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An approximation is proposed for the magnetic-impurity effect on superconductivity,
where the many-body effect of impurities, i.e., the Kondo effect, is fully taken into account.
It is an interpolation between the behavior in two limiting cases; i.e., the pair-breaking
effect due to magnetic scattering of electrons in the high-temperature and energy region,
and the effective repulsive interaction between the Cooper-pair electrons mediated by virtual
polarization of impurities in the low-temperature and energy region. Using this approxima-
tion, the superconducting transition temperature and the upper critical field are calculated
in the presense of impurities. Contrary to the Miiller-Hartmann-Zittartz theory, a finite
critical concentration is obtained for any value of the Kondo temperature, though it increases
rapidly when the Kondo temperature increases.

§ 1. Introduction

As is well known, magnetic impurities have a number of striking effects on
superconductivity. Abrikosov and Gor'kov® (AG) investigated the problem in the
Born approximation where dynamical effects of impurities are neglected. After
the discovery of the Kondo effect,” much attention was paid again to this problem,
and much theoretical®™" as well as experimental®™" work was performed to
clarify how the Kondo effect modifies the magnetic-impurity effect in supercon-
ductors.

Among them, Miiller-Hartmann and Zittartz (MZ)® studied the problem ap-
plying the Suhl-Nagaoka approximation to it. They found the temperature depend-
ence of the pair-breaking parameter « results in some interesting features of the
transition temperature 7, as a function of the impurity concentration #. What
they found is the following:

1) When Tx< Ty, there appear two transition temperatures 7 and 7%, above
Tk for some region of n: i.e., with decreasing temperature a system first becomes
superconducting at 7, and then becomes normal again at T\,

2) The Ten curve always has an infinite tail, and there appears no critical
concentration 7, where 7T, vanishes.

Here T'x and T, denote respectively the Kondo temperature and the transition
temperature of a superconductor with no magnetic impurities. As far as correlation
between impurities can be neglected, the first prediction seems unquestionable,

* A preliminary report of this work was given in Ref. 1).
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714 T. Matsuura, S. Ichinose and Y. Nagaoka

since it is derived from the 7-dependence of « at T>T'x where the Suhl-Nagaoka
approximation gives qualitatively correct results. It was also verified experimen-
tally.’ ™ If we believe the impurity effects are completely included in the pair-
breaking parameter, the second prediction also seems plausible, since impurities
become nonmagnetic at 7'—0 and « should vanish there. IHowever, experiments
showed there always appears a finite critical concentration.”™ To solve this
contradiction, we have to reexamine the MZ theory by the study of the impurity
state at T< Tk in normal metals, where the Suhl-Nagaoka approximation is com-
pletely wrong.™®

Concerning the impurity state at T'=0, the Yosida theory showed it is a
singlet bound state.®® The property of impurities at low but finite temperatures,
T Ty, was clarified by recent works of Wilson,” Nozieres,”” Yamada and Yosida®

> They found the property of impurities is normal, which is a quite

and others.”
different result from that of the Suhl-Nagaoka approximation. For instance, the
magnetic susceptibility is finite at 7'=0 and the specific heat is proportional to
temperature at T« T x

Due to this recent development in theories, we can now clearly draw a physical
picture of the so-called magnetic impurities in normal metals. What is essential
in the Kondo effect is that impurities behave differently depending on temperature
and energy €: i.e.,

1) when T (and/or &) »Tk impurities behave as magnetic impurities with an
effective interaction with conduction electrons which depends on T and &;

2) when T'(and &)< Tx, they behave as nonmagnetic ones with susceptibility
ximpwl/TK‘

When temperature and energy change, the property of impurities gradually changes
from one to the other.

‘When such impurities are put in superconductors, their effects on supercon-
ductivity are also expected to be different for T'(¢) > Tk and for T'(e) Tk When
T(¢) T, they are mainly the pair-breaking effect due to magnetic scattering of
electrons. In this region the Kondo effect can be taken into account as the tem-
perature and energy dependence of the pair-breaking parameter. On the other
hand, when T'(¢) €Ty, the pair-breaking effect almost vanishes and instead there
appears an effective repulsive interaction between Cooper-pair electrons with energy
le|<Tx** This repulsion results from the virtual polarization of impurities at

# There remain some other possibilities, Some authors®:® insist that, if the energy depend-
ence of a is taken into account, a finite critical concentration can be obtained. As will be discussed
in § 6, their argument is incorrect, since the energy dependence they assumed is inconsistent with
the property of impurities in normal metals. Another possibility is the effect of correlation between
impurities,'” which cannot be denied in actual experimental situations.

#6) The importance of this repulsive interaction in the problem of superconductivity was
pointed out by Sakurai!” It was also considered by Sélyom and Zawadowski? and by Sundaram®
by perturbation of the s-d model in the high-temperature region. Kim?® discussed a similar
effect in the case of interacting impurities.
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Theory of Kondo Effect in Superconductors. 1 715

the singlet bound state, and is essentially the same effect as the paramagnon

' If the effective exchange interaction

effect in transition-metal superconductors.*
between impurity and electrons is given by J, the strength of this repulsion is

estimated as
jzximpwl/Tsz (1 ) 1)

per impurity, where we put J~1/p which is the interaction strength in the uni-
tarity limit, p being the density of states of conduction electrons per atom per
spin.
From these considerations, we expect the following behavior of 17

1) To<Tx<wp: Due to the strong pair-breaking effect, electrons with energy
T'x<le|<wp cannot participate in superconductivity, and so the cutoff energy o,
is replaced by Tk For electrons with energy |e|< T, the superconducting inter-
action |g| is reduced by the repulsion (1-1) as

lg| —n/NTxp", (1-2)
where N is the number of atoms. Thus 7', is given by
TorTexp[ =1/ (lg|No—n/T«p)] (1-3)
and 7, by
ne~Tx0- |g| Np . (1-4)

2) Tx&T,y: When T,>Ty the main effect is the pair-breaking one and the
MZ theory is essentially correct, since the e-dependence of « plays only a secondary
role here. Then T, reduces to the order Tk at the concentration n==n, (Z=T,0).
In this region of #, the interaction between electrons with energy |e|<Tg is
repulsive, as can be seen from Eq. (1-2). Therefore the ecritical concentration
is essentially given by n,.

Such behavior is qualitatively in good agreement with experiments. If we
want to carry out more quantitative calculations, we immediately encounter some
difficulties. As discussed above, theories can give analytic expressions for the
behavior of impurities only in limiting cases, T">7x and TLTyx. In the inter-
mediate region T'~7', we have no such theories except numerical calculations.?
Separation of the impurity effect into the pair-breaking and the effective repulsion
has no clear meaning in this region. Therefore it seems inevitable to choose
some kind of interpolation. Fortunately no sharp transition between two limiting
behaviors is expected in the intermediate region, and so we can believe such
interpolation gives semi-quantitatively correct results. In this paper we shall carry
out such calculations based on an interpolation expression which is constructed so
as to coincide with theoretical expressions in limiting cases. Recently Sakurai’®
performed a similar investigation in the region TETyx Some of his results are
essentially the same with ours given in the previous note® and in this paper.

So far we have discussed the impurity effect on the transition temperature,
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716 T. Matsuura, S. Ichinose and Y. Nagaoka

If the effect of an applied magnetic field on impurities is neglected, a similar
calculation is possible for the upper critical field I, It is also given in this
paper. As far as T, and I, are concerned, we have only to study the self-
consistent equation of the order parameter 4 in its lowest order. To calculate
the specific heat jump 4C, we have to study higher-order terms, which requires
a much more complicated analysis. If we further want to study the properties
of the superconducting states, we have to calculate Green’s functions with finite 4.
Such problems will be discussed in forthcoming papers. Throughout this paper
we consider the so-called s-d limit and neglect the correlation between impurities.

In §2, we give a general formulation of the self-consistent equation for 4,
taking account of dynamical properties of impurities. In §3 we discuss the self-
energy and the vertex of the effective interaction due to impurities, and construct
an interpolation expressions for them. Using them, we calculate the transition
temperature in § 4 and the upper critical field in §5. In §6 we give summary

and comments on some other works.

§ 2. Formulation

We first study the self-consistent equation for the order parameter 4, taking
account of the dynamical behavior of impurities. Following AG, we take the aver-
age of 4 over the random distribution of impurities, independently of the Green’s

functions. Then the self-consistent equation is given to the first order of 4 by

1-1g10(T) 4, 1)
0@y = ["a (@ 0 080 DT LN F LN @)

where ¢, and J, are respectively the Heisenberg representation of the creation
and annihilation operators of conduction electrons with spin 0 with respect to
imaginary time v and ¢/, and {(:--> denotes both the statistical average and the
average over the impurity distribution.

To calculate Eq. (2-2), we take the Fourier transform of the two-particle
Green’s function with respect to 7—# and t—t’. Then, introducing the vertex
correction 7(w) and the renormalized one-particle Green’s function G (w), we can

rewrite Eq. (2-2) as

Q(T>:Tzw]%}T(w>Glc<{0)G~k<_w)a (2-3)

1
Gplo)=— — "~ < 24
in—E&p—2 ()’
where w=2n+1)7T, &, is the one-electron energy of conduction electrons and
S (w) is the self-energy correction due to impurities. Here we took 7{(w) and X (w)
independent of k, assuming the size of impurities is sufficiently small. Equation
(2-3) is illustrated in Fig. 1. Tf we further assume the electron-hole symmetry,
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Theory of Kondo Effect in Superconductors. I 717

K,w

-K,-w

Fig.1. Diagram corresponding to the two-particle Green’s function in Eq. (2-3).

then 7(0w) and X(w) satisfy the relations

7(@) =7(—w), (2-5)
2(w)=—2Y(—w). (2-6)
In this case Eq. (2-3) becomes
— 2NT HC 9.7
RO =N Lo+ 12w o

When the impurity concentration z is sufficiently low, X () is proportional
to it. Under the same condition, y(w) is given by solving the following equation:

r(@)=1+T 252 Iy (0,0) Gh (0) G (—0") 7 ()

—14aNp T Y Iy, 07y, @D @-8)
@ o] +12 (")
which is illustrated in Fig. 2. Here ['y(w,®»"), defined graphically in Fig. 3,
is the irreducible vertex of the effective interaction between electrons due to impuri-
ties. It is also proportional to #. Thus, if 2(w) and I'y (w0, ®") are given, Q(T)
can be calculated by solving Eq. (2-8) for y(®) and substituting it in Eq. (2-7).

K'w Kw, t Ko, t
Ko
Fig. 2. Diagram corresponding to the vertex function in T l
Eq. (2-8).
Kw v K- v

Fig. 3. Diagram of the effective interaction
between electrons due to impurities.

§ 3. Approximation for selfenergy and vertex

In this section we examine the behavior of 3'(») and I'y(w,®’) for various
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718 T. Matsuura, S. Ichinose and Y. Nagaoka

limiting cases, and propose approximate expressions for them which are expected
to be valid in the wide range of @ and T in the s-d limit of impurities.
1) Nonmagnetic limit of the Anderson model™ ™

The Green’s function of d-electrons is given by

Gewy=_ 1

io+il sgn o’

(-1

where
I'=zV*iNp (3-2)

and V is the matrix element of the s-d mixing. In Eq. (3-1) we have assumed
the electron-hole symmetry as before.
Using G,;(w), the selfenergy is given by
2(w) =nViNG,(0). (3-3)

Taking account of the repulsive interaction U between d-electrons in the lowest
approximation, I (w, »’) is given by

Thu(o, o) :nV‘*N[%ldenzm,m,— G, <a>>12U|Gd<w'>|2]. (3-4)

If the ladder approximation is taken for the d-electron interaction, U in Eq. (3-4)
is replaced by the effective interaction [/, Then Egs. (3-3) and (3-4) give the
result of Ratto-Blandin®® and Kaiser.””

2) Born approximation in the s-d limit (AG theory)

To the second order of the s-d exchange interaction J, the selfenergy is given

by
S (0) = ~ini—)gJ2p sgn o, (3-5)

where the magnitude of the impurity spin is assumed 1/2. To get the expression
for I'ty(w, »"), it should be noticed that in our definition of I'y (w, ®’) the spin-flip

scattering is included in the exchange part w=—w’. We get
3nJ*? {1 2 }
Iiyo,0)=—"""2A 0, 0+ =00, o - 3-6
w( ) 16NT |3 , 3 ( )

Substituting Egs. (3-5) and (3-6) in Eqgs. (2-7) and (2-8), and noting the relation
(2-5), we get the result of the AG theory.
3) Kondo effect in the most divergent approximation

In the most divergent approximation, the Kondo effect can be taken into
account by replacing J in Eqs. (3:5) and (3:6) by the spinflip part of thes
f-matrix. It is given by
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Theory of Kondo Effect in Superconductors. I 719

r(w) = ——:;—<1n I—T@D_l, 3-7)

which is valid only when || >»T% For T>T% Eqs. (3-5)~(3-7) are sufficient
for calculating Q(7"), at least qualitatively. In order to study the behavior at
T'<Tk, they should be supplemented by the expressions of X () and I'y(w,»")
for |w|<Tk, which were given by Yamada and Yosida.?”

4)  Yamada-Yosida theory of the Anderson model

According to them, G,(w) is given by

1

G w) = )
+(0) to-+i sgnw—2,(w)

(3-8)
where 3;(w) is the selfenergy of d-electrons, and is given for |w|< 7Tk by

5a(0) = —io <4_771;K— 1> —ér<é)2[<io))2+ @T)]. (3.9)

Substitution of Eq. (3:9) in Eq. (3-8) gives
Co(w)=—L ___semo 3-10
(@) =—7 1+ (zlo| /4T (3-10)

where the second term of Eq. (3:9) was neglected. Using the vertex of the
d-electron interaction I'y(w, w”), I'y,(w, ®’) is expressed as

(0,07 =nV'N [%ch (@)D — [Ga ()4 (0, 0)Ga (0N (3-11)

For T'=0 and w=w"=0, I'; is given by

2 2
i
I';00,0) = . (3-12)
! 4T
On the basis of these expressions for limiting cases, we now propose an
approximation for X and [ by interpolation. We expect I'; not to depend on
o and 0’ so strongly, as far as T Tx and |w|~|0’|€T% Then, if we approximate
it by a constant given by Eq. (3-12), the second term of Eq. (3-11) becomes

v ) )
e R LR R : 3-13
N AT o’ 4T 4T ¢ ( )

At the first glance, this seems to be a reasonable approximation for the whole
region of @ and w’, since the factor |G,(w)|? reduces contributions from the region
lo], |©"|>Tx where the above approximation for I, is incorrect. However, an
important contribution drops off in this approximation, as will be shown shortly.

Since Eq. (3-11) is a general expression for I'y, it should reduce to Eq. (3-6)
for |wl, {0'|>Tk in the s-d limit U»I". Comparing Eq. (3-11) with Eq. (3-6),
we find /"y(w, »") should have singularities at |0 +w'|<<Tx when |o], 0| >T
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720 T. Matsuura, S. Ichinose and Y. Nagaoka

When Eq. (3-11) is substituted in Eq. (2:8), contributions from this singular
part can readily by taken into account in the following way. When Eq. (3-11)
is substituted in Eq. (2-8), we expect the factor other than I'y(w,®’) in the
summand of the second term to be a slowly varying function of w’ compared with
I'y(o,0") for |w|>>T% Then this term can be approximated as

#Npr (o) (o, o)+ mNeT (—0)

TNOT ) o0,
lo|+ |2 (w)] 1e-o7Tsrx oS (—o)| resiers (o, o)

In other words, singular contributions of I’y (w, »’) can be included in the elastic
part by putting

I'ylo,0)={ > I'y@, 0)}00e+{ 2 I'(o,0)}0.-. (3-14)
lo-0’| STk o+’ <Tr

for |w|>Tx and |0’ | >T% Thus we get an approximate expression for /'y (w, ®”)
as

Fu(o,0) =2 SR = lof @) ], 319
where
ey — (1L Elol 7 ,
flop = (14520 (3:16)
and I'(0) is given for |w|<< Tk by
I'i(0) =VIN*Gy(w)|'= 1 S (0), (3-17)
(mp)
and for || »Tx by
ol —i l n I_(D__ - .
RIOESSa <1 TK> . (3-18)

Here the exchange term proportional to §, ., was included in the term proportional
to 0, ., noting the relations (2-5) and (2-6), and the Kondo effect was taken
into account in the most divergent approximation.

In calculating Q(7T"), we need®

na(w) =2 (w) | —nrnpl (w) (3:19)
instead of |X(w)| and I';(w) separately. It is given for |w|<Tx by
a(w) =ViN|Gi(0) ]| —nrpV NG (0) |?

~ o] :
=i (3-20)

* (w) should not be considered as a pair-breaking parameter in the usual sense, for it
contains the mass renormalization effect. For |w|€ Tk, the part of & proportional to |o| gives the
mass renormalization, while the lifetime effect arises from the second term of Eq. (3-9) and is
proportional to |o]®.
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Theory of Kondo Effect in Superconductors. I 721

and for || >Tx by

37r< Ia)l>‘2
a(p)=={ln—] . (3-21)
) 8p Tk

In the intermediate region, we should take interpolation of these expressions.
Though interpolation is rather arbitrary, we choose the following expression for

convenience:®

i) £ e

1 G/ zlol. ;.
210 (In(njw|/4T) ¥+ B/Hr*” 4Tx

It is shown in Fig. 4. «(w) takes the maximum value 1/27p at 7|w|/4Tx=1.
The expression for the high frequency region is similar to the expression of the

a(w) = (3-22)

pair-breaking parameter in the MZ theory. There remains some ambiguity in the
form of « in the region w~T% However, the refinement of Eq. (3-22) in this
region seems meaningless, since separation of the impurity effect into two parts,
the pair-breaking and the effective repulsion, loses a clear meaning there.

2mpa(w)

Tiwl

4Tk
Fig.4. The frequency dependence of the parameter a(w) given in Eq. (3-22).
§4. Transition temperature
From Eq. (2-1), the transition temperature 7, is determined by
lg1Q(T,) =1, (4-1)

where Q(7) is calculated by using Eqgs. (2-7), (2-8), (3-15) and (3-19). We
obtain

* The coefficient of the quadratic term in |w| does not coincide with the exact one arising
from the second term of Eq. (3-9). It was determined so that @(») becomes a smooth, continuous
function at |0]|=4T%/x.
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722 T. Matsuura, S. Ichinose and Y. Nagaoka

= N T [0, (T, m)F )
Q) Np{@"(T”) ATxp 1+ (/4T xp) 0o(T, 72)}’ (-2

where

0.(T, n) =27 5 5% . (4.3)®

From Eqs. (4-1) and (4-2) we get the equation to determine 7, as

Oo(T,, n) —— [0.(T.,mT _ 1 .
o ey T4 /4T w0) 0, T ) " 01N (-4

or, using Ty, as

T, n [0 (T, n)T
ln< >:_‘q) T, n) + _ (L, , 4.5
T, ( ) AT o 1+ (n/4T¢0) 0,(T',, n) (4-5)

where

1 1
O(T,n)=27T { - }
) =2 w\;o o+na(ew) o
When T, »Tg, O, and @, can be neglected. Then Eq. (4-5) reduces to

T
In(—””):—@ T.. 7). 4.7
T (T, n) “4-7)

C

(4-6)

This is a well-known formula for the case where the pair-breaking parameter «
depends on w. If we replace a(w) by a(T,), we obtain the result of the MZ
theory. On the other hand, if Tx=w,, we can put

Oy(LTeyn) =0, (T, n) =0, (T, n). (4-8)

In this case Eq. (4-4) reduces to
7 MESSE N (4-9)

>0 o [G|Np
where
~ 7

=lg| — . 4-10
17l =191 ANT g (4-10)

Here we have used the relation #<€ T k0, which will be shown later. Equation
(4-9) is the BCS formula to determine 7T, when the effective interaction is given
by [7].

Differentiating both sides of Eq. (4:5) with respect to #, we get the initial
decrease of T, as*¥

% Strictly speaking, the » sum in the definition of @: is different from that of @ and @,
In the latter case it is restricted by |o]<lwp while it is not in the former. This difference, however,
becomes appreciable only when Tx>wp.

** Details of these calculations is given in the Appendix.
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Theory of Kondo Effect in Superconductors. 1 723

I pair-breaking effect

2 repulsive interaction
3 both effects

102
'/ Too 10

Fig.5. The initial decrease of the transition temperature as a function of Tx/7Te. Numbers
attached to each curve denote 1) the contribution from the pair-breaking effect, 2) the
effective repulsive interaction and 3) the total value, respectively.

1 <ch>
Teo\dn /n=0

=[P Eem) L [0.(TW0F. @1
on n=0  4Txp

Here two contributions have a clear physical meaning. The first is the pair-break-

ing effect due to magnetic scattering, while the second is the contribution from

the effective repulsive interaction between electrons. When T »1'k, we can neg-

lect the second one and obtain the AG result

272
1 <CZTC> _ 3% 4-12)
To\dn/n 32T,

On the other hand, when 7T,<& T the second contribution is larger than the

first one and we obtain

2
L <ch> ~ 2 <1nﬂ> . (4-13)
T\ dn/n=o 4T xp T

In order to calculate Eq. (4-11) in the whole region of T'x/T,, we should
carry out numerical calculations. Results are given in Fig. 5, where the two
contributions are also shown separately. As can be seen, the pair-breaking effect
is important when 7 'x/T,<1, while the effective repulsive interaction is important
when Tx/T,>1. The initial decrease becomes maximum where Tx/T,=0(1).
The numerical value of Tx/T,, at the maximum is not so much meaningful, since
it depends on the detail of our interpolation. :

We next consider the limit T, < Tk In this limit, Eq. (4-4) becomes (see
the Appendix)

AT p 1 1 4T o'|?
710, n) -+ —F=— ]— [yf 0, 7) ——*= ] =0, (414
[ ©, ) n  |g|Nol @(T., n :(0,7) n (4-14)
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724 T. Matsuura, S. Ichinose and Y. Nagaoka

where
(T, n)=0,(T,n) —20.(T,n) +0,(T, n), (4-15)
Vo (T, n) =0,(T, n) —0:;(T, n), (4-16)
¢ (T, n):%, (4-17)

B being a constant of the order unity. It should be remarked that the @,’s diverge
for T—0, but that the ¥.’s do not.

The critical concentration 7, where T, vanishes is determined by

ATr0 1 _g
7. |9|Np

In the limit Tx€ Ty, Eq. (4-18) approximately reduces to

J‘TZ <—i—) o+ nfaz (a;j> do=In <;:> . (4-19)

This implies that 7, is nearly equal to the concentration where T, becomes T,
as discussed in § 1. In this case, the lower and upper bounds of 7, can be esti-
mated by replacing a(w) in Eq. (4-19) by its maximum and minimum values,

alo~Tg)~1/0 and a(w>Tx) ~J%. Thus we obtain
Tcopgnchcoﬂ/ (Jp) g (420)

¥.(0,n,) + (4-18)

The value of n, given in the previous note [Eq. (5) of Ref. 1)] is this lower
bound. Though the upper bound is realized in the limit Tx—0, numerical cal-
culation shows that n, is of the order To as far as Tx/T is not so small,

On the other hand, when wp>Tx >T, we find

" 4T k0

T (Te/T e

4
which is approximately equal to Eq. (1-4). The numerical result of the critical
concentration is given in Fig. 6.

In the region #,—n<n,, Eq. (4-14) gives

T.=8Tx exp[—ﬂc_], (4.22)
ne—7
where
p= (1+ (2./4Tx0)) [¥.(0, 1) — (4TK0/7ZC) I ) (4-23)

n.[ — (@¥:(0, ne) /dne) + (4T x0/ns") ]

Equation (4-21) shows that (d7./d#n),-n,=0. The existence of this finite tail
was pointed out by Sakurai.’® The length of the tail depends on the Valug of
Tx/Ty Equation (4-23) is approximately estimated as
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o] i ',
Te/ Teo i 10

O_.r

10 |

Fig. 6. The critical concentration 7Zex=tc:/ (27)*Teop as a function of Tk/T .

Txo .
7,

Then we find p<1 for T /T, &1 and p>1 for T/Tw>1. For Tx/T,<1, using
Egs. (4-20), (4:22) and (4-24), we find T, becomes of the order Ty when

p~ (4-29)

u:ZﬁZSZ£<<1, (4-25)
7, e T

This shows the tail is very short in this case. Therefore its presence does not
contradict our estimate of 7, by Eq. (4-19). For Tx/Tw>1, Eq. (4-22) with
Egs. (4-21) and (4-24) gives

ne—n. _ In(Tx/T.)
n,  In(Tx/T.)

When Tx/T.~10° and T./T,~107% for instance, this gives 2/S; ie., T, reduces
to 107*T",y at 7= (3/S)n,. Since the tail is very long in this case, it seems difficult
to determine 7, precisely by experiments.

(4.26)

The behavior of T, as a function of # is given by numerical calculation for
the wide region of Tx/Ty. Results are given in Fig. 7. When Tx&T,, the
finite tail discussed above cannot be seen in this figure as it is too short.

Concluding this section, we should give a remark on the definition of the
Kondo temperature. In the Yamada-Yosida theory, it is defined as the inverse
of the impurity susceptibility. On the other hand, in the most divergent approxi-
mation, there is ambiguity by a factor of the order wunity. Since we made an
interpolation between them, our calculation also contains some ambiguity about Tk

Therefore, quantitative comparison of our results with experiments does not seem
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so much meaningful.

0 0l 0.2 03 0.4 05 06 07 08 09

Fig. 7. The superconducting critical temperature as a function of the impurity concentration:
n=n/(2r)*Twp. Numbers attached to each curve denote the ratio Tx/To.

§ 5. Upper critical field

To calculate the upper critical field H,, we assume the additivity of the
pair-breaking mechanisms, and consider the dirty limit. This is the same approxi-
mation as taken by Maki.® Then the equation to determine F,, can be obtained
by a slight modification of Eq. (4-4); ie., it is given by

_n 7 [@1 (T, Hep, ) T 1

@/0 <T05 HCZ) 7’1) - —— . = - ’
4Tk 1+ (n/4Tx0) Do (Te, Hesy ) - |g[Np

(5-1)

where

§.(T, H,n)=2:T S SO (5-2)

030 o)+ nce () + DeH
and D is the diffusion constant, which we assume is determined by nonmagnetic
impurities. In this approximation the effect of the magnetic field on impurities is
completely neglected. If it is taken into account, both the pair-breaking parameter
¢« and the effective repulsion depend on H. Since the magnetic field characteristic
of the Kondo effect is given by Hx=Fks1 x/ 5, this approximation is allowed only
when H,< Hg.

In limiting cases Tx< Ty and T >Tw, Eq. (5-1) reduces to simple forms
similar to Eqs. (4-7) and (4-9). In general cases it should be solved numerically.
Results are given in Fig. 8. In Maki’s theory, H,, tends to IS, the value at
T=0 and 2=0, when T tends to zero, independently of ». This behavior arises
because & vanishes at T'=0, and corresponds to the infinite tail of the Tyn curve
in the MZ theory. OQur results are quite different from this; H, at T'=0 depends
on 7n. The behavior characteristic of the Kondo effect is seen in curves with
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Fig.8. The upper critical field H..(T) as a
function of the reduced temperature ¢
=T/Te for several concentrations of
impurities; (a) #x=Tx/Tw=0.02. () tx
=0.23. (¢) txg=1. (d) £x=10. (e) tx=100.
Numbers attached to each curve denote
the reduced concentration 7.
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h*_(dHcé(TTm)ch:o small T'x/T, arhld relatively large =,
a0l (dH;(-]:r‘O))HC . where H, vanishes at. .temperatures
g lower than the second critical tempera-

18t é g.os ture.
el 0 As remarked above, these results
become meaningless when H,>>Hy.
L4t The magnetic-field effect on impurities
ol is expected to appear as (H/Hg)? in the
) s 4 lowest order. Therefore, the initial slope

Yo

of the H,-T curve, (dHu/dT)u, 0, is
not affected by this effect, and our ap-
proximation of neglecting it is justified.
o6 It is plotted in Fig. 9, where the curve
calculated by the AG theory is also il-

lustrated. As is seen in Fig. 7, the

04

o2t

temperature where (d71,/dn) diverges

0

O Ol 02 03 04 05 06 07 08 09 10

does little depend on Tk as far as Ty

& T in our approximation. Correspond-
Fig. 9. The initial slope of the H.:-T curve,

ing to this behavior of 7, curves of
(dH,2/dT)Hy=0 as a {unction of reduced g ¢ ©

temperature £, =7T./Tw for several values (dHey/dT) versus (1/T.) are almost

of #x. independent of the parameter Tx/T, if

it is smaller than unity. Therefore we

showed only one curve with T'x/T,=0.08. Since curves obtained by numerical

caleulations are unstable in the low-temperature region for Tx/T~1, we did not

show them in the figure. This secems to be related to the behavior of 17, which

has a large derivative (d71./dn) in the wide region of T.. For T'x/Ty>1, the

derivative (dH../dT) increases with decreasing 7', though it is finite in the limit
T—0.

§ 6. Discussion

In this paper we proposed an interpolation approximation for the effect of
magnetic impurities on superconductivity. In this approximation, the effect is sep-
arated into the pair-breaking effect and the effective repulsive interaction. Expres-
sions for both effects are taken so that they coincide with theoretical results in
limiting cases. What is essential here is that the effect depends not only on
temperature 7' but on energy e. The first effect is important when T>T% and/or
¢>T, while the second one is when T< Tk and e<T'x. Electrons with energy
le]<<wp participate in superconductivity, and the impurity effect on them appear
differently depending on their energy.

In most of previous theories, only one of the two effects has been taken into

account. Theories where the pair-breaking effect is considered are valid only when
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T.>Tg On the other hand, theories where only the repulsive interaction is taken
into account are applicable when T'x>wj,, though G,(w) and U in Eq. (3-4)
should be replaced by Egs. (3-10) and (3-12) if U»I'. In general cases we
showed both effects should be taken into account.

It should be emphasized here that the effect of the repulsive interaction cannot
be included in the pair-breaking parameter even if its energy dependence is taken
into account. In the pair-breaking theory, the transition temparature is determined

by Eq. (4-7), i.e.,

1n<29> — 27T, 2{, SRS 6-1)
T, o> Ly + na () o)

Some authors insist that this equation gives a finite critical concentration. In
order that Eq. (6-1) gives a finite #,, the r.h.s. should diverge at 7,—0. This
is the case if /@ (w) tends to zero at T'=0 and »—0. The pair-breaking param-
eter used by Schlottmann,® and Miller-Hartmann, Schuh and Zittartz® satisfies
this criterion. Therefore it is not surprising that they found a finite 2, What
is important here, however, is that the w-dependence of & should be consistent
with theories and experiments of the Kondo effect in normal metals. Such a singular
behavior of « is not consistent with them.

Here we have to mention the recent work of Sakurai,' where he calculated
the transition temperature, taking account of both effects. Starting from the Ander-
son model, he included the effect of magnetic scattering by introducing an effective
cutoff. Some of his results are in agreement with ours. It seems to the present
authors, however, that his treatment of magnetic scattering is rather phenomenolo-
gical and that the physical meaning of his cutoff parameter is not so clear. We
have also to give a remark about the relationship between Shiba’s theory and
ours. Shiba developed a Hartree-Fock theory which covers the nonmagnetic and
magnetic cases of the Anderson model;® i.e., two limiting cases U< and U T
We have restricted ourselves to the case U>I", and attemped to cover the cases
Tx>Ty and Tx<Tw. As was shown by Yamada and Yosida,”® there is no es-
sential difference between the case UL and the case U I and Tx>7T. There-
fore a similarity can be seen between Shiba’s theory and ours, though the Kondo
effect is not taken account of in the former.

Throughout this paper we have neglected the correlation between impurities.
In actual situations this approximation is not always allowed. When 7T°37T, a
random molecular field works on each impurity which arises from the RKKY
interaction between impurities. It is of the order nJ%/up. If it is higher than
Hyg, the correlation gives an important effect on the behavior of impurities. The
criterion that it can be neglected is given by

T
72<<J—ZI;. (6-2)

When T'x/Ty, is sufficiently small, it is not satisfied near n~n,. Therefore, to
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examine experimental results in this region, we should carefully study how the
correlation effect modifies the results given in this paper. In the molecular field
approximation, the problem will be reduced to the study of the magnetic-field
effect on impurities, which is also required in the calculation of H,, when H,>> Hg.

In order to calculate the specific Leat jump at 7, we have to obtain the
four-particle Green’s function instead of the two-particle one of Eq. (2-2). It
requires some generalization of the present calculation, which will be a straight-
forward but complicated task. To study the behavior of the superconducting state,
such as impurity levels within the gap, the gapless behavior and so on, we have to
calculate Green’s functions with finite 4. In this case we need the knowledge
of impurity properties in superconducting states. These problems will be discussed

in forthcoming papers.

Acknowledgements

We are much indebted to Mr. S. Ichikawa for his aid of numerical calculations.
We wish to thank Dr. A. Sakurai for valuable communications and for sending

us a preprint of his work prior to publication.

Appendix

In this appendix we give order-of-magnitude discussion to solve Eq. (4-4)
in limiting cases, and derive some equations given in § 4. To estimate @, we use

the following approximate relations: For |o|<{4Tx/7,

—~ 0 ) ~T ol A1
a(w)—4TKp, 1 f(w)—-ZTK, (A-D)
for |w|>4T /T,
1 3z AT\
gy & ; ~ZZE) . A2
o @@ >0, ) (m), (A-2)

for |w|»>T, in particular, the lower bound of a(w) is realized.

1) Initial decrease

FEach term of Eq. (4-11) is calculated by

<@> = —21T 0 2 () > (A-3)
D71/ n=0 o> f
R R SFAC)E (A-4)
»>0 0]

When Tyx& Ty, they become

(09 =-Zre, (A-5)
§n/ n=0 32T,
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@1:@1:0)2. (A-6)

Thus we find the second term of Eq. (4-11) can be neglected, and obtain Eq.
(4-12). When Tx»T,, Eqs. (A-3) and (A-4) are estimated as

00 . 1 1n<TK>, (A-T)
gnn=0 ATrp  \To
0,~1n <§F£> . (A-8)

c0
In this case the first term of Eq. (4:11) can be neglected, and we get Eq. (4-13).
2)  Derivation of Eq. (4-14)

In the limit T,—0, the singular part of @,(k=1,2) is estimated as

(= _do_ L) (A9)
7. o(1+n/4Txp) 14n/4Txp
Separating this singular part from @, we put

mk:¢+@k,> (A'10>

where ¢ is given by Eq. (4-17) and @, is finite at T,—0. Then, expanding the
second term of Eq. (4-4) in an inverse power series of ¢, we obtain

77 @12 ’ ’ 471 0 1 ’ ’ 4T 0 ?
20— wﬁK_Jr_(a) 0 —_L>
AT'xp 1+ (/4T ¢p) O, ¢ ! ’ n o ' ’ 7

T (A-11)

Substitution of Eq. (A-11) in Eq. (4-4) gives Eq. (4-14), where @, is rewritten
again by using @.
3) Critical concentration

In the limit 7,—0, we get

7, = f HL=F 4,

o+ na (w)

—In <§7‘3_D> —n f al) [1-f@) I, (A-12)

x oo+ na(w)]

8 being a constant of the order unity. Then Eq. (4-18) reduces to

", J T ao) D:&H‘dw:&e_m(ﬁw), (A-13)
o olot+ralo)] 7, Tx

When T3 »>Tw, 1, T k0o holds good, as verified in the following. In this case

the Lh.s. of Eq. (A-13) is estimated as n,/Tgp, and can be neglected compared

with the terms on the r.h.s. Then 7, is given by Eq. (4-21). When Tx<T,,

220z 1snbny |z uo 3senb Aq 99,0161 /€L 2/€/2G/0101e/did/wod dnoojwapese//:sdiy woly papeojumo(q



732 T. Matsuura, S. Ichinose and Y. Nagaoka

1.3 T ko is obtained. The Lh.s. of Eq. (A-13) is estimated as

r{l— 1 L. (A-14)
Te l @ o)+7zca’(o))1

Then, neglecting the first term of the r.h.s. of Eq. (A-13), we obtain Eq. (4-19).

4)  Behavior near n—n,

We expand the first term of Eq. (4-14) with respect to n—n,:

7.0, ) +4_TL0___,1_: {<0W1> — 4T12{ } (n2—1n,). (A-15)
7 lgINp O/ a=ne

7,
Substitution of Eq. (A-15) in Eq. (4-14) gives Egs. (4-22) and (4-23). The
first term of Eq. (A-15) is calculated by

<@&> . J‘m alo) [1—f(0) ]ida) (A-16)
on / n=n. o [o+ra(o)]’

and the numerator of Eq. (4-23) by

700, n) = | L@ D=0y, (A-17)

0 72,0 ()

They are estimated for Tk »T. as

W1> ~ 1y ay=0a A-18
<@n n:nc—TKp’ —( s C> ( ) ( )

and for Tx< T, as

<wl> :l, 7,0, m):TKO. (A-19)
On/n=n. mn, 2,
Using these estimations, we obtain in both cases
p L0 (A -20)
e
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