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We present a new type of phase-conjugate mirror that is based on an externally driven Fabry—Perot interferometer
with intracavity-pumped photorefractive material, which is probed by the signal beam. It is shown theoretically
that such a configuration leads to multivalued solutions and possibly to bistability. This configuration also permits
optical control of the resonator output and electrical control of the phase-conjugate reflectivity.

INTRODUCTION

During the past years there has been considerable research
on optical phase conjugation based on photorefractive mate-
ridls, and many novel devices have been demonstrated.l
Photorefractive crystals were shown to have exceptionally
high nonlinear gain and were proved to be effective for low-
energy cw applications.2 In this paper we propose to com-
bine these properties with the inherent nonlinear behavior
of a Fabry-Perot interferometer.

The use of an externally driven nonlinear cavity with a
Kerr-like medium as an optically bistable device has been
well documented.® The probing of such a device by a weak
signal beam, thereby combining degenerate four-wave mix-
ing (FWM) with the cavity operation, was also investigated.
However, to our knowledge no attention has been given to
the behavior of an intracavity photorefractive material when
it is probed by an external (not necessarily weak) signal
beam that is not part of the cavity.

A typical arrangement for such a (cavity-coupled) phase-
conjugate mirror (CC-PCM) is shown in Fig. 1. The pump
field Ey is coupled into the cavity by a mirror (M;) with
amplitude reflectivity r;. The internal fields are E; (left
propagating) and E, (right propagating). The crystal is
probed by a signal beam, E,, and the phase-conjugate field is
E;. In this paper we discuss the specific configuration of
Fig. 1. Other directions of the ¢ axis and the signal beam are
also possible (Fig. 2). Whereas the detailed structure of the
results depends on the chosen configuration, the main attri-
butes of a CC-PCM are common to all and will be demon-

strated here with the configuration of Fig. 1 only. In this:

configuration a strong internal field E, is diffracted prefer-
entially into E3. E; may thus be of the same order of magni-
tude as E,, giving rise to a relatively large modulation depth
of E1E4* and to high phase-conjugate mirror (PCM) reflec-
tivity.

THEORETICAL ANALYSIS AND RESULTS

In the discussion that follows we assume that all fields are of
the same frequency. In such a case the fields E; and E, do
not suffer any phase shifts due to the nonlinear interaction,
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if we assume the usual /2 phase shift between the interfer-
ence pattern and the induced space-charge field, i.e., a real
effective coupling constant y.5 The notation that we use is
similar to that of Ref. 1. For simplicity, we assume that the
transmission grating is dominant, that the nonlinear medi-
um is lossless, and that all interacting beams are plane
waves. The basic equations are!

ERal
%ﬁ = T4,

' = y(A,A* + Ay*Ag)/I 7,

4
=1, IL=IAP €]
i=1

where v is the (in general) complex c'ouplihg constant and 4;
are the field amplitudes. '
The most general solution of Eq. (1) is given by

Ry, = 4lclP/(Q/T + A)?, (@)
where
Q= (A% + 4™,
= —tanh(y!Q/2I,),
A =1,(1) = I;(0) — 1,(0), (3)
Ry is the PCM intensity reflectivity, and lc[? is given by
llel? = L LWIQ/T + A + 4le{I,1) + Re(Q/ITP] = o.
4)

For real v this solution can be manipulated further. We
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Fig. 1. Intracavify pumped PCM. This specific configuration is
the one analyzed in the paper.
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Fig. 2. Examples of three other possible configurations of a CC-
PCM (in terms of the ¢ axis and probe direction).

normalize all intensities by the probe intensity, so that
I40) = 1. It can be shown that Eqgs. (2)-(4) lead to the
solution

R, = (L0 — 1cP)/1Q/T + L), (5)
where |c|2 can now be solved to be
lely 22 = (L (0)[Iy() — Ry JIV2 & (R, V)2 (6)

Equations (5) and (6) still must be solved numerically in a
self-consistent way. I5(l) and I;(0) are the known inputs,
and they are given in terms of the boundary conditions

|Eol? = q = [I,(1) + r2lel¥/T,(1) — 2rlclcos(6 + )]/(1 — r{?).
)

Here 6 is the round-trip (geometrical) phase delay, and ¢ is
the additional phase delay caused by the nonlinear interac-
tion during the round trip through the crystal. Note that for
real v, ¢ is equal to zero. The second boundary condition is

1,(0) = r,21,(0) = r2L,() — R, ). ®)

We can therefore find that
A=rfRo + LA -rd — 1, ©)
Ip=1+ LA +r) —r’R,. (10)

When Eqgs. (7)—(10) are used, the PCM reflectivity [Eqs. (5)
and (6)] is determined by the control parameters {g, 8, 1, ro}
only.

The solution described above shows a highly nonlinear
dependence of R, not only on the input pump-probe ratio ¢
(as expected for the FWM process) but also on the cavity
parameters that can be electrically controlled, (6, as an
example, can be piezoelectrically changed.) This depen-
dence also leads, as will be demonstrated, to multivalued
solutions even for relatively small coupling v.
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Two other important outputs are the resonator transmit-
tance (T) and reflectance (R), which are found to be

Ry =1 - [L,() = lc1,\)/g, (11)
= (1 - r22) [12(l) - Rpc]/Q° (12)

We see that both Ry and T depend on the PCM reflectivity.
It is possible to control the cavity outputs optically by
changing q, and multivalued solutions are also possible.

In Fig. 3 we show the results (Ry, Ro) forry=0andro=1,
i.e., for anormal FWM process when one of the pump beams
is supplied by the reflection on mirror M; of the second
pump. In Figs. 3(a) and 3(b) we see that for yI = 3 both
log(Rp.) and log(Ro) are almost linear in log(g) when Iy <
I4(0) (g < 1) and saturate at near unity when g > 1. This
solution is single valued for all values of g. In Figs. 3(c) and
3(d) the case of vyl = 6 is shown. Here a second solution
appears for ¢ > 1, Whlch is due to dominance of the EQ*E3
grating.!

These results are to be compared with Fig. 4, in whlch
similar calculations were done for r; = 0.9, ro = 1. In Figs.
4(a) and 4(b) (v! = 3) we see the appearance of three solu-
tions for g < 2, for which we have a jump of approximately 2
orders of magnitude in R, which brings about the possibili-
ty of bistable behavior as a function of g. The cavity reflec-
tivity Ro is a constant (~1) for the lower branch of R, but is
increasing as q decreases for the upper branches of R, Itis,
therefore, possible to change the resonator output by con-
trolling the optical input q. This behavior can be under-
stood by observing the internal fields. The lower values of
Ry are the results of destructive interference between E1(l)
and Eq. [Ei(l) in this case originates mainly from the dif-
fraction of E4 but can be relatively large.] As a consequence,
Eqx(l), E2(0), and E5(0) (=Rp.) are small. In the case of the
upper branches of Ry the opposite is correct. Ey(l) is large
because of the constructive interference of Eg and Ey(l). As
aresult, the term E,E* leads to a strong grating upon which
E,(l) is diffracted to give higher values of the PCM reflectiv-
ity.

In Figs. 4(c) and 4(d) we see similar results for y/ = 6. The
main differences are a bigger jump (of factor 103) in Ry, at
the bistable point ¢ = 3 and the appearances of multivalued
solutions for ¢ > 1, as occurred also in the case r; = 0.

As v is increased, the solutions become richer and more
complicated. As an example, we show in Fig. 5 the behavior
of Rq for vl = 10. _ ‘

In all the above examples the cavity was tuned to reso-
nance conditions (# = 0). When the cavity is slightly de-
tuned, the bistable loop is even clearer. In Fig. 6 we show
Ry for vl = 3 and § = 5°. The corresponding expected
hysteresis loop, assuming initial conditions ¢ = 0, is also
displayed.

As we mentioned above, it is also possible to control the
PCM reflectivity by changing the cavity round-trip phase.
In Fig. 7 log(R,.) is shown as a function of 6 for ¥l = 3,
logio(q) = 0.2, 0.4, 0.8. We observe that for log;o, (g) = 0.2 if
initially the system is on the upper branches of R [see also
Fig. 4(a)], then, as 0 is increased, self-oscillations cannot
contribute substantially to the PCM reflectivity; at § =~ 40
the reflectivity drops approximately 8 orders of magnitude.
For higher values of ¢ a smooth control of Rpc as a function of
0 is possible.
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Fig.3. Log-log plots of the phase-conjugate reflectivity R

an open cavity (r; = 0).

pcand the cavity reflectivity R as a function of the pump-probe ratio g for the case of
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Fig.4. Ry and Ry as a function of g for the case r; = 0.9
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Fig.5. A plot of the cavity reflectivity Ry as a function of the input
parameter ¢ for a high-gain (yl = 10) crystal.

-
D -

LOG,, (@)

Fig.6. Rpcand Ry as a function of ¢ for a detuned resonator: vyl =
3,0=5°
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Fig.7. The dependence of R, on the cavity detuning angle 6, for v/
= 3 and three values of the pump-probe ratio q.

In the above calculations we did ot include the possible
appearance of detuned oscillations inside the cavity when ¢
5 2wm, which may be important for ¢ < 1 even when the
external pump and probe fields are of equal frequencies.
Such oscillations are known to happen in the absence of
external pumping (g = 0, i.e., a detuned linear self-pumped
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PCM®). It is impossible to predict from the steady-state
analysis how much of the incoming probe field E; partici-
pates in the usual degenerate FWM process (thus creating a
fixed grating with the pump field) and what part of Ej, is
channeled into detuned self-oscillations (creating a moving
grating). A detailed dynamic investigation is needed. We
note, however, that for a high-finesse resonator, detuned
oscillations are limited only to a small cavity detuning an-
gle,5 beyond which they cannot be sustained. The main
features of the dependence of Ry, on § for small values of ¢ (¢
< 1) can therefore also be found from our previous analysis.

Another means for controlling the phase-conjugate reflec-
tivity and the cavity behavior is detuning of the probe fre-
quency relative to the pump frequency. Because of the
frequency offset between the pump and the signals beams,
the light interference grating moves in space. Because of
the finite response time (7) of the grating in the photorefrac-
tive material, a phase lag is induced between the index grat-
ing and the interference grating; the coupling constant be-
comes complex and is given by

v = vo/(1 + id7), (13)

where g is the coupling constant with zero detuning and ¢ is
the detuning frequency.

To see the effect of complex v, we follow the procedure of
Ref. 5 and find that for our boundary conditions, with 14(0)
= 1, the round-trip phase is given by

[V f Iy + L)
V= le{ 21,0) — A] }dz’ (14)
where
=22l + (Q/IT + AL (15
T QT+ MQIT+20,0) - A
L -Ip-A
T Ty 1o
T+ oI, (1) — A]l%c/?
- liQ/ L) — Al -

" leleP + @/ + AL
I34 = 4|C|2/|(Q/T + A)|2 (18)

Here, T = tanh{yQ( — 2)/2[2Lx() — A]} and @ = (A% +
4le|?)12, |c| and A are given by Egs. (4) and (9), respective-
ly.
From Eq. (14) we see that the dependence of I3(!) (and,
therefore, of Ry,c) on the boundary condition (i.e., on the
pump-probe ratio g) becomes even more involved, as it is
now a function of Y[I5(I)] [note that I5(l) also depends on §]:

g = (I,() + rAcl?/1,(0) — 2r/lclcosy L) /1 = D). (19)

When Eq. (19) is combined with Egs. (2)-(4), (9), (10), and
(13)—(18), the explicit solutions for Ry can be found.

CONCLUSION

We have suggested and explored the theory of a CC-PCM
when the crystal is intracavity pumped. We have shown
that this system can have bistability and multivalued solu-
tions as a function of the pump-probe ratio g and detuning g,
even for smaller nonlinear gain v. When ¢ is changed, the
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cavity output can be optically controlled and the PCM re-
flectivity can be controlled externally by varying the cavity
parameters (6) electrically.

ACKNOWLEDGMENTS

This research was supported by the U.S. Air Force Office of
Scientific Research and by the U.S. Army Research Office.

Vol. 5, No. 8/August 1988/J. Opt. Soc. Am. B 1787

REFERENCES

1. M. Cronin-Golomb, B. Fischer, J. O. White, and A. Yariv, IEEE
J. Quantum Electron. QE-20, 12 (1984).

2. For a review, see T. J. Hall, R. Jaura, L. M. Connors, and P. D.
Foote, Prog. Quantum Electron. 10, 77 (1985).

3. H. M. Gibbs, Optical Bistability (Academic, New York, 1985).

4. G. P. Agrawal, J. Opt. Soc. Am. 73, 654 (1983).

5. S. K. Kwong, M. Cronin-Golomb, and A. Yariv, IEEE J. Quan-
tum Electron. QE-22, 1508 (1986).



