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Abstract—A formula for the ignition time, that Bradley obtained empirically, is derived analytically by a rigorous
asymptotic analysis of the limit of large activation energy. Two terms in the expansion must be retained. The
second term reveals the existence—just prior to ignition—of a reactive-diffusive zone at the surface of the solid
and a transient-diffusive zone in the interior. The analysis also exhibits a universal correction factor for Bradley’s

formula, of order unity.

I. INTRODUCTION

Bradley (1970) solved numerically the equations
describing heating of a homogeneous, semi-infinite,
reactive solid by an energy input of constant rate
atthe surface. He defined a critical nondimensional
heating time for ignition, 7., as the nondimensional
heating time required for the surface temperature
to achieve a minimum in an additional time 7,
after cessation of heating. This definition corre-
sponds most closely to the ignition time measured
in “go-no-go” experiments. However, Bradley
found that over the physically interesting range of
parameters, this critical time differed by less than
one percent from ignition times obtained from
various other reasonable definitions of ignition.
Therefore it seems appropriate to attempt to cal-
culate 7, from a ‘‘thermal runaway” condition,
without considering cessation of heating.

Bradley found empirically that over the entire
range of parameters of physical interest, 7, is
correlated within four percent by the formula

A = JE (wr) V(1 + 27 ]m)?
exp [E'[(1 + 2\/7[m)] (1

Here A4 is a nondimensional parameter involving
inversely, the rate of energy absorption and directly
the preexponential factor of the Arrhenius reaction
rate, and E’is the nondimensional activation energy.
Figure 13 of Bradley’s paper demonstrates clearly
the excellent agreement between equation (1) and
the results of the numerical integrations. The

purpose of the present paper is to derive equation
(1) in a logical and analytical manner, by investi-
gating the limit of large activation energy from the
viewpoint of matched asymptotic expansions.
The study reveals some new physical attributes of
the ignition process and also yields a small correc-
tion to equation (1).

The derivation in the text is intended to be
heuristic in order to emphasize physical aspects of
the development. Appendix A contains aspects
of the asymptotic analysis that are more rigorous.
The reader is referred to Bradley (1970) for dis-
cussions of related work, for precise definition of
the physical problem and for the basic equations.
The notation herein is identical to that of Bradley.

2. INERT STAGE

Since Bradley (1970) has shown that for param-
eter values of practical interest the ignition time is
insensitive to the value of the reaction order a, we
set @ = 0 and ignore reactant depletion, except in
Appendix A, where the effect of reactant depletion
is assessed. With @ = 0, equations (1), (3), (4) and
(5) of Bradley’s paper become

6, =0, + Aexp (—E'/0) (2)
0,0, 7) = —1, O(co, F=6(£,0) =1 (3)

where 0 is the nondimensional temperature, 7 the
nondimensional time and & the nondimensional
distance normal to the surface.
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Defining the quantity 0, by
A = exp (E'[6) 4

we assume that ; > 1, since this choice corresponds
to the ignition regime analyzed by Bradley. For
0 < 0, < 1, the external heating rate is so small in
comparison with the initial chemical heat release
rate that a nearly adiabatic and homogeneous
explosion occurs (at time 7; = (4E)lexp E)
instead of ignition. For negative values of 0,
the external heating rate is so large in comparison
with the maximum achievable chemical heat release
rate that a well-defined ignition phenomenon
cannot occur. We shall consider neither of these
other two regimes.
Substitution of equation (4) into equation (2)
yields
0, = Oz + exp [(E'0)(0 — 0)/6),  (5)

from which it is seen that in an asymptotic analysis
for E’[0, — oo, the reaction-rate term will be
exponentially small for § < 6; and exponentially
large for 0 > 6,. Thus, to lowest order in the
small parameter 0,/E’, when = is small enough to
assure that 0 < 0, everywhere in the solid, then
equation (5) reduces to the heat-conduction equa-
tion

0, = 6, ©)

to which the boundary conditions given in equation
(3) must be applied. It may be noted from equation
(5) that when (6 — 0,)/0 is negative and of order
unity, equation (6) holds to every algebraic order
in 6,/E’; the first nonvanishing correction in the
inert heat-conduction stage is of exponential order
in —(E'[6)(0, — 6)/0.

The solution for 0 in the early stage of inert
heating is well known and will be denoted by
0,(&, 7), viz.,

0, =1+ 2J7/m exp (—£2[d7) — € erfc (§/2{/7).
M

Equation (7) shows that 0; is a monotonically
increasing function of r and a monotonically
decreasing function of & Therefore the condition
for breakdown of the inert heat-conduction approxi-
mation, viz. 0; = 0,, occurs earliest at the surface
of the solid, & = 0. Since equation (5) shows that
for 6,(0, 7) > 6, the reaction rate is exponentially
large, it is clear that to lowest order in 6,/E,
the quantity 6, represents an ignition temperature,
such that thermal runaway occurs when the non-
dimensional surface temperature reaches ;. By

setting 6, = 6, and & =0 in equation (7), one
obtains an expression for the ignition time 7 in
lowest order, viz.,

0, =1+ 2Jmfm. (8)
Equations (4) and (8) give
A = exp [E'/(1 + 2/m/m)], o

which reproduces the major part of equation (1)
if we identify 7, as 7, to lowest order.

3. TRANSITION STAGE

3.1. Establishment of the problem

Having obtained the major part of equation (1)
from analysis of the lowest order, we can attempt
to derive the remaining factors in equation (l)
by proceeding to the next higher order. One logical
approach to the higher-order analysis is to treat
A as a specified constant and to calculate a correc-
tion to 7; for the ignition time. We remark without
proof that through a development closely resemb-
ling that given below, this approach leads directly
to the formula

77y (0FE)b + In {(B3/E")|\/mr )
(10)

where to lowest order in 1/E’, b is a universa
constant of order unity. Although equation (10)
with b = 0 is asymptotically equivalent to equation
(1), it is tedious to demonstrate the equivalence
explicitly. Since equation (1) is an explicit expres-
sion for 4 in terms of 7,, a more direct approach
to the derivation of equation (1) is to treat the
ignition time as a specified constant and to calculate
the corresponding value of 4. Such an approachis
adopted herein.

Thus, we specify that the nondimensional igni-
tion time will be 7., and we define a corresponding
inert ignition temperature by

0. =1+ 27[m, (an
as given by equation (7). Writing equation (2) in
the form -

0, = 0 + A exp (—E'[6,) exp {(E'[0.)(0 — 0,6},
(12)

we must solve equation (12) subject to the boundary
conditions given in equation (3). Imposing on this
solution the ignition condition of thermal runaway
at » = 7, will then determine A.

T, =Ty +
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Anticipating that Aexp (—E’/0,) will be of
algebraic order in our small parameter §,/E’, we
obtain the inert heating problem of the previous
section for 0 < 6,. To analyze the transition from
inert heating to vigorous reaction, we introduce the
deviation of the temperature from that correspon-
ding to inert heating as a new dependent variable,
viz.,

Q=10-—0, (13)

where 8; is given by equation (7). The problem
to be solved for @ then takes the form

®, =0, + Aexp (—E'[0,)
x exp [(E'[0.)(07 — 0. + ®)/(0; + )],  (14)
¢.0,7) = ®(0, ) =D(§,00=0. (15)
3.2. The reactive-diffusive zone

Since E'[0, is large, departures from inert heating
{® = 0) occur first at times and positions such
that 0, — 0; is close to zero. These times will be
near 7,, and the temperature gradient in the solid
during inert heating will cause the positions to
correspond to small values of & Therefore to
investigate transition to ignition, in equation (14)
we can expand 6; about r =171, £ =0. From
equation (7), this expansion is found to be

0,~ 6, — &+ (v — 1)|\/7r.. (16)

Substitution of this expression into equation (14),
and retention of only the first nonvanishing term
in the exponent, yields
o, =0, 4 Aexp(—E'[0,)
x exp {(E'10)[® — & + (r — 7)/\/7,]}.
amn
In the reaction zone near the surface of the solid,
itis physically clear that during the transition stage,
both space and time variations of the inert temper-
ature field must be included. Therefore, in equa-
tion (17) we wish to introduce stretched variables
such that the &€ term and the = term are of the same
order in the exponent. For any such stretching, it
is seen that in equation (17), ®, is necessarily of
higher order than ®. Therefore, in the first
approximation we neglect @, in equation (17).
This causes equation (17) to describe a reactive-
diffusive regime in which transient effects are
negligible. Requiring further that the @ term
remains in the exponent, a condition that is needed
to achieve thermal runaway at a finite time, we
find that a suitable small translation of the stretched

time coordinate removes all parameters from equa-
tion (17).
Explicitly, with
v = (E'[0)D, x = (E'|0%)& (18)
and

t = (E'[09)(r — 7o)[y/m7, + In (B/E)
+ In [Aexp (—E'/0)], (19)
to lowest order in 0%/E’ equation (17) becomes
Yoo = — €Xp (p — x + 1), (20)
with boundary and initial conditions
(0, ) = (o0, 1) =0, wx, —0)=0, (21)

as obtained from equation (15). Since ¢ appears
only parametrically in equation (20), no initial
conditions may be imposed on it; however, since
t may be absorbed into x by introducing the new
variable x — ¢, it is clear that the initial condition
will be satisfied automatically if the boundary
condition at x = oo is satisfied.

In terms of the variable F = » — x, equation
(20) is F,, = —ef"+!, whose first integral is F2 =
¢ — 2e"*', where ¢ is an arbitrary constant.
The boundary condition on w, at x = 0 then
requires ¢ = 1 4 2 exp (y, + £), where 1, is the
time-dependent value of y at x = 0. However,
the boundary conditions at x = oo cannot be
satisfied, because equation (20) has y,, < 0, which
requires that for x > 0, y, must be less than its
value at x = 0, which is zero. This result demon-
strates the necessity of introducing an additional
spatial region during the transition stage, for large
values of x, where equation (20) is inapplicable.
The surface boundary conditions for this region of
large x is the relationship between y and its x
derivative obtained by evaluating the reactive-
diffusive solution at x = oo, viz.,

Yoo = 1 — [1 + 2exp (o + D', (22)

where the negative sign has been selected for the
square root to satisfy the requirement that v, < 0.

3.3. The transient diffusive zone

To analyze the outer region of large x, we must
return to equation (14) and retain the transient
term. To be able to satisfy boundary conditions,
the diffusive term should be retained in the outer
region. Since time scaling must be the same for
both inner and outer regions in the transition stage,
we employ ¢ as the time variable and scale & to
assure that @, and @, will be of the same order.
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It follows that the appropriate spatial variable is

n = EVE6 () = xOE (nr ) (23)
Equation ([4) then becomes simply

Wt = wrm El (24)

since the reaction rate is exponentially small, as
can be seen, for example, from equation (17), in
which the transformations produce the factor
exp (—=nE'[6%) in the heat-production term.
The initial and boundary conditions for equation
(24) become

p(n, —o0) = p(o0, 1) =0 (25)

(0, ) = VE6F (nr )t
x {1 = [1 + 2exp {90, ) + 1}]*},
(26)

the last of which is the matching condition implied
by equation (22). These results show that in the
transition stage, the regime of large x is a transient-
diffusive zone.

For early times, the exponential term in equation
(26) is small compared with unity, and a two-term
expansion of the square root can be employed.
After this expansion is made, an additional small
translation in time removes all parameters from the
outer problem. Thus, we define

o=t + In [VE'[0% (n7,)"/%] 27
and obtain the problem
Vo = Yupp ¥, —0) = y(0, 0) =0,

(28)
,(0, 0) = — exp [¢(0, o) + a].

In the solution to this well-defined problem,
shown in Figure 1, 9(0, o) goes to infinity, i.c.,
thermal runaway occurs, at a finite value of ¢ of
order unity. Let us denote this value of ¢ by 5.
Then, for o < b,

2 exp {(0, £) + t}
< WOE (77 exp {9(0, o) + b},

from which it is seen that for small values of 62/E’,
the assumption that the square root in equation
(26) can be expanded, is indeed justified as an
asymptotic parameter expansion in 0i/E’. This
completes the analysis of the transition stage.
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Fic. 1. Results of the numerical integration for the
reactant consumption at the surface and for the
surface temperature during the transition stage.
Also, illustration of the composite expansion for
the history of the surface temperature and the
surface reactant depletion, in a typical case.

3.4. History of surface temperature

Results of the analysis can be illustrated con-
veniently by the typical surface temperature history
sketched in the insert in Figure 1. The surface
temperature obtained from the composite expansion
is seen from equations (7), (13) and (18) to be

60, 7) = 1 + 2J7[7 + (65/E)%(0, )

in which o is related to = through equations (19)
and (27). For v < 7, equation (19) shows that
o is negative and large in magnitude unless 7
is very close to 7,. For large negative o, the solu-
tion to equation (28),%(0,0) = € + €2°[/2 + - -,
shows that y is very small and that therefore 0 is
very close to the inert-heating solution. As 7
approaches 7,, roughly when (7, — 7)/7, becomes
of order 6,/E’, then o becomes of order unity, and
the surface temperature increases above the inert-
heating result, through a term or order 6%/E',
due to the onset of an appreciable rate of chemical
heat release. When 7 reaches 7,, (0, o) and the
surface temperature are predicted to be infinite in
the present asymptotic analysis, thereby defining
thermal runaway.
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Of course, infinite temperatures will not occur at
finite times in the exact solution to equations (2)
and (3). The infinity is a consequence of the
linearization of the exponential, viz. replacing
exp (—E'f0) by exp {—(E'[6)[1 — (8 — 06,1,
which is required by the present transition-stage
analysis. The fact that the linearization must be
performed about 0, is not essential to this result;
linearization about any temperature produces an
infinite surface temperature at a finite time, although
such a linearization can be justified from the view-
point of asymptotic theory only for temperatures
sufficiently lower than the activation temperature
E'. In the exact solution to equations (2) and (3),
the surface temperature grows very rapidly in the
vicinity of 7 = 7, until it reaches a value of the
order of E‘, at which point it begins to increase
much more slowly, eventually achieving a roughly
linear growth with 7, as 7 — co. These later stages
are of no physical interest, since reactant depletion
will cause equations (2) and (3) to break down
before they are reached. To predict the ignition
time it is unnecessary to go beyond the transition
stage, because the rate of increase of surface temper-
ature becomes so large in this stage that ignition
will occur, by any reasonable definition, within a
very narrow range of r about 7,.

4. IGNITION TIME

Since we have shown that thermal runaway, i.e.
ignition, occurs at ¢ = b, we can trace back the
definitions, through equations (11), (19) and (27),
to obtain an explicit expression for 4 in terms of
7. By definition, in equation (19), » = 7, at igni-
tion. Straightforward substitution yields

A= VE (mr) VA1 + 27 ]m)
x exp [E'J(1 4+ 24/7 /™). (29)

Except for the additional correction factor e?,
equation (29) is identical with equation (1). Equa-
tion (28) has been integrated numerically by the
method outlined in Appendix B. From this integra-
tion it was found that ¢’ = 0.65. On the log scale
shown in Bradley’s Figure 13, this produces a
shift of the curves to the right by an amount 0.188,
which is less than twice the thickness of the lines in
the figure. Therefore the correlation formula
obtained by Bradley is justified rather well from the
viewpoint of asymptotic analysis.

5. CONCLUDING COMMENTS

The concepts of asymptotic analysis, employed
herein, enable one to see quickly how to extend the
analysis to more complicated systems and what the
nature of the results will be. For example, suppose
that two independent reactions were to occur in
the solid. It is obvious immediately, from the
analysis, that if both reactions are exothermic, then
the reaction with the lower ignition time will control
the ignition process, and the reaction with the
higher ignition time will be entirely negligible in the
pre-ignition stages of inert conduction and transi-
tion. If a reaction is endothermic, then it alone
cannot produce ignition, but it does exhibit a
definite time of onset for high activation energies,
which is given approximately by equation (1).
If this onset time exceeds the ignition time of a
second, exothermic reaction, then the endothermic
reaction is entirely negligible prior to ignition.
If the onset time for the endothermic reaction is the
shorter, then it can produce an asymptotic state
in which a wide region of constant temperature
(given approximately by the solution to de 7% =
E’/6?) and of ever increasing width exists at the
surface of the solid, and this state will persist until
reactant depletion diminishes the effect of the
endothermic reaction. In this case, if the rate of
the exothermic reaction is high enough to cause
it to enter a transition stage before the endothermic
reactant is appreciably depleted, then ignition will
occur in a mechanism whereby the exothermic
reaction undergoes a process akin to a classical
homogeneous thermal explosion, at the asymptotic
temperature of the endothermic reaction. Various
other limits can be discussed; in all cases thermal
runaway occurs first in a region that extends to
the surface of the solid.

The finding, in Section 3, that during the transi-
tion stage a reactive-diffusive zone develops near
the surface of the solid and a transient-diffusive zone
in the interior, is remarkable because of the simil-
arity to the behavior of other premixed reacting
systems for large activation energies. For example,
in steady propagation of premixed laminar flames,
reactive-diffusive and convective-diffusive zones
occur, in lowest order of a high activation-energy
expansion. The convective-diffusive zone of the
steady-state problem is entirely analogous to the
transient-diffusive zone of the transient problem.
The present result suggests that this kind of split-
ting may be quite universal in premixed combustion.

It is noteworthy that for this ignition problem,
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the asymptotic analysis yields accurate results over
the entire range of parameters of physical interest.
This suggests that asymptotic analysis may yield
good results, without too great an expenditure
of effort, for problems of greater complexity, which
currently tax the calculational abilities of electronic
computers when numerical methods are employed.
For example, asymptotic methods might well
produce analytical results for the complete ignition
history, including transition to a steadily propa-
gating deflagration, if reactant depletion and surface
regression are included in the ignition analysis.
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APPENDIX A

The purpose of this Appendix is to improve the
rigor of the analysis, and also to investigate the
effect of reactant consumption. We begin with
the equations describing the temperature and con-
centration fields, as given by Bradley, viz.,

0, =0, + A(l — &)*exp (—E'[0)  (AD)
and
e, = (A/B)(1 — e)"exp (—E’[0),  (A2)

with the boundary conditions
0.0, 7) = —1, 0(0,7)=0 (A3)
and initial conditions
05,00 =1, &&,0=0. (A4)

We seek the asymptotic solution of this system for
large values of E’, with the reaction order a, the
nondimensional heat of reaction B and the non-
dimensional inert temperature at ignition 6, of
order unity. We allow the solution to define the
value of A which produces thermal runaway at a
given time 7,, assumed to be of order unity. For
brevity of notation, we use as our small parameter

0 = 0,/JVE. (AS)

Working with the function @, defined in equation
(13), in place of 6, we need to consider only the
transition stage. With the inner and outer spatial
variables x and %, defined in equations (18) and
(23), we anticipate the expansions

O = o%py(x, 0) + FPy,(x, 0) + d*ye(x, 0) + -
(A6)

and
D = 32Dy(n, o) + *D,(n, ) + 0D, (y, o) + -
(A7)
for the inner, diffusive-reactive, and outer, trans

ient-diffusive, layers. Here ¢ is defined by the
combination of equations (19) and (22), viz.,

o= (E[0)r — r)f\/mr, + by (AY

where b,, which we assume to be of order unity,
is the first term of an expansion

b=2by+ b, + -+, (A9)
of

b = In [{A exp (—E'[0)}(0YE) (7). (ALl

We shall determine b, from the condition that in
the first approximation for ®, thermal runaway
occurs at o = by; the following terms, b, etc,
will be determined so as to minimize the singular-
ities appearing at ¢ = b, in the higher-order
approximations of ®. In the inner zone, the expan-
sion of & is taken as

& = de(x, 0) + Oey(x, o) + -+ (Al})

while in the outer zone ¢ is anticipated to be expo-
nentially small. For future use, we take note of the
expansions

O, =0, + (o — x — by) + 0{8*} (Al)
and
0, =0, — d(mr)in + 003, (A3

which follow from equations (7), (18), (23) and
(A8).

Use of equations (18), (A6) and (A8) through
(A12) in equations (Al) and (A2) produces the
inner equations
Yozx + (SWIavac + 62"/)27:1 - 52(777'0)_1/2‘%’% + 0{63} =R

= —d(mr,) V41 — de; + 0{F%}]*

x exp [6 — x + vy + oy, + 06, + 0{6%}] (Al4)
and
&0 + 06y + 0{0%} = — B~ (77,)'2R[6 (ALY
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The initial conditions for these equations are found
from equation (A4) to be

W:i(x’ —OO) =0,
g(x, —0) =0,

j=0,1,2,...

NP (A16)

Equation (A3) produces the boundary condition

O:w;im(oa 0)3 ] = Oa ls 2 e (A17)

When equations (23), (A7), (A8), (A9), (A10)
and (A13) are used in equations (Al) and (A2),
one obtains as the outer equation

(Dl]d - (DOrm + 6((1)10' - (Dlrm) + 0{62} =
(mr V40 exp {— (mr V4671 + 0(1)}  (AILS8)

with boundary and initial conditions

Oc0, 0) = Dy(, —0) =0, j=0,1,2,...
(A19)

as implied by equations (A3) and (A4). The equa-
tion and initial condition obtained for ¢ in the
outer zone verify that & is exponentially small for
any value of n of order unity or greater.

Expressed in the outer variable, the matching
conditions, obtained from equations (18), (23),
{A6) and (A7), are

llm {(DO("?’ 0‘) + 6@1(7], G) + o }
n-0

~lim [yo{(77,) /%07y, 6} + Sy {(7r7)*67 'y, o}
n-ow0
+ P {(rr )07y, 6} + - -] (A20)

which should, in fact, be rewritten in terms of a
parametric limit process performed in an inter-
mediate variable to see most clearly the proper
ordering.

In the inner zone, to lowest order, equation
(A14) implies ., = 0, whose solution consistent
with equation (A17) is

Yo = Yo(0), (A21)

where p,(o) is a function of ¢ to be-determined
from the matching conditions. Equation (A15)
then yields

& = B*‘(fr-rc)l/"e‘”fa exp [0 + po(o)] do (A22)

in view of equation (A16). To the next order,
equation (A14) reduces to

Yiex = _(777.6)_1/4 eXP [G - X + %(0)] (A23)

whose solution satisfying equation (A17) is

Y= —(m7) V4 x + e + fi(o)] exp [o + po(0)]
(A24)

where f;(0) is a function of ¢ to be determined from
the matching conditions. Higher-order inner
equations are seen to be qualitatively similar to
equations (A22), (A23) and (A24), although
somewhat more complicated algebraically.

Matching requirements between the two-term
inner expansion and the one-term outer expansion,
derived from equation (A20), give

©y(0, 0) = o(0) (A25)
and

Doy(0, 0) = — exp {0 + po(0)}  (A26)

where use has been made of equations (A21) and
(A24). As often occurs in matching procedures, a
number of higher-order matching requirements are
satisfied automatically.

When y4(0) is eliminated from equation (A26) by
use of equation (A25), one obtains from the term
of lowest order in equation (A18), supplemented
by equation (Al19) for j = 0, precisely the same
problem for ®y(y, o) that was defined in equation
(28). This justifies, to lowest order, the heuristic
approach adopted in the main text. It also reveals
that to this order reactant depletion does not
affect the ignition time. The time history of the
fraction of the reaction completed at the surface,
normalized through multiplication by the large
parameter 6-'B(wr,)"/4, as predicted by equation
(A22), is shown in Figure 1, from which it can be
seen that ¢, approaches a finite limit at thermal
runaway, a result which can also be deduced analyt-
ically from an asymptotic analysis for large
®,(0, 0), by using equation (B4). The extent of
reactant consumption at the moment of ignition,
calculated from the limit of ¢, for the range of
parameters considered by Bradley (1970), agrees
within +409%, with Bradley's equation (9), which
he states correlates his numerical results for react-
ant depletion within 109,; our result differs
somewhat functionally from that of Bradley’s
correlation formula, the ratio of our depletion to
his being 2.66,77Y4/\/E’. As might be inferred
from the ¢ curve in the insert in Fig. 1, the extent
of reactant consumption at ignition is much more
strongly dependent on the choice of ignition criterion
than is the ignition time. Equations (Al4) and
(A22) show that our reactant depletion will influence
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,, through a term proportional to aB—*; it follows
that low reaction order and high heat of reaction
both tend to minimize the effects of reactant deple-
tion.

APPENDIX B

To integrate equation (28) numerically, we first
convert the problem to an integral equation in one
variable. By transform methods or Green’s func-
tions, it can be shown from equation (28) that
(0, o) obeys the integral equation

w0, ) = 2/\/) f_ NG )
x exp {9(0,7) + 7} dr (BI1)

In equation (B1) the integral from — oo to a large
negative value o, can be evaluated analytically, and
equation (Bl) then becomes

w0, 0) = e°{(2/\Jm)\Jo — deexp {—(c — 0)*}
+ erfc (/o — 65}
+ (Z/J;)Jld\/a — 7exp {9(0,7) + 7}
x {dr + dy(0,7)} (B2)

A suitable finite-difference version of equation

(B2) is
w; = exp (6,){(2// M\ 0; — dpexp {—(o; — )1}
+ erfc (\Jo, — 04)}

i—1 . L A\l/2

+ = 2 (m- - Ot G Gm)
T i1 2

X exp {3(y; + yirx + 0 + 014)}

X (Wis1 — ¥i + Oipr — 0y) (B3)
In equation (B3) a series of values for y; was
selected, and the resulting algebraic equations
for o, were solved sequentially by a Newton
Raphson iterative procedure, thus generating the
function (0, 0). This function was used for
performing the integration in equation (A2))
numerically to obtain £(0, o).

The numerical integration yielded by = —0.431.
For large values of (0, 0), the numerical results
agree well with an asymptotic expression that can
be derived analytically from equation (28) by
treating exp {—(0, o)} as the dependent variable.
The asymptotic expression is

(0,00~ —1in(by —0) — b, —3In2 (B4
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