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Theory of laser oscillation in resonators with photorefractive
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A theory for oscillation in an optical resonator with photorefractive gain was formulated. The threshold conditions
for the oscillation were also obtained. The result, applicable to a whole class of new devices, is a prediction for an
oscillation frequency different from that of the pump beam.

The phenomenon of two-beam coupling in photore-
fractive crystals has been used in the past to obtain
ring-cavity oscillation in the basic configuration' shown
in Fig. 1. Such oscillation was subsequently employed
to obtain self-pumped'- 3 phase conjugation and may
be important in gyroscopic applications.

In two recent communications, Rajbenbach and
Huignard4 and Feinberg and Bacher5 reported on the
observation of a frequency difference between that of
the pump beam (co) and that of the wave circulating in
the ring resonator (X).

In this Letter we apply the field theory of optical os-
cillation to the configuration of Fig. 1.6 The result is
a prediction for an oscillation frequency that is indeed
different from that of the pump beam. The theory also
provides an explanation of the observed fact that self-
pumped phase-conjugate mirrors function even when
the input beam is severely distorted or strongly (spa-
tially) modulated.

Referring to Fig. 1, we take the known input (pump)
beam as

Ei(r, t) = 1/2 Ejo(r)exp(icoot) + c.c., (1)

where Eio(r) contains the propagation factor as well as
describing the effect of distortion and of information
(spatial) modulation of the beam. The oscillating
beam, which establishes itself in the ring oscillator, is
taken as E(r, t), and our immediate task is to solve for
the oscillation condition and the oscillation frequency
of this beam. The resonator field can be expanded in
the (complete) set of the resonator mode Ea (rY78:

E(r, t) = - -pa (t)Ea (r),
a -\ -,

H(r, t) = E 1 waqa (t) Ha (r), (2)

where Ea (r) and Ha (r) satisfy the resonator boundary
conditions for electric and magnetic fields, respectively,
E and ,u are electric and magnetic permittivities, re-
spectively. In addition,

V X Ea = kaHa,

V X Ha = kaEa, (3)

where ka = wa V/jo. The quantity pa (t), as an exam-
ple, contains the temporal information of mode a, in-
cluding that of the frequency. In addition, the modal
functions Ea and Ha are orthonormal according to

Sr Ea - EbdV = bab, SVre. Ha . HbdV = bab.

(4)
The insertion of Eqs. (2) into Maxwell's equation plus

the use of Eqs. (3) and (4) leads to the oscillator equa-
tion 8

Pa + WPa + Wa 2Pa
Qa

1 02 r

- v dt2,vres
PNL(r, t) -Ea (r)dV, (5)

where Qa is the quality factor of the resonator for mode
a and PNL(r, t) is the polarization in the photorefractive
crystal that is due to the nonlinear interaction between
the pump (input) beam Ei (r, t) and the oscillator field
E(r, t). From Eq. (5) we identify Wa as the resonance
frequency of mode a in the no-loss (Qa - -) limit. The
distributed nonlinear polarization term PNL(r, t)
driving the oscillation of the resonator field is that

E ijor )ei _,

Fig. 1. Schematic diagram of a photorefractively pumped
unidirectional ring resonator.
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produced by the incidence of the input field Ei (r, t) on
the index grating created photorefractively by the in-
teraction of the field EL (r, t) and the ring-oscillator field
E(r, t).

If we assume that one mode only, say a, oscillates,
then we may replace E(r, t) by the ath summand in Eqs.
(2) and write

PNL(r, t) = 4EoAn(r)Ei(r, t)

=_ E Pa(t)[Eio* - Ea(r)]Ejo(r)~~~~ ly ~~~~+ c.c.,
J6 jEioI 2 + IPa EaI 2

(6)

where An, the index grating formed by the interference
of the input beam Ei(r, t) and the oscillation field
E 1 /2 pa(t)Ea(r), is given by9

An(r, t) = - 7Y Pa(t)[Eio*- Ea(r)]exp(-iwot)
2,/-E |IEioI2 + IPa.Eai 2

Pa(t) = Pao(t0eiwt. (10)

In addition, we use Eq. (6) to obtain in the process

[(Wa 2 - w2) + i "" jPaO(t)

+ (2ict + Q-aPao + Paoeiwt

Eo a2_ dYPao(t)IEio* -Eat2 eirdv.

e at2 Vcrysi IEoI 2 + Ipao(t)Ea(r)J2

(11)

At steady state Pa and Pa vanish, a/at - iw, and pao(t)
= PaO(W) = constant. The oscillation condition (11)
becomes

(Wa2 - W2) + i act) =JW2'yf
Qa 

=E 1+i(c-co2)rT (12)

+ c.c. (7) where in the second equality we used the zero-exter-

The photorefractive (complex) coupling constant y is nal-field (E' = 0) form of oy as given by Eq. (9) and f is
given'0 ' 11 by given by

= reffnO3 iEp(E' + iEd)
2 [E' -(a -wo)to(Ed + EA)] + i[Ed + Ep +

where reff is the relevant electro-optic coefficient, no is
the refractive index of the crystal, to is the characteristic
time, E' is the externally applied electric dc field, and
EA, Ed, and Ep are internal electric fields characteristic
of drift, diffusion, and maximum space charge, respec-
tively. The parameters reff, to, EA, Ed, and Ep can be
calculated from given crystal parameters and crystal
orientation with respect to the various interacting
beams. co and coo, we recall, are the frequency of the
oscillating mode a (as yet unknown) and that of the
pump beam, respectively. If there is no applied electric
field, E' = 0, and

1 + i(W - wo)'r (9)

where
reffnO3 EpEd

2 (Ep + Ed)

and
(toEd + Ep

We note that the sole time dependence of PNL(r, t) is
that of mode a, i.e., of the term pa(t). The time de-
pendence of the input mode E (r, t) has disappeared
since Ei appears in Eq. (6) multiplied by its complex
conjugate. An equivalent way to explain this fact is that
the index grating produced by the interference of El and
Ea (the cavity field) is moving since X $d coo, and this
velocity is just the right one to Doppler shift the incident
frequency coo to w.

Returning to the oscillation equation (5), we take
Pa (t) as the product of a slowly varying amplitude pao(t)
and an optical oscillation term exp(iwt):

(- wo)toE'] (8)

^1 {~~~ Eio* (r) -E. r)l d,(3

J=fvy I Ejo(r)l2 + dp.,(()E3(r)3)

so that it is dimensionless and real.
The left-hand side of Eq. (12) is a complex number

that depends only on passive resonator parameters and
the (yet unknown) oscillation frequency w. According
to Eq. (6), the phase of the right-hand side of Eq. (6)
depends on (co - coo). The frequency w will thus adjust
itself relative to aco to satisfy Eq. (12). Using Eq. (6) and
separating the real and imaginary parts of Eq. (12) lead
to

-a _ o)2 - Efy([+ 2(W0 - wor41J + (W, - W)72 (14)

and

CWa W _ eof-yow
2

Qa e[1 + (co - wo)22 ] (15)

Since w - Wa c CO, Eq. (14) can be approximated to a
high degree of accuracy by

(16)- Eof'yOWsO(W - W)co _ co = 2o2[1+ (w - o)2 ]a2f[l + (co-wo) T]

In the limit ta << T, where ta = Qal (Va is the decay time
constant of the photon density in the ath mode (with
no photorefractive interaction), we can solve Eq. (16)
for w and, using Eq. (15), obtain

(ca - coo) 2 t (< - coo). (17)

This is our main result. It predicts a shift between the
frequency of oscillation (o) and that of the pumping
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beam (WO). The dependence of this shift on the pa-
rameters indicated in the equation was verified exper-
imentally both in a ring resonator pumped photore-
fractively12 and in a resonator pumped by two photo-
refractive phase-conjugate mirrors. 13 These results will
be described in a future publication.

Let us return next to the threshold condition (15).
The parameter f is given by Eq. (13) and can be written
as

f- fb I Ei(r°)l2 ) I E.(r~l2 dV (18)

f . Ei0* (r) - E. (r)l 21 dV (19)JIfio I)E2 + I~s~) 2

(I EIol 2)

where we used the first of Eqs. (2) to write the oscillating
electric field of the ath mode as

Eosc(r) =- pao(-)Ea (r)

and ()to denote spatial averaging over the crystal
volume. We can now rewrite f as

f to (20)
1 + (IEoscl2)

(I Ei612)

where

Jon jfI Eio* (r) -Ea (r)I 2 d V

a n d E q . ( 1 5e I Esol 2

and Eq. (15) becomes

Wa ta

n2 ,yofo
1 + 4(wo - Wa)2ta 2 (n,1

1+ K~O2

(21)

(22)

where ta = Qa/Wa is the resonator- (ath-) mode decay
time constant. At the transient start of oscillation, the
right-hand side of Eq. (22) with IEOSJ = 0 must be larger
than (or equal to) the left-hand side. Once oscillation
starts, the term IEo2J2 will grow until both sides are
equal. The start-oscillation condition is thus

'Yo 2
1 + 4(wo - Wa)2 ta 2

nf2 f Oata
(23)

and does not depend on the pumping intensity I Ejo 2.
Equation (22) can be solved for the oscillating-field

intensity inside the resonator:

(IEoscI2) = (1E0I12) + _ YJ ta2 1 '
I1 + 4(wo - Wa )2ta2 (24)

which is reminiscent of the expression for the power
output of homogeneously broadened lasers.14

We have neglected in our analysis the change in in-
tensity of both the pump and the resonator beams in the
crystal owing to the mutual power exchange. This ne-
glect is well justified near threshold, and even a 20-30%
power exchange per pass will not invalidate the basic
conclusions of the above analysis. Another important
issue is the relationship of distortion (or intentional
spatial modulation) of the pumping beam Ejo to the
oscillation. It follows from Eq. (21) that the main effect
is to reduce the projection of Eio on Ea, leading to a
smaller fo and thus, according to expression (23), to a
higher threshold. The shape Ea (r) of the oscillating
field is not affected.

In summary: We have formulated an oscillator
theory for photorefractively pumped resonators. Some
basic features of the analysis are consistent with ob-
servations made to date. Other aspects await confir-
mation. The main result, which is applicable to a whole
class of new devices, is a prediction of and an expression
for a frequency offset between the input frequency and
that of the oscillation field in optical resonators with
photorefractively induced gain.
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