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0. INTRODUCTION 

The theory of L systems originated from the work of Lindenmayer 

[59~60]. The original aim of this theory was to provide mathematical 

models for the development of simple filamentous organisms. At the 

beginning L systems were defined as linear arrays of finite automata, 

later however they were reformulated into the more suitable framework 

of grammar-like constructs. From then on, the theory of L systems was 

developed essentially as a branch of formal language theory. In fact 

it constitutes today one of the most vigorously investigated areas of 

formal language theory. 

In this paper we survey the mathematical theory of L systems. As to 

the biological aspects of the theory we refer the reader to an 

excellent paper by Lindenmayer ("Developmental systems and languages 

in their biological context" a contribution to the book Herman and 

Rozenberg [45]). 

This paper is organized in such a way that it discusses several 

typical problem areas and the results obtained therein. The results 

quoted here may not always be the most important ones but they are 

quite representative for the direction of research in this theory. It 

is rather unfortunate that we have no space here to discuss the basic 

techniques for solving problems in this theory, but information about 

these can be found in the listed references. As the most complete 

source of readings on L systems the book Herman and Rozenberg [45] is 

recommended to the reader. 

In this Paper we assume the reader to be familiar with basic formal 

language theory, e.q. with the scope of the book "Formal Languages and 

their relation to automata" by J. Hopcroft and J. Ullman, Addison- 

Wesley, 1989. We shall also freely use standard formal language notation 

and terminology. (Perhaps the only unusual term used in this paper is 

"coding" which means a letter-to-letter homomorphism). 

We also want to remark that this survey is of informal character, 

meaning that quite often concepts are introduced in a not entirely 

rigorous manner, and results are presented in a descriptive way rather 

than in a form of very precise mathematical statements. This was 

dictated by both the limited size of the paper and by the profile of 

its experted reader. We hope that this does not decrease the usefulness 



of this paper. 

Finally, I would like to state that this survey is by no means 

exhaustive and the selection of topics and results presented reflects 

my personal point of view. 

1. L SCHEMES AND L SYSTEMS 

In this section we give definitions and examples of basic objects 

(the so called L schemes and L systems) to be discussed in this paper. 

We start with the most general class, the so called TIL schemes and 

TIL systems. (They were introduced in K.P. Lee and G. Rozenberg "TIL 

systems and languages" [submitted for publication]). TIL systems are 

intended to model the development of multicellular filamentous 

organisms in the case when an interaction can take place among the 

cells and the environment can be subject to changes. 

Definition 1.1. Let k,l E N. An L scheme with tab!es and with < k~l > 

interactions (abbreviated T < k,l > L scheme) is a construct S : 

< ~,~,g > where ~ is a finite nonempty set (the alphabet of S), g is a 

symbol which is not in ~ (the masker of S), ~ is a finite nonempty set, 

each dement P of which (called a table of S) is a finite nonempty 

relation satisfying the following 

p ~ . .~J {gi}~j × ~ × ~m{gn} × ~ 

1;3,m~n ~ 0 

i+j = k 

m+n : i 

and for every < ~,a,6 > in • J  {gi}~j x Z × Em{gn}there exists a y 

i,j,m,n>>0 

i+j = k 

m+n = I 

in ~* such that < ~,a,B,y >EP. 

(Each element of P is called a productign). 

Definition 1.2. Let S = < ~,~,g > be a T < k,l > L scheme. We say that 

S is: 

1) an L scheme with < k,l > interactions (abbreviated < k~l > L scheme) 

if ~ ~ = 1. 

2) an L scheme With tables and Without interactions (abbreviated T0L 

scheme) if k = i = 0. 

3) an E seheme Without interactions (abbreviated 0L scheme) if both 

@= 1 and~k = i = 0. 

Definition 1.3. A construct S = < Z,~,g > is called a TIL scheme (IL 



scheme) if, for some k,l E N, S is a T < k,l > L scheme (< k,l > L 

scheme). 

Definition 1.4. Let S = < N,~,g > be a T < k,l > L scheme. Let x = 

a I ...an E ~*, with al,...,a n E ~, and let y ~ ~. We say that x direct- 

!y derives y in S (denoted as x ~  y) if y = y1 ...Tn for some 

y1 ~...,yn in ~* such that, there exists a table P in ~ and for every 

i in {1,...,n} P contains a production of the form < ~i,ai,Bi,Yi > 

where ~i is thel prefix of gka I ...at_ 1 of length k and ~i is the suffix 

of ai+l...ang of length i. The transitive and reflexive closure of 

the relation~ is denoted aS~S (when x ~  y then we say that 

x derives y in S). 

Definition 1.5. A TIL system (IL system) is an ordered pair G = 

< S,~ > where S is a TiL scheme (an IL scheme) and ~ is a word over 

the alphabet of S. The scheme S is called the underlyin~ scheme of G 

and is denoted as S(G). G is called a T < k,l > L system (a < k,l > L 

system, a T OL system, a OL system) if S(G) is a T < k,l > L scheme (a 

< k,l > L scheme, a TOL scheme, a OL scheme). 

IL systems in restricted form originated from Lindenmayer [ 59,60] ; 

in the form they are discussed here they were introduced in Rozenberg 

[86,87]. T0L systems were introduced in Rozenberg [81] and 0L systems 

were introduced in Lindenmayer [81] and Rozenberg and Douoet [91]. 

Definition 1.6. Let G = < S,~ > be a TIL system. Let x,y E ~*. We say 

that x direcltly derives y in G, denoted as x ~  y (x derives y in G 

denoted as x--p y) if y y) 

Notation. It is customary to omit the marker g from the specification 

of a T0L system. If S is an IL or a 0L scheme (system) such that ~ : 

1, say ~ : {P}, then in the specification of S we put P rather than 

{P}. Also to avoid cumbersome notation in specifying a TIL system G 

we simply extend the n~tuple specifying S(G) to an (n+l)-tuple where 

the last element is the axiom of G. (In this sense we write, e.g., 

G : < ~,~,g,~ > rather than G = << ~,~,g >,~ >). In specifying 

productions ina table of a given TIL systems one often omits those 

which clearly cannot be used in any rewriting process which starts 

with the axiom of the system. If < ~,a,B,y > is a production in a TIL 

scheme (system) then it is usually written in the form < ~,a,B > ~ y 

(where < ~,a,8 > is called its left-hand side and y is called its 



right-hand side). When the productions of a T0L scheme (system) are 

being specified, then we write a ~ y rather than < A,a,A > ~ y. 

Example I.i. Let E : {a,b}, PI = {< g,a,i > ~ a 3 , < a,a,A > -~ a, 

< a,b,A > -~ b 2 , < b,b,A > ~ b 2 , < b,a,i > ~ a}, P2 = {<g,a,A > -~ a 4 , 

< a,a,A > -~ a, < a,b,A > -~ b ~ , < b,b,A > ~ b 3 , < b,a,A > -~ a} and 

= aSb6a. Then G = < E,{PI ,P2},g,m > is a T < 1,0 > L system• 

Example 1.2 Let Z = {a,b}, P = {< a,a,A > ~ a 2 < b,a,A > ~ a 2 

< g,a,A > ~ a, < a,b,A > ~ b 2 < b,b,A > ~ b 2 < g,b,A > ~ b 2 

< g,b,A > ~ ab 2} and ~ = ba. Then G = < Z,P,g,~ > is a < 1,0 > L system. 

Example 1.3. Let Z :{a,b}, PI = {a -~ a2, b -~ b2}, P2 = {a -~ aa, b -~ b3} 

and m = ab. Then G : < Z,{PI ,P2 },~ > is a T0L system. 

Example 1.4. Let ~ = {A,~,a,B,B,b,C,~,e,F}, P = {A ~ A~, A ~ a, B ~ BB, 

B -~ b, C -~ C~, C -~ c, ~-~ ~, ~ -~ a, B-~ B, B ~ b, ~-~ C,C -~ c, a ~ F, 

b ~ F, e -~ F, F ~ F} and ~ = ABC. Then G = < X,P~ > is a 0L system. 

2. SQUEEZING LANGUAGES OUT OF L SYSTEMS 

There are several ways that one can associate the language with a 

given word-generating device. In this section we shall discuss several 

ways of defining languages by L systems. 

2.1. Exhaustive approach. 

Given an L system G (with alphabet Z and axiom w) it is most natural 

to define its language, denoted L(G), as the set of all words (axiom 

included) that can be derived from w in G; hence L(G) = {x e Z*: ~=~x}• 

Example 2.1.1. The language of a T < 1,0 > L system G from Example 1.1 

is {a2n+3mb2n3ma : n,m ~ 1}. The language of a T0L system from Example 

1.3 is {a2n3mb2n3m : n,m ~ 0). 

The languages obtained in this way from 0L, TOL, TIL and IL systems 

are called 0L, TOL, TIL and IL languages respectively. (Their classes 

will be denoted by £(0L), £(TOL), £(TIL) and £(IL) respective~). For 

k,l ~ 0, a < k~l > L language (a T < k~l > L language) is a language 

generated by a < k,l > L system (a T < k,l > L system). 

One may notice here two major differences in generating languages by 



0L and IL systems on the one hand and context-free and type 0 grammars 

on the other. 0L and IL systems do not use nonterminal symbols while 

context-free and type-0 grammars use them. Rewriting in 0L and IL sys- 

tems is absolutely parallel (all occurrences of all letters in a word 

are rewritten in a single derivation step) while rewriting in context- 

free and type-0 grammars is absolutely sequential (only one occurrence 

of one symbol is rewritten in a single derivation step). 

2.2. Using nonterminals to define languages. 

The standard step in formal language theory to define the language 

of a generating system is to consider not the set of all words generated 

by it but only those which are over some distinguished (usually called 

terminal) alphabet. In this way one gets the division of the alphabet 

of a given system into the set of terminal and nonterminal (sometimes 

also called auxiliary) symbols. In the case of L systems such an 

approach gives rise to the following classes of systems. 

Definition 2.2.1. An extended 0L, (TOL, IL, TIL) system, abbreviated 

E0L (ETOL, ElL, ETIL) system, is a pair G = < H,A >, where H is a 0L 

(TOL, IL, TILl system and A is an alphabet (called the tarset alphabet 

of G). 

Definition 2.2.2. The language of an E0L (ETOL, EIL, ETIL) system 

G = < H,A >, denoted as L(G), is defined by L(G) = L(H) ~ A*. 

An E0L (ETOL, EIL, ETIL) system G = < H,A > is usually specified 

as < ~,P,~,A > (< ~,~,~,A >, < ~,P,g,~,A >, < ~,~,g,~,A >) where 

< ~,P,~ >(< ~,~,~ >, < N,P,g,~ >, < ~,~,g,m >) is the specification of 

H itself. 

Example 2.2.1. Let G = < ~,P,~,A >, where ~,P,~ are specified as in 

Example 1.4 and A = {a,b}. Then L(G) = (anbnc n : n ~ 1}. 

If K is the language of an E0L (ETOL, EIL, ETIL) system, then it 

is called an E0L (ETOL, E IL, ETIL) language. The classes of E0L 

languages, ETOL languages, EIL languages and ETIL languages are denoted 

by £(EOL), £(ETOL), £(EIL) and £(ETIL) respectively. 

E0L s~stems and languages are discussed in Herman [351; ETOL systems 

and languages were introduced in Rozenberg [891; ElL systems and lang- 

uages are discussed e.g. in van Dalen [12] and Rozenberg [86,87] ; ETIL 

systems and languages were introduced in "TIL systems and languages"by 
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K.P. Lee and G. Rozenberg. 

It is very instructive at this point to notice that, as far as 

generation of languages is concerned, the difference between E0L and 

EIL systems on one hand and context-free and type-8 grammars on the 

other hand is the absolutely parallel fashion of rewriting in E0L and 

EIL systems and the absolutely sequential fashion of rewriting in 

context-free and type-0 grammars. 

2.3. Using codinss to define lan~uases. 

When we make observations of a particular organism and want to 

describe it by strings of symbols, we first associate a symbol to eaeh 

particular cell. This is done by dividing cells into a number of types 

and associating the same symbol to all the cells of the same type. It 

is possible that the development of the organism can be described by 

a developmental system, but the actual system describing it uses a 

finer subdivision into types that we could observe. This is often 

experimentally unavoidable. In this case, the set of strings generated 

by a given developmental system is a coding of the "real" language of 

the organism which the given developmental system describes. Considering 

codings for defining languages of L systems gives rise to the following 

classes of systems. 

Definition 2.3.1. A QL (TOL, I L, TILl system with codin$, abbreviated 

C0__~L (CTOL, CIL, CTIL) system, is a pair G : < H,h >, where H is a 0L 

(TOL, IL, TIL) system and h is a coding. 

Definition 2.3.2. The language of a COL (CTGL, CIL, CTIL) system G = 

< H,h >, denoted as L(G), is defined by L(G) : h(L(H)). 

Example 2.3.1. Let H = ~ (a,b),(a ~ a2,b ~ b~,ba ~ and h be a coding 

from ~a,b) into (a,b) such that h(a) ~ h(b) ~ a. Then L(~ H,h ~) = 

(a 2n+1 : n ~ 0]. 

If K is the language of a COL (CTOL, CIL, CTIL) system, then it is 

called a COL (CTOL, CIL, CTIL) language. The classes of COL, CTQL, CIL 
\ 

and CTIL languages are denoted by £(CGL), £CTOL), £(CIL) and £(CTIL) 

respectively. 

Using eodings to define languages of various classes of L systems 

was considered, e.g., in Culik and 0patrny [101, Ehrenfeucht and 



R~zenberg [28,25,27] and Nielsen, Rozenberg, Salomaa, Skyum [71,72]. 

2.4. Adult languages of L systems. 

An interesting way of defining languages by L systems was proposed 

by A. Walker (see [47] and [118] ). Based on biological considerations 

concerning problems of regulation in organisms, one defines the 

adult language of an L is ZstemG, denoted as A(G), to be the set of all 

these words from L(G) which derive (in G) themselves and only them- 

selves. Thus we can talk about adult 0L languages, adult T0L languages, 

adult IL lan~ua@es and adult TIL languages (their families are denoted 

by symbols £A(0L), £A(TOL), £A(IL) and £A(TIL) respectively). 

Example 2.4.1. Let G = < ~,P,~ > be a 0L system such that ~ : {a,b}, 

P = {a ~ i~a ~ ab,b ~ b} and ~ = a. Then A(G) = {b n : n ~ 0}. 

In the sequel we shall use the term L language to refer to any one 

of the types of language introduced in this section. 

2.5. Comparing the language generatin G power of various mechanisms for 

definin~ L language_~s. 

Once several classes of language generating devices are introduced 

one is interested in comparing their language generating power. This 

is one of the most natural and most traditional topics investigated 

in formal language theory. In the ease of L systems we have, for 

example,the following results. 

Theorem 2.5.1. (see, e.g., Herman and Rozenberg [45]). 

1) For X in {GL, T@L, IL, TIL}, £(X] ~ £(EX). 

2) For X in {@L~ TOL, IL, TIL], £(X) ~ Z(CX). 

3) £(0L) is incomparable but not disjoint with £A(0L]. 

Theorem 2.5.2. (Ehrenfeucht and Rozenberg [20,27], Herman and Walker 

[(47]). 

1) £(EOL) = £(COL] and £(ETOL) = £(CTOL]. 

2) £A(0L) ~ £(EOL). 

3. FITTING CLASSES OF L LANGUAGES INTO KNOWN FORMAL LANGUAGE THEORETIC 

FRAMEWORK 

The usual way of understanding the language generating power of a 



class of generative systems is by comparing them with the now classi- 

cal Chomsky hierarchy. (One reason for this is that the Chomsky 

hierarchy is probably the most intensively studied in formal language 

theory.) In the area of L languages we have, for example, the following 

result. (In what follows £(RE) denotes the class of recursively 

enumerable languages, Z(CS) denotes the class consisting of every L 

such that either L or LL(A} is a context-sensitive language, and £(CF) 

denotes the class of context-free languages.) 

Theorem 3.1. (van Dalen [12], Rozenberg [89], Herman [35]). 

£(EIL) = Z(RE), £(ETOL) ~ £(CS) and £(CF) $ £(EOL). 

Note that this theorem compares classes of systems all of which use 

nonterminals for defining languages. Thus the only real difference 

(from the language generation point of view) between (the classes of) 

EIL, ETOL and E0L systems on the one hand and (the classes of) type-0, 

context-sensitive and context-free grammars respeetively on the other 

hand is the parallel versus sequential way of rewriting strings. In 

this sense the above results tell us something about the role of 

parallel rewriting in generating languages by grammar-like devices. 

In the same direction we have another group of results of which the 

following two are quite representative. 

Theorem 3.2. (Lindenmayer [ 611, Rozenberg and Doueet [ 911). 

A language is context-free if and only if it is the language of an 

EGL system < E,P,~,A > such that, for each a in A, the production 

a -* a is in P. 

Theorem 3.3. (Herman and Walker [47~. 

A language is context-free if and only if it is the adult language of 

a gL system. 

As far as fitting some classes of L languages into the known formal 

language theoretic framework is concerned, results more detailed than 

t~ose of Theorem 3.1 are available. For example we have the following 

results. Let £(IND~ denote t~e class of indexed languages (see A. Aho 

"Indexed grammars - An extension of context-free grammars" J. of the 

ACM. 15 (19~8), 647-671~ and let ~(PROG) denote the class of A-free 

programmed languages (see D. Rosenkrantz "Programmed grammars and 

iciasses of formal languages" J. of the ACM. 16 (1969~, 107-131~. 
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Theorem 3.4.  (Culik [7] and Rozenhemg [8~$1. 

£(ETOL) ~ £(IND) and £(ETOL) ~ £(PROG]. 

Results like these can be helpful for getting either new properties 

or nice proofs of known properties of some classes of L languages. For 

example, the family £(IND) possesses quite strong decidability proper- 

ties which are then directly applicable to the class of ETOL languages. 

An example will be considered in section 8. 

4. OTHER CHARACTERIZATIONS OF CLASSES OF L LANGUAGES WITHIN THE 

FRAMEWORK OF FORMAL LANGUAGE THEORY 

A classical step toward achieving a mathematical characterization 

of a class of languages is to investigate its closure properties with 

respect to a number of operations. There is even a trend in formal 

language theory, called the AFL theory (see S. Ginsburg, S. Greibaoh 

and J. Hoperoft "Studies in Abstract Families of Languages",Memoirs of 

the AMS, 87, (1969)) which takes this as a basic step towards charac- 

terizing classes of languages. The next two results display the 

behaviour of some of the families of L languages with respect to the 

basic operations considered in AFL theory. There are essentially two 

reasons for considering these operations. One reason is that in this 

way we may better contrast various families of L languages with tradi- 

tional families of languages. The other reason is that we still know 

very little about what set of operations would be natural for families 

of L languages. (In what follows the symbols U,.,*,hom,hom-1,~ R denote 

the operations of union, product, Kleene's closure, homomorphism, 

inverse homomorphism and intersection with a regular language respecti- 

vely.) 

Theorem 4.1. (Rozenberg and Doucet [911, Rozenberg [81], Rozenberg [86], 

Rozenberg and Lee "TIL systems and languages") 

None of the families of 0L, TOL, IL, TIL languages is closed with 

respect to any of the following operations: U,.,*,hom,hom-1,N R. 

Theorem 4.2. (Rozenberg [89], van Dalen [2], Herman [35]~ 

The families of ETOL and EiL languages are closed with respect to all 

of the operations U,.,*,hom,hom-1,A R. The family of E0L languages is 

closed with respect to the operations U,.,*,hom and ~ but it is not 

closed with respect to the hom -I operation. 
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When we contrast the above two results with each other we see the 

role of nonterminals in defining languages of L systems. On the other 

hand contrasting the second result with the corresponding results for 

the classes of context-free and context-sensitive languages enables 

us to learn more about the nature of parallel rewriting in language 

generating systems. 

In formal language theory, when a class of generative devices for 

defining languages is given, one often looks for a class of acceptors 

(recognition devices) which would yield the same family of languages. 

Such a step usually provides us with a better insight into the 

structure of the given family of languages and (sometimes) it provides 

us with additional tools for proving theorems about the given family 

of languages. 

Several machine models for L systems are already available, see 

Culik and 0patrny [9], van Leeuwen [55] ~, Rozenberg [90], Savitch [108]. 

(Of these, the most general models are those presented by Savitch). 

As an example, we discuss now the notion of a pre-set pushdown 

automaton introduced in van Leeuwen [55]. Roughly speaking a pre-set 

pushdown automaton is like an ordinary pushdown automaton, except 

that at the very beginning of a computation a certain location on the 

pushdown store of the automaton is assigned as the maximum location 

to which the store may grow during the computation. Such a 

distinguished location is used in such a way that when the automaton 

has reached it then it switches to a different transition function. 

When a pre-set pushdown automaton is constructed in such a way that 

there is a fixed bound on the length of a local computation (meaning 

a computation that the pointer does not move) then we call it a 

locally finite pre-set pushdown automaton. We say that a pre-set push- 

down automaton has a finite return property if there is a fixed bound 

on the number of recursions that can occur from a location. 

Theorem 4.3. (van Leeuwen [55,56], Christensen [6]) 

The family of languages accepted by pre-set pushdown automata contains 

properly the family of EQL languages and is properly contained in the 

family of ETOL languages. 

Theorem 4.4. (van Leeuwen [55]) 

The family of languages accepted by locally finite pre-set pushdown 

automata with the finite return property equals the family of E0L 

languages. 
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5. SQUEEZING SEQUENCES OUT OF L SYSTEMS. 

From a biological point of view the time-order of development is at 

least as interesting as the unordered set of morphological patterns 

which may develop. This leads to investigation of sequences of words 

rather than unordered sets of words (languages], which is a novel 

point in formal language theory. It turned out that investigation of 

sequences (of words) gives rise to a non-trivial and interesting 

mathematical theory (see, e.g., Herman and Rozenberg [45], Paz [74], 

Paz and Salomaa [75], Rozenberg [82], Szilard [111], Vitanyi [116]). 

The most natural way to talk about word sequences in the context 

of L systems is to consider such L systems which (starting with the 

axiom) yield the unique next word for a given one. We define now one 

such class of such L systems. 

Definition 5.1. An IL system G = < ~,P,g,~ > is called deterministic 

(abbreviated DIL system) if whenever < ~,a,6,yl> and < ~,a,$,Y2 > are 

in P then YI = Y2. 

Note that a 0L system is a particular instance of an IL system. 

Hence we shall talk about DQL systems. The most natural way to define 

sequences by DIL systems is to take the exhaustive approach, which 

simply means to include in the sequence of a DIL system the set of all 

words that the system generates (and in the order that these words are 

generated). 

Definition 5.2. Let G = < ~,P,g,m > be a DIL system. The sequence of G, 

denoted as E(G), is defined by E(G) = ~0 ,ml ,... where ~0 = ~ and for 

===~ 60.. i >I 1, ~i-1 G l 

Example 5.1. Let G = < ~,P,g,m > be a DIL system such that ~ = {a,b}, 

= baba 2 and P = {< g,b,A > -~ ba, < a,b,A > -~ ba 2 , < a,a,A > -~ a, 

< b,a,A > ~ a}. Then E(G) = baba 2 , ba2ba 4 ,..., bakba 2k, .... 

Definition 5.3. Let s be a sequence of words. It is called a DIL 

sequence (DOL sequence) if there exists a DIL system (D'0L system) G 

such that s = E(G). 

Obviously as in the case of L languages (see section 2) one can 

apply various mechanisms of squeezing sequences out of DIL systems. 

Thus, in the obvious sense, we can talk about EDIL and EDOL sequences 

(when using nonterminals for defining sequences) or about CDIL and 

CDOL sequences (when using codings for defining sequences]. Comparing 

the sequence generative power of these different mechanisms for 

sequence definition, we have, for example, the following result. 
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Theorem 5.1. (Nielsen, Rozenberg, Salomaa, Skyum [71,72]) 

The family of D0L sequences is strictly included in the family of 

EDOL sequences, which in turn is strictly included in the family of 

CDOL sequences. 

In the sequel we shall use the term L sequence to refer to any kind 

of a sequence discussed in this section. 

6. GROWTH FUNCTIONS; AN EXAMPLE OF RESEARCH ON (CLASSES OF)L SEQUENCES 

As an example of an investigation of properties of L sequences and 

their classes we will discuss the so called growth functions. It 

happens quite often(in both mathematical and biological considerations) 

that one is interested only in the lengths of the words generated by 

an L system. When the system G under a consideration is deterministic 

then, in this way, one obtains a function assigning to each positive 

integer n the length of the n'th word in the sequence of G. This 

function is called the growth function of G. The theory of growth 

functions of deterministic L systems is one of the very vigorously 

(and succesfully) investigated areas of L system theory (see, e.g., 

Doucet [15], Paz and Salomaa [7S], Salomaa [98], Vitanyi [116]). It 

also lends itself to the application of quite powerful mathematical 

tools (such as difference equations and formal power series). 

Definition 6.1. Let G be a DIL system with E(G) = ~0,~i, .... The 

growth function of G, denoted as fG' is a function from nonnegative 

integers into nonnegative integers such that fG(n) = l~nl. 

Example 6.1. Let G = < {a,b},{a ~ b,b ~ ab},a > be a D0L system. Then 

fG(n) is the n'th element of the Fibonaeci sequence 1,1,2,3,5, .... 

Example 6.2. Let G = < {a,b,c,d},{a ~ abd6,b ~ bcd11,c ~ cd6,d ~ d}, 

a > be a D0L system. Then fG(n) = (n+l) 3 . 

Directly from the definition of an L system we have the following 

result. 

Theol.em 6.1. 

The growth function of a DIL system G such that L(G) is infinite is 

at most exponential and at least logarithmic. 

The following are typical examples of problems concerning growth 
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functions. 

Analysis problem: Given a DIL system, determine its growth function. 

Synthesis problem: Given a function f from nonnegative integers into 

nonnegative integers, determine if possible a system G belonging to a 

given class of systems (say, D0L systems) such that f = fG" 

Growth equivelence problem: Given two DIL systems, determine whether 

their growth functions are the same. 

In the following there are some typical results about growth funct- 

ions. 

Theorem 5.2. (Paz and Salomaa [75]) 

If G is a D0L system then fG is exponential, polynomial or a combination 

of these. 

Theorem 5.3. (Paz and Salomaa [ 75] ) 

If f is a function from the nonnegative integers into the nonnegative 

integers such that 

(i) For every n there exists an m such that 

f(m) = f(m+l) = ... = f(m+n), and 

(it) lim f(t) = ~, 
t-~ 

then f is not the growth function of a D0L system. 

7. STRUCTURAL CONSTRAINTS ON L SYSTEMS 

One of the possible ways of investigating the structure of any 

language (or sequence) generating device is to put particular restric- 

tions directly on the definition of its various components and then to 

investigate the effect of these restrictions on the language generating 

power. Theorem 2.5.1 represents a result in this direction (it says for 

example that removing nonterminals from ETIL, EIL, ETOL or E0L systems 

decreases the language generating power of these classes of systems). 

Now we indicate some other results among the same line. 

The first of these results investigates the role of erasing pro- 

ductions in generating languages (sequences) by the class of E0L (EDOL) 

systems. (A production < ~,a,B > ~ y is called an erasing production 

if y = A). 

TNeorem 17.1. (Herman [39]) 

A language K is an E0L language if and only if there exists an E0L 

system G which does not contain erasing productions such that K-{A} = 

L(G). 
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Theorem 7.2. 

There exists an EDOL sequence which does not contain A, and which 

cannot be generated by an EDOL system without erasing productions. 

Our next result discusses the need of "two-sided context" (more 

intuitively: "two-sided communication") in IL systems. 

Theorem 7.3. (Rozenberg [86]) 

There exists a language K such that K is a < 1,1 > L language and for 

no m > 0 is K an < m,0 > L language or a < 8,m > L language. 

Our last sample result in this line says that for the class of IL 

systems with two-sided context it is the amount of context available 

and not its distribution that matters as far as the language generat- 

ing power is concerned. 

Theorem 7.4. (Rozenberg [86]) 

A language is an < m,n > L language for some m,n > 1 if and only if 

it is a < 1,m+n-1 > L language. For each m > 1 there exists 

a < 1,m+1 > L Language which is not a < 1,m > L language. 

8. DECISION PROBLEMS 

Considering decision problems for language generating devices is a 

customary research topie in formal language theory. It helps to 

understand the "effectiveness", of various classes of language generat- 

ing devices, explores the possibilities of changing one way of 

describing a language into another one, and, in connection with this, 

it may be a guide line for a choice of one rather than another class 

of specifications of languages. (For example it is quite often the 

case that when a membership problem for a given class of language 

defining devices turns out to be undicidable, one looks for a subclass 

for which this problem would be decidable). Various decision problems 

are also considered in the theory of L systems. In addition to more or 

less traditional problems considered usually in formal language theory 

new problems concerning sequences are also considered. 

Some results concerning decision problems are obtained as direct 

corollaries of theorems fitting different classes of L languages into 

known hierarchies of languages. For example, as an application of 

Theorem 3.4 we have the following result. 

Theorem 8.1. 

Membership, emptiness and finiteness problems are decidable in the 

class of ETOL systems. 
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The following result by Blattner (for different solutions see also 

Salomaa [99] and Rozenberg [84]) solved a problem which was open for 

some time. 

Theorem 8.2. (Blattner [6]) 

The language equivalence problem is not decidable in the class of 0L 

systems. 

The corresponding problem for the class of D0L systems is one of 

the most intriguing and the longest open problems in the theory of L 

systems. Some results are however available about subclasses of the 

class of D0L systems. 

Theorem 8.3. (Ehrenfeucht and Rozenberg) 

If GI,G2 are D0L systems such that fG1 and fG2 are bounded by a 

polynomial (which is decidable) then it is decidable whether they 

generate the same language (sequence). 

The following result points out "undecidability" of various exten- 

sions of the class of 0L systems. (In what follows an F0L system denotes 

a system which is like a 0L system, except that it has a finite number 

of axioms rather than a single one). 

Theorem 8.4. (Rozenberg) 

It is undecidable whether an arbitrary iL (COL, EOL, FOL) system 

generates a 0L language. 

For L sequences we have for example the following results. 

Theorem 8.5. (Paz and Salomaa [75], Vitanyi [115]) 

The growth equivalence problem is decidable in the class of D0L systems 

but it is not decidable in the class of DIL systems. 

Theorem 8.6. (Salomaa [98], Vitanyi [115,116]) 

Given an arbitrary D0L system G it is decidable whether fG can be bound- 

ed by a polynomial. This problem is not decidable if G is an arbitrary 

DIL system. 

Theorem 8.7. (Nielsen [70]) 

The language equivalence problem for D0L systems is decidable if and 

only if the sequence equivalence problem for D0L systems is decidable. 

Theorem 8.8. (Ehrenfeucht~ Lee and Rozenberg) 

If GI,G2 are two arbitrary D0L systems and x is a word then it is 

decidable whether x occurs as a subword the same number of times in the 
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corresponding words of sequences generated by GI and G~. 

9. GLOBAL VERSUS LOCAL BEHAVIOUR OF L SYSTEMS 

The topic discussed in this chapter, global versus local behaviour 

of L systems, is undoubtedly one of the most important in the theory 

of L systems. Roughly speaking , a global property of an L system is a 

property which can be expressed independently of the system itself 

(for example a property expressed in terms of its language or sequence). 

On the other hand a local property of an L system is a property of 

its set of productions (for example a property of the "graph" of pro- 

ductions of a given system). In a sense the whole theory of L systems 

emerged from an effort to explain on the local (cellular) level global 

properties of development. 

As an example of research in this direction we discuss the so called 

locally eatenative L systems and sequences (see Rozenberg and Linden- 

mayer [95]). Locally catenative L sequences are examples of L se- 

quences in which the words themselves carry in some sense the history 

of their development. 

Definition 9.1. An infinite sequence of words T0,TI ,... is called 

locally catentative if there exist positive integers m,n,il ,...,i n 

with n > 2 such that for each j > m we have Tj = Tj_i~j_i2...T. • • 
]-i n 

Definition 9.2. A DIL (or a DOL) system G is called locally catenative 

if E(G) is locally catenative. 

Very little is known about locally catenative DIL sequences. For 

locally eatenative D0L sequences some interesting results are avail- 

able. Our first result presents a property of a D0L sequence which is 

equivalent to the locally catenative property. 

Let G be a D0L system such that E(G) = ~0,~i ,... is a doubly 

infinite sequence, meaning that the set of different words occurring 

in E(G) is infinite. We say that E(G) is covered by one of its words 

if there exist k ~ 0 and j ~ k+2 and a sequence s of oeeurrences of 

~k in (some of the) strings ~k+l,~k+2,...,~j_l such that ~j is the 

eatenation of the sequence of its subwords derived from respective 

elements of s. 

Theorem 9.1. (Rozenberg and Lindenmayer [95])  

A DOL system G is locally catenative if and only if E(G) is covered 

by one of its words. 
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Our next theorem presents the result of an attempt to find a 

"structural" property of the set of productions of a D0L system such 

that its sequence is locally eatenative. First we need some more 

notation and terminology. 

If G = < ~,P,~ > is a D0L system then the graph of G is the directed 

graph whose nodes are elements of ~ and for which a directed edge leads 

from the node a to the node b if and only if a ~ ~bB is in P for some 

words ~,6 over N. 

Theorem 9.2. (Rozenberg and Lindenmayer [95]) 

Let G = < ~,P,~ > be a D0L system without erasing productions such 

that both E(G) and L(G) are infinite, ~ is in ~ and each letter from 

occurs in a word in E(G). If there exists ~ in ~ such that ~==~ ~ and 

each cycle in the graph of G goes through the node ~ then E(G) is 

locally catenative. 

We may note that neither of the above results is true in the case 

of DIL sequences (systems). 

10. DETERMINISTIC VERSUS NONDETERMINISTIC BEHAVIOUR OF L SYSTEMS 

An L system is called deterministic if, roughly speaking, after one 

of its tables has been chosen, each word can be rewritten in exactly 

one way. Investigation of the role the deterministic restriction plays 

in L systems is an important and quite extensively studied topic in 

the theory of L systems (see, e.g., Doucet [14], Ehrenfeucht and Rozen- 

berg [17], Lee and Rozenberg [52], Nielsen [70], Paz and Salomaa [75], 

Rozenberg [82], Salomaa [98], Szilard [111]). First of all, some 

biologists elaim that only deterministic behaviour should be studied. 

Secondly, studying deterministic L systems, especially when opposed 

to general (undeterministie) L systems, allows us to better understand 

the structure of L systems. Finally, the notion of determinism studied 

in this theory differs from the usual one studied in formal language 

theory. One may say that they are dual to each other: "deterministic" 

in L systems means a deterministic process of generating strings, 

11 

determlnistic, in the sense used in formal language theory means a 

deterministic process of parsing. Contrasting these notions may help 

us to understand some of the basic phenomena of formal language theory. 

Definition 10.1. A TIL system G = < ~,~,g,~ > is called deterministic 

(abbreviated DTIL system) if for each table P of ~ if < ~,a,~ > ~ YI 

and < ~,a,6 > ~ y~ are in P then YI = Y2- 

A T0L system is a special instance of a TIL system hence we talk 

about DTOL systems. 
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As an example of a research towards understanding deterministic 

restriction in L systems we shall discuss deterministic T0L systems. 

It is not difficult to construct examples of languages which can 

be generated by a T0L system but cannot be generated by a DTOL system. 

One would like however to find a nontrivial (and hopefully interesting) 

property which would be inherent to the class of deterministic T0L 

languages. It turns out that observing the sets of all subwords 

generated by DTOL systems provides us with such a property. In fact 

the ability to generate an arbitrary number of subwords of an arbitrary 

length is a property of a T0L system which disappears when the deter- 

ministic restriction is introduced. More precisely, we have the follow- 

ing result. (In what follows ~k(L) denotes the number of subwords of 

length k that occur in the words of L). 

Theorem 10.1. (Ehrenfeueht and Rozenberg [17]) 

Let Z be a finite alphabet such that ~Z = n > 2. If L is a language 

generated by a DTOL system, L C Z* then lim ~k(L) 
- ~ n k 

Various ramifications of this result are discussed in Ehrenfeucht, 

Lee and Rozenberg [18]. 

11. L TRANSFORMATIONS 

An L system consists of an L scheme and of a fixed word (the axiom). 

An L scheme by itself represents a transformation (a mapping) from Z + 

into ~* (where Z is the alphabet of the L scheme). From the mathema- 

tical point of view~ it is the most natural to consider such transfor- 

mations. This obviously may help to understand the nature of L systems. 

Although not much is known in this direction yet, some results about 

T0L transformations are already available (see Ginsburg and Rozenberg 

[31] ). 

Let a T0L scheme G = < Z,~ > be given. (Note that each table P of 

is in fact a finite substitution, or a homomorphism in the ease that 

satisfies a deterministic restriction). The basic situation under 

examination consists of being given two of the following three sets: 

a set L, of (start) words over Z, a set L2 of (target) words over Z, 

and a (control) set ~ of finite sequences of applications of tables 

from ~. The problem is to ascertain information about the remaining 

set. (Note that we can consider a sequence of elements from ~ either 

as a word over ~*~ called a control word~ or a mapping from ~* into Z*. 

We shall do both in the sequel but this should not lead to confusion). 

The following are examples of known results concerning this problem. 
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Theorem 11.1. (Ginsburg and Rozenberg [31]) 

If L 2 is a regular language, and LI an arbitrary language then the set 

of control words leading from L~ to L~ is regular. 

Theorem 11.2. (Ginsburg and Rozenberg [31]) 

If L2 is a regular language and ~ is an arbitrary set of control words 

then the set of all words mapped into L2 by ~ is regular. 

Theorem 11.3. (Ginsburg and Rozenberg [31]) 

If L~ is a regular language and ~ is a regular set of control words 

then the set of all words obtained from the words of LI by applying 

mappings from ~ is an ETOL language. Moreover each ETOL language can 

be obtained in this fashion. 

Also the following is quite an interesting result. 

Theorem 11.4. (Ginsburg and Rozenberg [31]) 

There is no T0L scheme S = < ~,@> such that ~* is the set of all 

finite nonempty substitutions on ~*. There is no T0L scheme S = 

< ~,~ > such that ~* is the set of all homomorphisms on ~*. 

We may also mention here the following result concerning "adult L 

transformations". Roughly speaking the adult language of an IL scheme 

G with an alphabet ~ is the set of all those strings over ~* which are 

transformed by G into themselves and only themselves. 

Theorem 11.8. 

There are regular languages which are not adult languages of IL schemes. 

12. GETTING DOWN TO PROPERTIES OF SINGLE L LANGUAGES OR SINGLE L 

SEQUENCES 

Undoubtedly, one of the aims of the theory of L systems is to 

understand the structure of a single L language or a single L sequence. 

Although some results in this direction are already available (see, 

e.g., Ehrenfeucht and Rozenberg [19,22,24] and Rozenberg [82]), in my 

personal opinion, there is not enough work done on this (rather diffi- 

cult) topic. 

Here are two samples of already available results. 

Let ~ be a finite alphabet and B a non-empty subset of ~. If x is a 

word over ~ then ~B(X) denotes the number of occurrences of elements 

from B in x. Let K be a language over ~ and let IK, B = {n : ~B(W) = n 

for some w in K}. We say that B is numerically dispersed in K if iK, B 
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is infinite and for every positive integer k there exists a positive 

integer n k such that for every ul,u 2 in IK, B such that u I > u 2 > n k 

we have ul-u2 > k. We say that B is clustered in K if IK, B is infinite 

and there exist positive integers kl,k2, both larger than 1, such that 

for every w in L if ~B(W) ~ k I then w contains at least two occurrences 

of symbols from B which are distant less than k 2 . 

Theorem 12.1. (Ehrenfeucht and Rozenberg [24]) 

Let K be an E0L language over an alphabet ~ and let B be a nonempty 

subset of ~. If B is numerically dispersed in K, then B is clustered 

in K. 

Results like the above one are very useful for proving that some 

languages are not in a particular class. This is often a difficult 

task. For example as a direct corollary of Theorem 12.1 we have that 

the language {w in {0,1}* : ~{0}(w) is a power of 2} is not an E0L 

language. (The direct combinatorial proof of this fact in Herman [35] 

is very tedious.) 

For D0L sequences we have the following result.(in what follows if 

x is a word and k a positive integer then Prefk(x) denotes either x 

itself if k ~ Ixl or the word consisting of the first k letters of x 

if k < Ixl. Similarly SUfk(x) denotes either x itself if k ~ Ixl or 

the word consisting of the last k letters of x if k < [xl). 

Theorem 12.2. (Rozenberg [82]) 

For every D0L system G such that E(G) = ~0,~I,... is infinite there 

exists a constant C G such that for every integer k the sequence 

Prefk(~0),Prefk(ml),... (respectively SUfk(~0),SUfk(~1),... ) is 

ultimately periodic with period C G. 

The above result is not true for DIL sequences; the corresponding 

sequences of prefixes (or suffixes) are not necessarily ultimately 

periodic. 

It should be clear that Theorem 12.2 can provide elegant proofs that 

some sequences are not DOL sequences. 

13. GENERALIZING L SYSTEMS IDEAS; TOWARDS A UNIFORM FRAMEWORK 

As in every mathematical theory, also in the (mathematical) theory 

of L systems one hopes to generalize various particular results and 

concepts and get a unifying framework for the theory. One still has to 
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wait for such a uniform framework for the theory of L systems, however 

partial results are already available. 

It was already noticed in early papers on L systems (see, e.g., 

Rozenberg [81]) that the underlying operation is that of the iterated 

substitution. This operation was quite intensively studied in formal 

language theory, however in the theory of L systems it occurs in 

somewhat modified way (one has a finite number of finite substitutions, 

tables, and then performs all their possible "iterative" compositions). 

This point of view was taken by J. van Leeuwen and A. Salomaa and(as 

a rather straightforward generalization of the notion of an ETOL 

system) they introduced the so called K-iteration grammars (van Leeuwen 

[57], Salomaa [103]). 

For a language family K, a K-substitutlon is a mapping ~ from some 

alphabet V into K. The mapping is extended to languages in the usual 

way. A K-iteration ~rammar is a construct G = < VN,VT,S,U > where VN, 

V T are disjoint alphabet (of nonterminals and terminals), 

S E (V N U VT)~ (the axiom) and U = {~, ,...,~n } is a finite set of K- 

substitutions defined on (V N U VT ) with the property that, for each i 

and each a in (V N U VT) , ~i(a) is a language over (V N U VT). The 

language generated by such a grammar is defined by 

L(G) =~JOik .~11(S) ~ VT, 

where the union is taken over all integers k > 1 and over all k-tuples 

(il,...,i k) with 1 < ij < n. The family of languages generated by 

K-iteration grammars is denoted by Kiter. For t > 1, we denote by 

K(t)iter the subfamily of Kiter , consist-~-~ of languages generated by 

such grammars where U consists of at most t elements. 

Example 13.1. If we denote the family of all finite languages by F, 

then it is clear that F(1)iter = Z(EOL) and Fiter = Z(ETOL). 

The families of K-iterated languages can be related to Abstract 

Families of Languages (AFL's) as follows. 

Theorem 13.2. (van Leeuwen [57], Salomaa [103]) 

If the family K contains all regular languages and is closed under 

finite substitution and intersection with regular languages then both 

Kiter and K (t) iter are full AFL's. 

The notion of a K-iteration grammar was extended to the case of 

context-sensitive substitutions by D. Wood in "A note on Lindenmayer 

systems, spectra and equivalence" McMaster University, Comp. Se. 

Techn. Dep. No. 74/1. Some results are also available about possibly 
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extending a few basic properties of the families of L systems (or L 

languages) to the case of families of K-iteration grammars (or lan- 

guages) (see, e.g., Salomaa [103land the above mentioned paper by 

Wood). 

14. CONCLUSIONS 

We would like to conclude this paper with two remarks. 

(1) In the first five years of its existence the mathematical 

theory of L systems has become each year fruitful and popular. This 

is exemplified by exponential growth of the number of papers produced 

(per year), and a linear (with a decent coefficient) growth of both 

the number of results and the number of people joining the area. 

(2) It may have already occurred to the reader (and it is certainly 

clear to the author of this paper) that both formal language theory 

and the theory of L systems have benefited by the existence of the 

other. 
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