedral (T) sites in fcc metals. For further

details, see the caption of Table II.

Green
function

Displacements (%)
First neighbors Second neighbors

—0.102
—0.008

0.046
0.099

—0.056
+ 0.091

3.3
6.8

0 —0.197

+ 0.097
0.083
0.229

0.172

0.138

—0.114

+ 0.326
2.5
5.9

0.01
—0.02

0

0
T

—0.146

+ 0.087
—0.131

+ 0.125

0.066
0.194
0.059
0.168

0.145

0.149
0.147

0.127

—0.080

+ 0.280
—0.072

+ 0.293

0.02
—0.02
—0.14
—0.14

Pd —0.087 0.040 —0.047 1.6

at the nearest atoms or the octahedral points. Vhth these

boundary conditions the self-trapping to the tetrahedral

interstice does not occur for any of the fcc metals studied,

as indicated by the positive self-trapping energies in Table

V. However, Al is, due to its relatively large lattice con-

stant, a borderline case with a nearly vanishing self-

trapping energy. Small changes in the boundary condi-

tions and in the potential might also allow self-trapping in

the tetrahedral site in Al. The sdf-trapping energy gain
in the octahedral site is also relatively low in all cases.
Surely, this is partly due to the softness of the effective-
medium potential, but we again emphasize that we will

draw the conclusions from the general trends and differ-

ences, which are independent on the details of the poten-

tial.
Thus, lattice relaxation is small, consistent with the low

trapping energy, in the vicinity of the hydrogen self-

trapped in the octahedral site. The first-nearest neighbors
relax outward by 2—3%, and the displacements for the
second-nearest neighbors almost vanish. If self-trapping
were possible in the tetrahedral site, then the associated
relaxation of the first-nearest neighbors would be larger,
about 6% according to the Table V. The replacement of
the elastic Green functions by the discrete-lattice Green
functions does not alter the trends in the energy terms or

the magnitudes of relaxation as seen in the case of Cu.
The comparison between the properties of different hy-

drogen isotopes and p+ is presented in Table VI. The
host metal is Cu and the energy terms are shown for the
band state and the self-trapped octahedral state. The
self-trapping energy decreases as the mass of the isotope
increases. This is because the zero-point energy decreases
more rapidly as a function of the mass in the band state
than in the localized state. The rise of the bottom of the
potential with the increase of the mass is compensated for
by the decrease of lattice-deformation energy.

There are several published calculations concerning the
trapping site of hydrogen in Al and the associated lattice
relaxation. In these calculations, both octahedral and
tetrahedral locations have been predicted for hydrogen.
Theories where the electron density is calculated self-

consistently in the jellium model, and also where the

discrete lattice is treated by perturbation theory, predict
that either the octahedral ' or the tetrahedral site is
the stable one. The octahedral site is the result in the

spherical-solid model, ' where the spherical average of
the host-ron pseudopotentcals j.s mcluded I the calcula-
tion of the electron density. In addition, Perrot and Ra-
solt allow the ions surrounding the hydxogen to relax ra-

dially. Solt et al. used the jellium model with lattice re-

TABLE VI. Isotope effects for hydrogenic impurities in Cu. Elastic Green function is used in the

calculations. For further details, see the caption of Table III.

—1.443
0.581

—1.849
0.175

—1.907
0.117

Self-trapped state

Eo

Es~

-1.658
0.496
0,094

—0.121

—1.980
0.147
0.059

—0.072

—2.023
0.101
0.052

—0.064

DisplaceIQents (%)

First neighbors

Second neighbors

2.8
—0.18

2.1
—0.13
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laxation and found the octahedral and tetrahedral states
to have nearly equal energies, the tetrahedral site being

slightly more favorable. For p+ it is possible to deter-
mine also experimentally the stable location by muon-
spin-rotation techniques and it is found that muons are

trapped by octahedral interstices at low temperatures in
Al (Ref. 39) and Cu (Ref. 40).

The model by Perrot and Rasolt gives a relaxation of
2.2% for the first-nearest neighbors in the vicinity of hy-

drogen or p+ self-trapped in the octahedral site in Al.
Solt et al. calculated the relaxation to be 2 5%.. These
values arc less than our estimate of 3.3% for the relaxa-
tion caused by p+. From the muon-spin-rotation experi-
ments the relaxation of the first-nearest neighbors is es-

timated to be relatively large, about 5%, both in Al (Ref.
41) and in Cu (Ref. 40).

1. Diffusion model in fee metals

Our results suggest a diffusion model for hydrogen in
fcc metals that is totally different from the one described
for bcc metals. First we note that in the high-temperature

region the diffusion activation energy in fcc metals is typ-
ically 0.2—0.4 eV, ' which is much more than the calcu-
lated self-trapping energies in the octahedral sites. On the
other hand, according to the calculations, self-trapping in

the tetrahedral site is unprobable, and thus hydrogen
would not be localized at the tetrahedral site during the
activation process, but its wave function should be spread
over several interstices. This also means that the activa-
tion energy is proportional to (or behaves in the same way

as) the self-trapping energy. The decrease of calculated
self-trapping energy as the mass of the isotope increases is
thus consistent with the observed "reverse" isotope ef-

fect, i.c., iil Pd, Ni, aiid Cu tlie activatloli cilel'gy fol D
is less than that for H. According to the experiments, the
temperature-independent prefactor of the diffusion con-

stant for H, D, and T behaves as the harmonic-oscillator
model predicts, i.e., the ratio of the factors is 1:~2:V3.i'
Thus the energy level of the hydrogen isotope should be
located near the bottom of the self-trapping potential well.

On the other hand, the prefactor for p+ is not obtained by
using the mass extrapolation; this means that the zero-

point energy for p+ exceeds the harmonic region of the

potential.

IV. HELIUM IN METALS

The quantum nature of helium atoms is profoundly
manifested in the properties of helium fiuids at low tem-
peratures. Here we investigate the importance of zero-
point effects for He atoms injected in metals. The elec-
tronic aspects of helium injected in metals have been dis-
cussed by many workers, e.g., Inglesfield and Pendry,
Whitmore, and Benedek. 45 The crucial feature is natur-
ally the strong orthogonality repulsion between the con-
duction electrons and the occupied He core.

The covalent-bonding term (22) can be neglected alto-
gether, except for the consideration of the weak phy-
sisorption well outside surfaces, in the interaction energy
of helium with metals. ' The bound ls level in He is
well below the metal conduction band, and the hybrid'. za-
tion is weak. The immersion energy AE&~m is a linear
function of the electron density no (Ref. 24) (no in units

TABLE VII. Dependence of the helium effective-medium

potential on the cutoff Iadius 8,. Hydrogen is embedded in the

unrelaxed octahedral site in Cu. no and a, are defined in Rqs.
(19) and (21), respectively. Vis calculated via Eq. (28).

2

2.5
3

Pgo

(ao )

0.0203
0.0218
0.0236

Ag

(eV ao)

98.7
121

134

3.57
3.35

3.34

TABLE VIII. Self-trapping characteristics for He in octahe-

dral (0) and tetrahedral (T) sites in Al. Elastic Green function

is used in the calculations. All energies are in eV. For further
details, see the caption of Table II.

Extended state E
Eo

3,255
0.092

Self-trapped state 2.189
0.053
0.403

—0.663

2.210
0.069
0.612

—0.434

Disp1acements (Fo)

First neighbors
Second neighbors

9.8
0.07

17.2
0

of ac
' and ddXh, in eV),

30580 & ISO Q 0.0180
4Hh, (no)= ~

275Pf 0+0.3, Plo )0.0180

The linear dependence of the helium-metal repulsive in-

teraction on the electron density has also emerged from
Hartree-Fock —type calculations for He-metal surface in-

teractions. The first-order correction involves the coef-
ficient a, [Eq. (14)], which depends on the quasiatom

electrostatic potential P, (r). To first order, the interac-
tion energy IcQlaIns linearly proportional to Elo and rcpul-
Slve,

V(r)=EEh, [no(r)] —126no(r) eV .

In the case of He, there is only a weak dependence of
Po(r) on the density, which refiects the nearly inert and

compact nature of the quasiatom electronic structure.
The dependence on the cutoff radius is also smail due to
the small atomic radius. This is demonstrated in Table
VII, which lists the relevant numbers for a stationary He
atom embedded in the octahedral interstice in fcc Cu.
The electron density of both the host and the impurity is
approximated in terms of atomic densities. Table VII
shows that the total interaction potential Vis well saturat-
ed when the cutoff radius R, =2.5ao. In the calculations
we have used this cutoff radius and atomic electron densi-

ty for He.
~e have employed our approach to describe the scif-
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Extended state E
Ep

4.555

0.123

TABLE IX. Self-trapping characteristics for He in octahe-

dral (0) and tetrahedral (T) sites in Nb. Green function of the

discrete lattice theory is used (Ref. 19). All energies are in eV.
For further details, see the caption of Table II.

Thus it is possible for helium-filled bubbles to form and

grow in the metal matrix. An interesting question is the
equilibrium helium density in a void of given size. With
the techniques presented here, the equilibrium energetics
(equation of state) should be fairly easy to calculate, but
the complete analysis is hampered by the lack of under-

standing of the details of the bubble-growth mechanisms.

Self-trapped state E
Ep

Es~

3.043
0.082
0.606

—0.906

3.101
0.093
0.551

—0.903

Displacements (%)

First neighbors

Second neighbors

16.5
1.0

9.2
—0.6

trapping of helium in fcc Al and in bcc Nb. The results

are collected in Tables VIII and IX. For the extended
(unrelaxed) state, the heat of solution is very high and

compares well with earlier estimates. The zero-point ki-
netic component is of the order of O. l eV and of minor
importance. Allowing self-trapping in fcc Al, the octahe-
dral site is clearly more favorable than the tetrahedral site.
In bcc Nb, octahedral and tetrahedral sites are, also for
He, nearly degenerate in energy. The relaxation caused by
He is much larger than in the case of the hydrogenic iso-

topes. Furthermore, the self-trapping energy is now much
larger.

It is quite clear that helium will favor any open-volume
defects present in the metal, and will trap extremely

strongly to, e.g. , vacancies and their aggregates. In fact,
the self-trapping energy gain is similar in size to the
vacancy-formation energy, which points to the possibility
of helium actually driving the vacancy generation. The
vacancy generation has been demonstrated previously by
Wilson et al. , who studied the energetics of helium clus-

tering in Ni. In their calculations, movable Ni and He
atoms interact via pair potentials, and they found that
5—6 He atoms spontaneously produce a vacancy —self-

interstitial pair during the clustering process. The trap-

ping energy of the helium to a vacancy, once created, is,
of course, higher than the self-trapping energy in an inter-

stitial site. Manninen et al. have investigated the trap-

ping of one or several helium atoms into pre-existing
monovacancies in transition metals. If one includes the

zero-point and lattice-relaxation energies estimated here in
their calculations, the results for the trapping energies are
shifted to closer agreement with the experimental values

based on thermal-desorption measurements. The relaxa-
tion effects are expected to be minor for substitutional
helium.

In the self-trapped interstitial state the total embedding

energy is high and positive. In the case of Al it corre-
sponds to a swelling pressure of the order

I'=3E~/4mR, =10"Pa,

which is comparable to the elastic yield limit of metals.

V. CONCLUDING REMARKS

The quasiatom concept (effective-medium theory) com-
bined with a wave-mechanical treatment of the impurity
degree freedom and a self-consistent calculation of the lat-
tice distortions form a powerful approach to detailed
understanding of the properties of light interstitials in
metals. Results of calculations involving all these aspects
have been presented here. The qualitative trends
discovered here provide a coherent picture of many ob-

served static features. Two important general conclusions
emerge: (i) for hydrogen (and p+) the quantum nature is
crucial, and (ii) contrary to the case of He, no description
based on pairwise potentials is truly adequate for hydro-

gen. However, in order to obtain numerically accurate
ab initio type r—esults for a wide class of systems, further
improvements seem necessary in the weakest link of the
method, the potential-energy construction. Unfortunate-

ly, at least with the present state of knowledge, it is not
possible to obtain corrections to the effective-medium

theory in a systematic fashion. One then has to either
abandon striving for quantitative accuracy and examine

qualitative trends, or to resort to pararnetrization. It is
obvious that both of these routes have much to contribute
to our understanding of light impurities in metallic media.
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APPENDIX A: NUMERICAL SOLUTION
OF THE THREE-DIMENSIONAL

SCHRODINGER EQUATION

The solution of the wave function for the full three-

dimensional potential is accomplished in this work by a
numerical relaxation technique first presented by Kimball
and Shortley. ' For localized states the wave function is

required to vanish on the surface of a sufficiently large

polyhedron enclosing the trap site. Propagating band

states are obtained by constructing the polyhedron with

the use of high-symmetry (e.g. , refiection) planes of the
lattice, and imposing proper boundary conditions on
them. The boundary conditions depend on the Bloch
wave vector and symmetry. In the numerical solution, a
mesh of points is embedded in the smallest (irreducible)

wedge of the polyhedron allowed by the symmetry of the
lattice and the eigenfunction in question.

If the mesh of the points is chosen to build up a simple

cubic lattice, the wave function f is solved by the iteration

process (in a.u.),
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5 Pl PJ Pl tl 5
Pi+1j,k+1('i —i,jk +itij +i,k+ 4j —i,k+Aj, k+1+Ajk —i

6+2mb z( V~k E—")
(A 1)

where the indices i, j, and k enumerate the mesh points, the superscripts give the order of the iteration, Ii is the spacing
of the mesh, and m is the mass of the quantum particle. Equation (Al) is derived variationally from the Schrodinger

equation by substituting a simple difference scheme for the Laplace operator. The energy eigenvalue E"in (Al) is calcu-
lated from the difference formula

~ ~

2 (0i +1 jk+ 4' —1,jk+4i j +i,k+4ij —1,k+Vij, k+I+4'j, k —1 itiijk)
2mb

The iterations are started by first guessing some form for
the wave function and calculating the corresponding ener-

gy estimate. Then a new wave function and energy value

are determined from Eqs. (Al) and (A2). In a stable itera-

tion pI'occss thc cncrgy clgcnvaluc dccrcascs monotonical-

ly between iterations. We have continued the iterations
until the energy eigenvalue is stationary within the com-

putcl accuracy.
Higher-energy eigenstates are obtained most easily by

orthogonalizing the wave function after each iteration

(Al) against the lower-energy states stored in the comput-
er memory. The adequate numerical procedure is

ytl, cE+ i yll, cx+ 1 g ~gyp (A3)
P=1

The P summation runs over the a lowest-energy states. g
refers to the unorthogonalized state and the P's refer to
the orthogonalized ones.

The iteration scheme described is stable if the mesh is

fine enough ' and the stability does not depend strongly
on the starting wave function. The point density in the
mesh is limited by the computer capacity: In one spatial
dirc':tion we normally use 20—30 points, which is suffi-

I.
cient for the required accuracy. Note also that the in-

crease of the point density increases the number of itera-
tions needed very rapidly.

In practice, all the reduction allowed by the symmetry
has to bc used in order to obtain accurate and stable solu-

tions, both for the ground state and the excited states.
Group theory facilitates the classification of the different
states and gives proper boundary conditions. We illus-

trate these points by using the hydrogen energy levels in
tetrahedral site of the bcc lattice as examples.

The tetrahedral site in bcc structure has the symmetry
of Dz~ point group containing the operations E, C2, Cz,
S4, and od (see Fig. 10). There are five different represen-
tations, A~, A2, 8~, Bz, and E, and the character table
for these representations is presented as Table X. The
boundary conditions for states belonging to the one-
dimensional representations are easily deduced from the
character table. The lowest-energy and excited states be-

longing to the same particular representation can then be
calculated by the orthogonalization process. A i states are
totally symmetric, i.e., they are invariant under all group
operations. Thus, requiring the first normal derivative to
vanish on the reflection planes y =0 and z =0 (Fig. 10),
and utilizing the improper rotation symmetry over x =0
plane, the wave functions for different Ai states are
solved in one-eighth of the total polyhedron enclosing the
wave function. According to the character table the wave
functions belonging to the Az representation change sign
in the cr~ reflections and Cz rotations. Thus the Az wave

functions have x =0, y =0, and z=0 as node planes.
Similarly, it is seen that Bi wave functions vanish on the

y =0 and z =0 planes, and B2 wave functions vanish

only on the x =0 plane. Solving in one-eighth of the po-
lyhedron is also sufficient for the solution of the Az, B„
and Bz states. The doubly degenerate states belonging to
representation E are obtained by requiring the wave func-
tion to vanish on the z =0 or y =0 plane. This boundary
condition breaks the improper rotation symmetry, and,
accordingly, the wave functions have to be solved in one-
fourth of the total polyhedron.

TABI.E X. Character table for the D2d point group.

Z

FIG. 10. Tetrahedral site in the bcc structure. The C2 and

C2 rotation axes are shown. The C2 axis also coincides with the
axis of the improper rotation S4. The o~ reflection planes are

y =0 and z =0.
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APPENDIX 8: REDUCED GREEN PUNCTIGNS

The restriction of the lattice relaxation in the two nearest-neighbor shells around the impurity and the use of the sym-

metry reduces the dimension of the Green-function matrix needed. Table XI gives the relations between the reduced

Green functions and the Green functions G,J(R} defined in the text. Octahedral and tetrahedral interstices in bcc and

fcc structure have been considered.

TABLE XI. Reduced Green functions g for octahedral and tetrahedral sites in bcc and fcc metals. The notation I is used for the
Green function GJ(R). The subscript tr denotes the order of the nearest-neighbor shell and the superscript P is the Voigt notation fol
indexes l Rnd j. Thc origin of thc coordinate systcll1 ls Rt the interstitial sltc. In this notation thc displaccIIlcnts u arc deduced from
the forces 7 by using u =g f.

Lattice
SltC

Neighboring atoms

(lattice constant = 1) Displacements
Components of the reduced

Grccn functions

bcc octahedral (+0.5,0,0)

(0,+0.5,+0.5)

1 1
g» =ro —rz
g1z= —8r16

1
gz1= 4g1z

1 2 1 1 6
gzz =ro+ rz —rz —r3 —r3

{'+0.5,0,—0.25)

(0,+0.5, + 0.25)
(+0.5,0,0.75)

(0,+0.5,—0.75)

(+u~, 0, —a2) (fi 0 —fz}

(+f3,0,f~}

g11 ro r2 2r11 1 6

g1z =—2r1
g13 =rz —r3—2r12 1 6

6 6

gz1 =g lz

gzz =ro+ rz —2r1
g =2I,—I
gz4 =2r1 —rz —r31 1 1

g31 =g13
g3z=gz3

g33 —ro r2 2r41 1 6

g34= —2r4
g41 —g14

g4z =gz4

g43 =g34

g44 =ro+ rz —2r4

fcc octahedral (+0.5,0,0)
(0,+0.5,0)
(0,0,+0.5)

(+0.5, +0.5, +0.5)

(—0.25, —0.25,0.25}

(—0.25,0.25, —0.25)

(0.25,—0.25,0.25)

(0.25,0.25,0.25)

(—0.25,—0.25, —0.75}
(—0.25, —0.75,—0.25)
(0.25,0.25, —0.75)

(0.25,—0.75,0.25)

( —0.75,0.25,0.25)

(+f2 +fr +f2)

( —fi —fi fi)

g11 ro 4r1 r21 6 1

g12 ——4I 1
—4I 3

—8r33 1 6

g21 =g12~4
gzz ——I o

—I 2+2I"2—2I 4+ I 4
—21 4

—I 6
—2I 3

1 1 2 1 3 6 1 6

g11
——ro —2I 1

—2r1+ I 1

1 1 6 3

g12 ———2I 1+2I 1+2I 1+2I 2
—2r3 —2I 3

—2r3
g13 = —2r1+2r1 —rz —r3—2r36 1 1 1 6

1

gz1= 2g1z

gzz ——ro —r1+r, —2r1 —2r, +r,—r4 —r5 —r5
1 1 3 6 2 3 6 2 3

g„=r,—r,+r,—r, —r,—r,—r,1 1 2 6 4 1 6

g31=g13
g32 =2gz3

g33 —ro+ I 1 2r1 4I 3 2r4 2r5
1 3 6 6 6 1
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