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Abstract. The currently used “kinetic-fractionation” (KF)

model of the differential incorporation of water-molecule

isotopologues into vapor-grown ice omits surface processes

on crystal facets that may be important in temperature re-

constructions. This article introduces the “surface-kinetic”

fractionation model, a model that includes such surface pro-

cesses, and shows that differences in deposition coefficients

for water isotopologues can produce isotopic fractionation

coefficients that significantly differ from those of KF theory.

For example, if the deposition coefficient of H18
2 O differs by

just 5 % from that of ordinary water (H16
2 O), the resulting

fractionation coefficient at 20 % supersaturation may deviate

from the KF value by up to about ±17 ‰, and even more

at greater supersaturation. As a result, the surface-kinetic

theory may significantly change how fractionation depends

on supersaturation. Moreover, the model introduces possi-

ble new temperature dependencies from the deposition co-

efficients. These parameters need to be constrained by new

laboratory measurements.

1 Introduction

Ever since the late 1950s, the fractionation of isotopes during

the vapor deposition of ice has been used to make tempera-

ture reconstructions from ice cores (see e.g., Langway Jr.,

2008). Reconstructions are possible because surveys in polar

regions have found empirical relations between the isotopic

content in surface snow and the mean surface temperature of

the region. With such a relation, the measured isotopic con-

tent from ancient ice in cores extracted from the same region

can be used to estimate trends in past surface temperatures

(e.g., Dansgaard et al., 1969). Fundamentally, however, the
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causal relation between surface temperature and surface iso-

topic content is complex (see e.g., Masson-Delmotte et al.,

2008; Sturm et al., 2010), as it depends on the isotopic con-

tent of the oceanic vapor source, the path of the prevailing

weather system, and the conditions along this path that pro-

duce fractionation to precipitating crystals. As these factors

likely change during climate changes, the goal of improving

temperature reconstructions from ice cores involves gaining

a better understanding of the relevant processes. Here the

aim is to better understand how isotopic fractionation during

vapor growth to precipitating ice crystals depends on temper-

ature and supersaturation.

The earliest fractionation theory, equilibrium fraction-

ation, depended only on temperature. In this theory,

the isotopologue sublimates from the crystal at a slower

(temperature-dependent) rate than ordinary water, enriching

the crystal in the heavy isotope. But in 1984, Jouzel and Mer-

livat, hereafter “JM”, showed that this theory disagrees with

the measured isotope content in surface-snow in Antarctica.

By recognizing that growth was, by definition, nonequilib-

rium, they replaced the equilibrium fractionation coefficient

with a supersaturation-dependent, nonequilibrium kinetic-

fractionation (KF) coefficient. Then, by selecting the right

cloud-supersaturation-temperature relation, their KF model

could fit the surface-snow data.

But the KF coefficient ignores surface processes that are

crucial to the growth of facetted crystals. And facetted crys-

tals are common. Precipitating crystals in polar regions

(e.g., Lawson et al., 2006), crystals in many cirrus and other

high clouds, as well as surface hoar often consist of mainly

facetted forms. Moreover, surface processes are crucial to

the “surface-kinetic” model of isotopic fractionation for cal-

cite growth from aqueous solution (DePaolo, 2011). If we

include surface processes for facetted ice growth from the

vapor, how much might the fractionation coefficient change?

And could this change affect temperature reconstructions?
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This paper develops the surface-kinetic theory of isotopic

fractionation for ice growth from the vapor. Due to the in-

fluence of surface processes, the fractionation coefficient 18α

for isotope 18O differs from the KF prediction by an amount

that may be as large as ±17 ‰. As described in Sect. 5, this

difference could change the inferred cloud supersaturation

by 20 % or more, which could have a significant effect on

temperature reconstructions. Thus, new experiments on 18α

and Dα (for deuterium) for facetted ice crystals are greatly

needed.

2 Background

2.1 Facetted growth implies regulation by surface

processes

The surface of growing atmospheric ice crystals often con-

sists of crystalline facets, sometimes wholly so, which in-

dicates a reduction of growth rate from surface processes

(Nelson and Baker, 1996). Briefly, the vapor density adja-

cent to a flat surface on a small particle cannot be uniform

(Frank, 1982), and the nonuniformity would produce nonuni-

form growth unless surface processes produce a compensat-

ing nonuniformity in the molecular rejection rate. Moreover,

without such surface processes, an initially spherical frozen

droplet would remain spherical as the crystal grew until being

perturbed by a sufficiently large temperature or vapor-density

non-uniformity, after which rounded protrusions would de-

velop (as occurs in melt-grown ice). What we instead ob-

serve is that initially spherical frozen droplets develop facets

and then grow into a great variety of facetted shapes. Thus,

the existence of facets, however small, indicates the control-

ling influence of surface processes. And if these processes

affect the incorporation of ordinary water into ice, they are

likely to also affect the incorporation of water isotopologues.

That is, surface processes should affect isotopic fractiona-

tion.

2.2 Crystal growth with vapor and surface impedances

The net vapor flux F (# m−2 s−1) of ordinary water

molecules to an ice surface is (e.g., Nelson and Baker, 1996)

F =
ν

4
β(σS,TS)(NS −NEQ) ≡

ν

4
β(σS,TS)NEQσS, (1)

where v is the mean vapor-molecule speed, NS is the vapor

number density at the surface (molecules m−3), NEQ is the

equilibrium vapor number density (a function of the surface

temperature TS), σ S is the surface supersaturation, and β(σ S,

TS) is the deposition coefficient function, a measure of the

probability that an incident molecule to the surface reaches

and attaches to a growth site on a surface step. In general,

β is nearly 0 at the lowest σ S because few steps are gener-

ated, but rises to nearly 1 (assuming an efficient attachment

process) as step generation increases at high σ S. The exact

dependence on σ S and TS will depend on whether the crys-

tal face is basal, prism, or some other orientation. Through

Sect. 3, we assume all faces are identical and thus described

by just one β-function. Then we consider more realistic crys-

tals with two face types. But as the surface conditions are

unknown, we must write σ S and TS in terms of the far-field

(environmental) conditions σ∞ and T .

The surface supersaturation lies below the far-field value

σ∞ ≡ (N∞ −NEQ)/NEQ, where N∞ is the far-field vapor

density, by an amount that depends on how the surface and

surroundings impede growth. Specifically,

σS =
σ∞

β(σS,TS)Z
, (2)

where Z, a dimensionless number, is the total impedance

to growth discussed below (Kuroda, 1984; Yokoyama and

Kuroda, 1990; Nelson and Baker, 1996). Here and else-

where, the same relations also hold for each isotopologue,

whether HDO (i.e., HD16O) or H18
2 O, except with different

values of the quantities F , v, NS, NEQ, β, N∞, and Z. These

quantities thus have superscript “i”, which stands for either

“D”, for HDO or “18”, for H18
2 O. We now turn to Z.

The total impedance equals the sum of ZV, the vapor dif-

fusion impedance, ZH, the thermal impedance, and ZS, the

surface impedance. The vapor diffusion impedance arises

from the vapor diffusing through air to the crystal surface

(growth is faster without air) and increases in proportion to

the crystal size times v/D (see Eq. A1, Appendix A). Larger

crystals are surrounded by larger vapor-depleted regions and

thus have greater impedance. As an example, at sea-level

pressure, a spherical crystal starting at 1-µm radius and end-

ing at 500 µm would have a ZV value increasing from 7.5 to

3700. At lower pressures, ZV decreases in proportion to the

pressure decrease. The thermal impedance arises from the

temperature rise of the crystal, the temperature at which the

latent heating balances thermal diffusion to the surrounding

air. Its magnitude decreases rapidly with decreasing temper-

ature (in proportion to NEQ) and is less than ZV below about

−5 ◦C (Nelson and Baker, 1996). So to simplify the expres-

sions, we drop ZH (though it can easily be added to ZV) and

assume TS = T .

The surface impedance equals the inverse of the deposition

coefficient:

ZS(σS,T ) ≡
1

β(σS,T )
(3)

(for brevity, we often drop the dependence on σ S and T ).

This impedance results from an increase in surface-mobile

molecules that desorb from the surface. The number of such

molecules per area of surface exceeds the equilibrium value

because the supersaturated vapor produces a greater-than-

equilibrium flux of molecules to the surface and some of

the excess molecules do not reach (and incorporate into) a

strong-binding site on a surface step. That is, a molecule

may fail to reach a step, or having reached a step, fail to
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bind to the step. For surface processes to control growth, the

fraction of the incident molecules that reach a step should

be significantly below unity, meaning that the average step

spacing likely far exceeds the distance such a water molecule

migrates before desorbing.

3 Basic theory of surface-kinetic fractionation

Under constant conditions, the ratio χ of the number of iso-

topologue molecules to H2O molecules in the crystal equals

the ratio of their respective net vapor fluxes to the surface.

From Eqs. (1) and (2), this ratio equals

iχ =
(iN∞ −i NEQ)

NEQσ∞id

1+z

1+ iz
, (4)

where z ≡ ZS/ZV and id ≡ D/iD, the ratio of the vapor dif-

fusion constants. (In general, χ will vary during growth as

conditions change.) But, by definition of the equilibrium

fractionation coefficient iαS (JM, Eq. 7), the corresponding

isotopic number ratio in the vapor differs from that in the

solid by the equilibrium fractionation ratio for ice:

iNEQ

NEQ
=

iχ

iαS
. (5)

(Formulas in Jouzel (1986) for iαS are ln18αS =
11.839/T −28.224×10−3 and lnDαS = 16 288/T 2 −9.34×
10−2, which are from the original experiments of Majoube

(1970) and Merlivat and Nief, 1967). We define the nonequi-

librium fractionation coefficient iα like that in Eq. (5) except

with the far-field, non-equilibrium, vapor density:

iN∞
N∞

=
iχ

iα
. (6)

Using Eqs. (4), (5), and (6) to eliminate iNEQ, iN∞, and
iχ , one gets

iα =
1+σ∞

1
iαS

+σ∞id 1+iz
1+z

, (7)

which is our fundamental result. Hereafter, to reduce the

amount of notation, the superscript “i” will be removed un-

less needed (e.g., to distinguish z from iz and β from iβ) or

if a result pertains only to one isotopologue.

Three limits of Eq. (7) stand out: the equilibrium limit,

the KF limit, and the surface-kinetic limit. (Regimes 1–3 in

DePaolo’s (2011) terminology.) In the first, α → αS when

σ∞ → 0. In the KF limit, the surface impedances vanish

(z,i z → 0) giving

αKF =
1+σ∞

1
αS

+σ∞d
, (8)

which shows that KF fractionation occurs whenever d 6=
1/αS. Equation (8) agrees with JM’s result, though they

wrote the equivalent expression as αK · αS. (Fisher (1991)

does a more detailed analysis of the temperature difference

between crystal and air, but the result is nearly indistinguish-

able from the KF result.) Finally, in the surface-kinetic limit

(z,i z ≫ 1), writing x ≡ β/iβ and y ≡ v/iv

αSK =
1+σ∞

1
αS

+σ∞yx
, (9)

showing that surface fractionation occurs when x 6= 1/yαS

and the results should deviate from the KF case when x 6=
d/y. Values of these quantities are in Table 1.

Thus, fractionation depends on four factors: αS, d , y, and

x. Physically, αS arises from different isotopic rates of des-

orption of an equilibrium distribution of water species on the

ice surface. But under supersaturated conditions, vapor flows

to the ice surface, producing additional fractionation due to

different isotopic rates of vapor diffusion (d), molecular im-

pingement to the surface (y), and desorption from the surface

(x). The isotopic desorption rates change because the surface

has a greater-than-equilibrium concentration of mobile water

species; the species with a lower deposition coefficient will

have a greater increase in mobile molecules on the surface,

and thus a corresponding increase in desorption rate. Finally,

of these factors, the first three are nearly unity (Table 1) and

independent of supersaturation. However, x may vary with

supersaturation and temperature, but is presently unknown.

Here, we assume a range of 0.8 ≤ x ≤ 1.2 as described in

Appendix B.

For surface-kinetic fractionation to be significant, the sur-

face impedance must roughly equal or exceed the vapor

impedance. To determine the surface impedance, we must

estimate β, which depends on σ S and T . We can approxi-

mate various functional forms using two parameters σ 1 and

n as

β(σS,T )= (
σS

σ1(T )
)n(T ), (10)

where n > 0 and σ 1 is a characteristic supersaturation that

depends on temperature and surface properties of the crystal

facet. (We do not use an analogous equation for iβ because

Eq. (10) reflects the generation of growth steps, which is con-

trolled by ordinary water, the dominant molecular species.

For iβ, we assume a fixed x as discussed in Appendix B.)

Equation (10) is a simplification of that introduced in Nelson

and Baker (1996), but shows the same basic features; n = 1

describes growth via a single screw-dislocation when the air-

pressure is low, and large n describes growth by layer nu-

cleation. For example, in a study of critical supersaturations

for layer-nucleation growth, σ 1 varied between 0.0015 and

0.025 for the basal face as the temperature decreased between

−1 and −16 ◦C (Nelson and Knight, 1998). The value may

be higher at lower temperatures. (Nelson and Baker (1996)

included a second factor in Eq. (10), but its omission has neg-

ligible effect in atmospherically relevant calculations.) For a
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Table 1. Fractionation factors in Eqs. (8) and (9).

α−1
S

(0 ◦C) α−1
S

(−20 ◦C) y∗ d∗∗ (yαS)−1 (−20 ◦C) d/y

H18
2

O 0.985 0.982 1.054 1.029 0.932 0.976

HDO 0.883 0.852 1.028 1.025 0.829 0.997

∗ Calculated using v ∝ 1/
√

mass.

∗∗ From Merlivat (1978). Newer values are 1.032 and 1.016 (Cappa et al., 2003).

specific set of conditions, the values of β and σ S are deter-

mined by combining Eq. (10) with Eqs. (2) and (3). When

n equals 1 or 2, one can solve for β analytically and deduce

σ S, but cases with larger n (e.g., layer-nucleated steps) re-

quires a numerical method. Numerical results are described

in Appendix C and used in the calculation of z for Fig. 1. We

now show the results.

Of the two variable factors that affect α, the surface

impedance ratio z can vary the most. As shown in Fig. 1,

z decreases with increasing crystal size (because ZV in-

creases), and by comparing curves, note that z also decreases

when σ∞ increases (with σ 1 fixed). Conversely, z increases

with an increase in either σ 1 or n (because ZS increases). z

also increases with elevation due to the air-pressure depen-

dence of the diffusion constant.

Large z values produce α values that deviate from the

KF prediction. For example, at relatively high surface

impedance, as in the upper “beaded” curve in Fig. 2 (z > 3

over the entire supersaturation range), the fractionation lies

above the KF value because x = 0.95, which is less than

d = 1.03. But, as x is not below 1/αS, the fractionation

does not exceed the equilibrium value, instead lying roughly

halfway between the KF and equilibrium values. In general,

when x < 1, the deposition coefficient of the isotopologue

exceeds that of regular water, making the ice richer in isotope

by an amount that depends on z. Similarly, when x > d, the

surface fractionation acts in the same direction as KF, driving

the degree of fractionation even lower. For example, when x

is instead 1.05, the fractionation lies distinctly below the KF

curve (Fig. 2, lower beaded curve). In this case, the fraction-

ation from y acts together with that from x, increasing the

effect.

If x deviates further from unity, z need not be large for

surface fractionation to have a large effect. For example,

with middling values of z, the fractionation exceeds αS when

x = 0.8 (Fig. 2, top curve). And when x = 1.2, the sur-

face fractionation may lie below the KF value by an amount

nearly double the amount KF lies below the equilibrium

value (Fig. 2, bottom curve). In contrast, at low surface

impedance, the fractionation remains close to the KF value

even when the x value deviates 20 % from unity.

Fig. 1. Relative influence of the surface impedance for a range of

vapor impedances (from Eqs. C1, C2). Each curve represents a

crystal with the labeled surface parameters. Crystals in the grey

zone (z ≥ 1) likely have fractionation values significantly affected

by surface processes, whereas those in the white zone (z ≤ 0.1) will

likely not be affected. The case for the hatched region depends on

the ratio x. Crystal diameter values on the top scale assume the

equation for ZV of a sphere at 1000 mbar (see Appendix A).

4 Surface-kinetic fractionation to realistic crystals

4.1 Cylindrical crystals

We now make the model more realistic by considering crys-

tals shaped as tabular or columnar cylinders. In addition to

introducing the variable height/width ratio (aspect ratio), the

cylinder case has two distinct faces, with the top/bottom, or

“basal” face having fractionation value αB, and the side or

“prism” face having value αP.

The formulas for αB and αP follow from Eq. (7) with the

appropriate substitution; for example, for αB, we substitute

zB for z and izB for iz. Concerning zB and zP, the surface

Atmos. Chem. Phys., 11, 11351–11360, 2011 www.atmos-chem-phys.net/11/11351/2011/
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Fig. 2. Calculated H18
2

O fractionation coefficients 18α for com-

pletely facetted ice growing from the vapor at −20 ◦C, a fixed crys-

tal size, and a range of supersaturations σ∞. Dotted and dashed

lines show equilibrium and KF fractionation values. Deviations

from the KF prediction depend on x = β/iβ, which is assumed con-

stant, and z = ZS/ZV, which decreases with increasing σ∞. Light,

beaded curves have the highest z values considered here, exceed-

ing 3.1 at all σ∞ (ZV = 100, σ 1 = 0.5, n = 10). The two “low

z” curves have z values below 0.1 when σ∞ ≥ 0.05 (ZV = 1000,

σ 1 = 0.2, n = 1). The uppermost and lowermost curves have mid-

dling z values, exceeding 1 when σ∞ ≤ 0.2 (ZV = 1000, σ 1 = 0.4,

n = 5).

impedances equal the reciprocals of βB and βP, just as in

the sphere case, but the vapor impedances are more complex,

depending not only on crystal size, but also on shape and rate

of shape change as discussed in Appendix A.

To determine values for αB,P, one must know the depo-

sition coefficients, which means determining σ S. But with

a nonspherical crystal such as the cylinder, σ S varies along

the surface, so which σ S value determines β? The appro-

priate σ S value for β (in Eq. 10) is the point of highest σ S

because this point determines the growth rate (e.g., Wood et

al., 2001). This point is usually the edge of the facet (unless

some face has essentially stopped growing, Nelson, 2001).

Here, we assume this is the case for both the basal and prism

facets. As a result, the σ S value solves

σS =
σ∞

1+βB(σS,T )ZVB
=

σ∞
1+βP(σS,T )ZVP

, (11)

which is similar to Eq. (2).

To get the mass-averaged α, one multiplies each coeffi-

cient by the mass-uptake (flux times facet area) on the corre-

sponding facets:

α = αB
γ

γ +2Ŵ
+αP

2Ŵ

γ +2Ŵ
, (12)

where γ ≡ βB/βP is the growth-rate ratio (Nelson and Baker,

1996). For example, in steady-state, γ = Ŵ, and thus 2/3 of

the mass enters via the prism faces. But in general, a range of

fractionation values can occur, depending on the crystal as-

pect ratio, the growth-rate ratio, and the fractionation to each

face. The last factor depends on the ratios of the deposition

coefficient functions xB ≡ βB/iβB and xP ≡ βP/iβP.

The results show that the crystal shape affects fraction-

ation at high z, but mostly through the parameters xB and

xP. For example, when z > 2.5 (all solid curves in Fig. 3),

yet both facets have the same x ratio of 1.05, the fraction-

ation coefficient is only slightly less than the sphere result

– the sphere and cylinder results are nearly identical. This

is shown by curve 1 in which Ŵ = γ = 10. At larger Ŵ, the

fractionation coefficient decreases further, though the effect

remains relatively small. Larger influences on α can occur

when xB 6= xP. In particular, for steady-state growth (γ = Ŵ)

with Ŵ = 10, fractionation decreases when xP > xB (curve 2),

even though their average still equals 1.05 because in steady-

state, most mass enters through the prism face, which has an

xP value of 1.1.

However, growth is rarely steady. Instead, Ŵ deviates fur-

ther and further from unity during growth (Takahashi et al.,

1991), meaning γ ≥ Ŵ for columns and γ ≤ Ŵ for plates.

In the non-steady-state case of curve 3, most mass enters

through the basal face, which has xB = 1.1, bringing the

curve lower. Similarly, when most of the mass enters through

the prism face and xP = 1.1, as in the tabular-crystal case in

curve 4, then the fractionation coefficient is significantly be-

low that of the sphere. These cases (2–4) show deviations in

α below that of an equivalent sphere of x = 1.05 because the

face with most of the mass uptake had x > 1.05. If instead

they had x < 1.05, then the resulting α value would be above

that of a sphere.

These cylinder results emphasize what we found with

the sphere: when the surface impedance dominates, small

changes in x can introduce relatively large variations in frac-

tionation coefficient. For the cylinder, this applies to small

changes in x on the facets that dominate growth. As the crys-

tal shape itself has little influence on fractionation, this result

should apply to polycrystals and any other crystal bound by

facets.

4.2 Incompletely facetted crystals

Stellar and hollowed crystals are incompletely facetted,

meaning that some of the mass uptake comes from non-

facetted (NF) regions. For this case, we need an extra term

in Eq. (12):

α = αBMB +αPMP +αNFMNF, (13)

www.atmos-chem-phys.net/11/11351/2011/ Atmos. Chem. Phys., 11, 11351–11360, 2011
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Fig. 3. Fractionation coefficient 18α for fully facetted cylindrical

crystals at T = −20 ◦C. All cases had the same average x, the same

volume (giving ZV = 300 for the equivalent sphere) and growth pa-

rameters σ 1 = 0.5 and n = 10 on the fastest-growing face (same as

beaded curves in Fig. 2). Cases 1–3 are columnar crystals with Ŵ

= 10, whereas case 4 is a tabular crystal with Ŵ = 0.1. Crystals in

cases 1 & 2 grow under steady-state growth, whereas 3 & 4 grow

with increasing shape anisotropy. For cases 2–4, switching values

of xB and xP would yield curves above that shown for the sphere.

where Mj stands for the fraction of mass uptake that occurs

through face type “j” and αNF equals the fractionation coef-

ficient for non-facetted regions. The latter coefficient should

equal α in the limit β → 1, and thus nearly equal αKF.

For stellar or dendritic crystals, it is hard to accurately es-

timate MP and MNF without newer, more careful measure-

ments. I attempted such an estimate in Nelson (2005), us-

ing the measurements of Takahashi et al. (1991), and found

that MNF varied between 0.77 and 0.87 for crystals between

−13.3 and −16.8 ◦C. Thus, most of the mass uptake on such

crystals occurs on the non-facet regions.

A similar difficulty occurs with hollowed columns, except

the problem instead lies in estimating MB and MNF. How-

ever, if we assume that the hollowed regions are cylindrical

cones extending to the crystal center, and if the volume of the

hollows remain a fixed fraction K of the volume of the equiv-

alent non-hollowed crystal, then the resulting mass-uptake

fractions can be shown to equal

MB =
γ

γ +2Ŵ

1−3K

1−K
,

MP =
2Ŵ

γ +2Ŵ

1

1−K
,

MNF =
2K

γ +2Ŵ

γ −Ŵ

1−K
. (14)

When the hollow extends across the entire basal face, K has

its maximum value of 1/3. In this case, MB = 0 and the frac-

tion of mass uptake by the non-facet region MNF has its max-

imum value, a value that depends on γ /Ŵ . Using the mea-

surements for hollow columns at −5.3 ◦C from Takahashi et

al., 1991, γ /Ŵ = 5.4, giving MNF = 0.6. As the hollows did

not appear to extend across the basal faces, this value may be

an overestimate. Nevertheless, significant amounts of uptake

likely occur in the non-facet regions of hollow columns.

5 Discussion

5.1 Is surface-kinetic fractionation consistent with

Antarctic snow composition?

We typically measure the isotopic content by δ, the rela-

tive deviation of the fractional amount of isotope in ice from

the SMOW (standard mean ocean water) standard (i.e., δX

≡ (Xr −Xr-SMOW)/Xr-SMOW), where Xr is the ratio of iso-

topologue to ordinary water). Many measurements of δ18O

have been made at the snow surface in Antarctica over re-

gions spanning a wide range of average annual tempera-

ture. According to the recent review of Masson-Delmotte

et al. (2008), coastal regions, with a mean ground-surface

temperature Tg of about −10 ◦C, have a mean δ18O level of

about −15 ‰, whereas inland plateau regions, with a mean

temperature near −60 ◦C, have δ18O near −55 ‰. The best-

fit relation is

δ18O[‰] = 0.8Tg −8.11, (15)

with individual data points varying from the relation by about

±7 ‰. (Other regions have a different relation. See e.g.,

Johnsen et al., 1989.) We now ask if the new surface-kinetic

α is consistent with the above relation.

Here we follow the procedure in JM and show that α

can be made consistent with Eq. (15) by finding a reason-

able supersaturation-temperature curve. As in JM, assume a

Rayleigh process in which ice crystals grow solely by vapor

deposition. Specifically, as a parcel of air with vapor mixing

ratio mv and temperature T cools and precipitates, the iso-

topic content of the new precipitate changes as (see e.g., JM,

Salamantin et al., 2004)

dδ

dT
≈ (1+δ)(α−1)

d ln[mv]
dT

, (16)

where a much smaller term (∝ dα/dT ) has been dropped.

To determine a δ18O-T relation, one must integrate Eq. (16)

along the condensation path from an initial temperature

to a colder, final temperature, specifying the temperature-

dependence of the supersaturation and air pressure. As in

JM, we will assume the air parcel travels along a temperature

inversion, beginning at −10 ◦C, gaining elevation and cool-

ing as it moves inland such that P [mb] = 1095+19.14T +
0.1857T 2. At the inversion, the temperature relates to the
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ground temperature as T [◦C] = 0.67Tg −1.2. With this rela-

tion, one can convert the integrated δ18O-T curve to a δ18O-

Tg curve to compare with Eq. (15). By following this proce-

dure, and adjusting the supersaturation-temperature relation,

I fit the data in Eq. (15).

The general trend in the resulting supersaturation can be

readily estimated. For the above trajectory, the rightmost

factor in Eq. (16) ranges from approximately 0.07 ◦C−1 at

−10 ◦C to 0.12 ◦C−1 at −50 ◦C, being nearly independent

of supersaturation. Given that 1+ δ ≈ 1, this means that, to

give the slope of 0.8 ‰◦C−1 in Eq. (15), α−1 must decrease

from about 0.017 to about 0.010 over the same temperature

change. This decrease in α means that the supersaturation

should increase, but at a rate that depends on the slope of

α(σ∞).

For the three cases considered, the fitted supersaturation

curves lie below the liquid-water saturation value for all but

the lowest temperatures (Fig. 4). Such supersaturations rep-

resent averages over the growth of a crystal, and thus would

occur when the crystals are initially surrounded by many

droplets that later evaporate. Conversely, the supersatura-

tion may be steady, yet contain little-to-no liquid water. With

the KF kinetic-fractionation coefficient, the supersaturation

curve in the figure is roughly one-half of the liquid-water

value, which is consistent with the analysis in JM. But with

the surface-kinetic fractionation curve for x = 0.95, the α

value at a given σ∞ is larger (see Fig. 2), which means that

to have the same α value, the supersaturation value must be

larger. Thus the curve for this case is higher. For the same

reason, the supersaturation curve for x = 1.05 lies below that

of the KF case.

These surface-kinetic examples α(σ∞) represent idealiza-

tions; in general, the value of α will also vary depending on

the degree of faceting, the crystal size, and any explicit tem-

perature or supersaturation dependences of the surface pa-

rameters. Still, the examples help constrain the likely range

of x. For example, of the two cases, x = 1.05 appears more

consistent with observations than x = 0.95 for two reasons:

(i) the large value of z, which was assumed, is unlikely at

the high supersaturation needed in the x = 0.95 case (Fig. 1

shows z to decrease when σ∞ increases), and (ii) the cloud

supersaturation cannot exceed liquid-water saturation, as it

does for the x = 0.95 case (and below the homogeneous

freezing point at −40 ◦C, it must lie below liquid water sat-

uration). Moreover, at Dome Fuji, where the mean annual

temperature is about −55 ◦C, about 53 % of the precipita-

tion is from diamond dust (Fujita and Abe, 2006), which

likely grew at relatively low supersaturations. And the low

supersaturations are consistent with the x = 1.05 case. Fi-

nally, the average supersaturation slope of the x = 1.05 case

equals 0.0028 ◦C−1, which is close to the slopes of 0.0038

and 0.0020 ◦C−1 that Masson-Delmotte et al. (2008) used to

fit surface data. Therefore, surface-kinetic fractionation is

consistent with measured δ18O trends, and the analysis sug-

gests that x ≥ 1.

Fig. 4. Inferred supersaturation dependence to fit surface measure-

ments of δ18O (Eq. 15). The three lower curves, when used in the

integration of Eq. (16) with the α functions of Fig. 2 of the same la-

bel, result in δ18O values equal to those in Eq. (15). The top curve

is the supersaturation of a cloud of water droplets.

The surface-kinetic aspects of fractionation can add, or

subtract, to the sensitivity that δ-values in precipitation have

to supersaturation. To address how a variation in average

supersaturation could, through the change in α during frac-

tionation, produce scatter from the curve given by Eq. (15),

notice that the predicted change will equal the change in tem-

perature 1Tg times the change in slope (1dδ/dT ) caused by

the supersaturation change (neglecting other factors that may

change α). Using Eq. (16) and setting 1+δ to 1, this is

1δ[‰] ≈ 1000 ·0.671Tg1σ
dα

dσ

d ln[mv]
dT

, (17)

where the factor of 1000 arises from the conversion to ‰

units and the 0.67 from the conversion to ground tempera-

ture. The next factors 1Tg1σ represent the average varia-

tion in supersaturation for precipitation that fell to the ground

over a distance that spans a ground-temperature change 1Tg.

As the δ18O data comes from snow that fell over a season or

more, 1σ should be much less than liquid-water saturation

(the maximum variation possible), and moreover should be

smaller for larger 1Tg. Reasonable values are 1Tg = 10 ◦C

and 1σ = 0.1. The last two factors in Eq. (17) depend on

the α(σ∞) curve: for x = 0.95, the product is 0.0016; for

x = 1.05, the product is larger, at 0.0092; and for the KF

curve, the value lies between the two surface-kinetic cases,

at 0.0035. The resulting product gives variations in δ18O that

range from 1.1 to 6.2 ‰, which are less than the observed

variation (∼7 ‰). These observed variations in δ18O likely

arise from a range of sources, not only supersaturation varia-

tions, so the analysis shows that surface-kinetic fractionation

predicts scatter in ground-level δ18O that is consistent with

observations.

Finally, the two surface-kinetic examples here are based

on the assumption that z is large, which is unlikely to hold
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over wide temperature-supersaturation regimes. Thus, unless

the value of x is either larger than 1.05 or less than 0.95, the

effects of surface-kinetic fractionation will deviate from the

KF standard less than those analyzed here. So, within the

current uncertainties of ice-crystal growth and the value of

x, the predicted trends from surface-kinetic fractionation are

consistent with observations of Antarctic snow composition.

5.2 The need for new measurements

As the previous section showed, having a surface-kinetic α

value that differs from the presently used αKF means that

the inferred cloud supersaturations σ∞(T ) (e.g., curve “KF”

in Fig. 4) must be recalculated, but the empirical relation

(Eq. 15) remains unchanged. Thus, if the empirical relation

is used for a simple temperature reconstruction, then surface-

kinetic fractionation changes nothing. However, a more reli-

able approach to past climate reconstruction involves numer-

ous modeling considerations (see e.g., Sturm et al., 2010),

including estimating how the season, the climate, and the at-

mospheric circulation pattern would change the σ∞(T ) re-

lation. As the surface-kinetic theory requires a change to

the inferred supersaturations that may reach 20 % or more

(Fig. 4), such changes to the modeled σ∞(T ) relation would

affect climate reconstructions with surface-kinetic fractiona-

tion. Thus, implications of the new α values on past climate

reconstructions are potentially significant, but presently hard

to judge.

But existing measurements of α are inconclusive. Pre-

vious vapor-to-ice fractionation experiments are limited to

measurements of α on largely non-facetted crystals. Specif-

ically, Jouzel and Merlivat (1984) exposed a −20 ◦C surface

to water vapor at 20 ◦C, conditions that produce highly den-

dritic frost crystal forms. Later, Uemura et al. (2005) ana-

lyzed similarly dendritic frost forms. Thus, although those

experiments were appropriate for testing the KF model, they

cannot be used to understand surface-kinetic fractionation on

largely facetted crystals. Instead, to test this model, we need

new experiments on completely facetted crystals.

Moreover, because α depends on both T and σ∞, if we

measure the dependence for both HDO and H18
2 O, one could

then, in principle, use observed δ18O and δD values to infer

both the deposition temperature and supersaturation of an ice

sample.

6 Conclusions

Unlike the kinetic-fractionation (KF) theory, the surface-

kinetic theory includes potentially important surface pro-

cesses on facetted ice crystals. When the surface impedance

to growth is low, both the kinetic and surface-kinetic mod-

els give similar predictions, showing significant deviations

to equilibrium fractionation at moderate-to-high supersatu-

rations. In contrast, when the surface impedance is compa-

rable to the vapor impedance, the fractionation coefficient

depends sensitively on the ratio of the deposition coefficient

functions for the ordinary and isotopologue water molecules,

giving results that deviate sharply from kinetic fractionation

results. Such conditions should hold during the growth of

facetted crystals, and since facetted crystals are common in

the atmosphere, the new theory should apply to some cases

in which the KF theory has previously been used. However,

before the new theory can be applied to the atmosphere, we

need to either measure the effect directly or experimentally

determine the relevant deposition coefficient functions over

a range of temperatures and supersaturations.

Appendix A

The vapor impedances

The vapor impedance depends on the crystal shape. For a

spherical crystal

ZV ≡
rν

4D
, (A1)

where r is the radius of the crystal. For a cylindrical crystal

ZVB = rBhBE +rPhPE
βP

βB
(A2a)

and

ZVP = rBhBE
βB

βP
+rPhPE, (A2b)

where rB, rP, hBE, hPE are from Nelson, 2001, with the fol-

lowing slight changes. Here rB = ZV(2/3Ŵ)1/3/21/2 and rP =
ZV(2/3Ŵ)1/3Ŵ1/2 are normalized sizes of the top-bottom

(basal) and side (prism) faces, with Ŵ the column length di-

vided by its diameter. Physically, rB is the radius of a sphere

having the same area as the basal faces of the cylinder, scaled

by the distance 4D/v. For easier comparison to the spherical

case, it is written in terms of ZV for a sphere of the same

volume. Similarly, rP is the scaled radius of the sphere with

the same area as the prism faces of the cylinder. The two h

functions fit

hBE(Ŵ) (A3a)

=
√

2×10−0.1315Tanh[0.8060{Log(Ŵ)+0.1854}−0.0639Log2(Ŵ)]−0.3314

and

hPE(Ŵ) (A3b)

= 0.6902 ·Ŵ−0.5+1/[1.932+0.4976Log(Ŵ)+0.1058Log2(Ŵ)].

(In Nelson, 2001, the h values are half the above, but the

product rh is unchanged). Wood et al. (2001) showed that

the above basis functions h are very nearly the same as the

corresponding basis functions for a hexagonal column of the

same aspect ratio.
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Appendix B

Estimated range of x

Due to the complexity and unknown nature of the ice surface,

one can make only crude estimates of the possible range of

the deposition-coefficient ratio x. Now, each deposition co-

efficient β is a product of two factors: the probability that

a water molecule (or water isotopologue) reaches a growth

step after landing on the surface and the probability of in-

corporating into the crystal after reaching the step. Thus, as

x is a ratio of the βs, we can consider x as the product of

two ratio factors: one, the ratio of probabilities of reaching a

growth step and two, the ratio of incorporation probabilities.

Assuming, as is expected, that the deposition coefficients

are much less than unity, we can equate the first factor to the

ratio of surface migration distances (see e.g., Yokoyama and

Kuroda, 1990). The surface migration distance equals the

square root of the surface diffusion constant times the mean

surface residence time (Burton et al., 1951). This diffusion

constant should be inversely related to the molecular mass, as

it is for gas-phase diffusion (e.g., Cappa et al., 2003). Indeed,

Livingston et al. (1997) found that the square root of the ratio

of bulk diffusion constants of HDO and H18
2 O into ordinary

ice at 163 K equaled 1.3. Thus, if this surface-diffusion ratio

dominated x, then we would expect x > 1. However, surface

diffusion differs from bulk diffusion and the mean residence

time could instead make x < 1 if the heavier molecule had

the greater residence time.

In addition, this first factor could be highly temperature

dependent. For example, measurements of the migration dis-

tance of ordinary water on the basal face of ice (Mason et

al., 1963) indicated that it varied rapidly with temperature,

decreasing by a factor of five when temperature decreased

from −2 to −6 ◦C, and then increasing again by the same

factor from −6 to −12 ◦C. If the corresponding curve for the

isotopologue on regular ice is similar in shape, but shifted to

higher temperature in accordance to the higher melting tem-

perature of isotopic ice, then this factor could be as small as

0.2 or as large as 5.0. Such large deviations from unity, how-

ever, may be unlikely, and may apply only to the basal face

– we have yet no corresponding measurements for the prism

face of ice.

In contrast, given that the isotopologue differs from reg-

ular water, and that foreign molecules do not readily incor-

porate into bulk ice, we expect the second factor to produce

x > 1, though the effect may be very small. Thus, the first

factor probably dominates the behavior of x, and it may be ei-

ther less than or greater than unity, but probably not by much.

Here, we consider only the possible range 0.8 ≤ x ≤ 1.2.

Appendix C

Analytic fit for surface impedance

According to Eqs. (3) and (10), ZS depends directly on σ S,

a quantity we can know only indirectly. To estimate σ S,

and thus ZS, we can apply root-finding methods to Eq. (2).

The result will depend on the other variables in the equa-

tion, namely the directly measurable quantities σ∞, T , and

r , as well as surface parameters n and σ 1. By using such a

method, I found an approximate formula for ZS/ZV in terms

of these other variables. Specifically, if we use the derived

parameter

8 ≡ (
σ∞
σ1

)Z
1
n

V , (C1)

then the resulting fitted function is

ZS

ZV

≡ z(8,n) = 1.5n
8−n/(n+1)+1/4

Log(1+1.5n8n2/(n+1)+1/4)
. (C2)

Equations (C1) and (C2) estimate 1+z within 5 % of the

exact value for the range of atmospherically possible values

of n and 8, (i.e., 1 ≤ n ≤ 50, 10−1 ≤ 8 ≤ 105), but it ap-

plies only to crystal shapes approximated by a sphere (i.e.,

equiaxial, facetted crystals). The equations show that when

σ 1 > σ∞ and n is large, z → (σ∞/σ 1)
−nZ−1

V , which be-

comes large. In contrast, z decreases as σ∞ increases. Fig-

ure 1 shows both of these trends. Moreover, as ZV increases

during growth, z will decrease. Finally, using Eq. (10), one

can show that the reduction in supersaturation σ S/σ∞ de-

pends only on n and 8.
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