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ABSTRACT: A theory of elastic (Rayleigh-Debye) light scattering by an isotropic 

system composed of anisotropic units is developed. Each unit is regarded optically as 

a point scatterer with three different principal polarizabilities. No assumption is intro­

duced about the radial and orientational distributions for any pair of units. The only 

assumption is the random orientation of the system as a whole with respect to the 

light-scattering framework ("isotropic" system). Theory is formally adapted to infinitely 

dilute solutions of polymers of completely general structure. Detailed calculations are 

carried out for the Porod-Kratky wormlike chain. A method is suggested for deter­

mining the parameters of the Porod-Kratky chain through comparison of the theory 

with experimental data on polymer chains of moderate length. Chain-length dependences 

of various terms in expressions for reduced intensities are inferred for general chains 

from those for the Porod-Kratky chain. The correspondence of the Porod-Kratky 

chain with general chains is thereby discussed. A detailed comparison is also made 

of our results for the Porod-Kratky chain and general chains with those for the random 

chain reported by Utiyama and Kurata. 

KEY WORDS Light Scattering / Isotropic System / Anisotropic 
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Porod-Kratky Chain / Random Chain / 

As is well known Debye1 was the first to 

recognize the potentiality of light-scattering 

methods as a means to determine the molecular 

weight and the average spatial dimension of 

polymer chains in solution and developed a 

theory for linear chains. The model used by 

him is the so-called Gaussian chain; many 

identical units are connected by springs of zero 

rest length and of equal strength. Each unit is 

regarded optically as an isotropic point scatterer. 

Real chains depart from the Gaussian chain in 

many respects. Distribution functions of inter­

unit distances deviate from Gaussian distributions 

by the discrete nature of real chains, i.e., fixed 

bond lengths and angles and hindered, internal 

rotations as well as by the excluded-volume 

-effect. Units of a real chain are usually optical-

ly anisotropic, no matter how units are defined; 

bonds, structural units, or Kuhn's segments. 

Numerous treatments have been published which 

are directed to refinement of Debye's theory. 

* Presented at U.S.-Japan Seminar on Statistical 

Mechanics and Spectroscopy of Polymers, Univer­

-sity of Massachusetts, Amherst, Mass., U.S.A., 

August 2-6, 1971. 

In this paper we are concerned with the effect 

of the optical anisotropy of units. An important 

contribution toward this direction was already 

made by Utiyama and Kurata, 2 who developed 

a theory for the random chain of optically aniso­

tropic random links and found some important 

results (see later). We first develop a theory of 

elastic (Rayleigh-Debye) light scattering by a 

completely general model, i.e., an isotropic 

system composed of anisotropic units. Each 

unit is regarded most generally as a point scat­

terer with three different principal polarizabilities. 

No assumption is introduced about the radial 

and orientation distributions for any pair of 

units. The only assumption is the random 

orientation of the system as a whole with respect 

to the light-scattering framework ("isotropic" 

67 



K. NAGAI 

system), an assumption valid to polymer chains 

in solution unperturbed by external stress of any 

kind. The theory is then applied to general 

polymer chains and the Porod-Kratky wormlike 

chain. The similarity and disparity of results 

for the random chain2 and general chains and 

the Porod-Kratky chain are fully discussed. 

Light scattering by polymer chains in solution 

has much in common with light scattering by 

an isotropic, inhomogeneous solid. 3 Concerning 

the latter problem Goldstein and Michalik4 

developed a very general theory, whose result 

might be usable for the present purpose. Un­

fortunately they introduced some simplifying 

assumptions: the axial symmetry of polarizability 

of each unit and an assumption about the ori­

entational distribution between two units which 

together spoil complete generality. Stein and 

Wilson5 introduced further some simplifying 

assumptions and thereby obtained results that 

are much more tractable in the analysis of ex­

perimental results. The present theory avoids 

all these assumptions and hence some inter­

mediate relations of this paper can be regarded 

as the most general solutions for the problem 

of light scattering by an isotropic, inhomogene­

ous solid. 

GENERAL THEORY 

Consider a monochromatic light beam which 

travels toward the positive x axis of a laboratory 

coordinate system xyz and is scattered at the 

origin by an isotropic system composed of aniso­

tropic units (Figure 1). The incident beam may 

be unpolarized or vertically or horizontally polar­

ized with respect to the scattering plane, i.e., 

z,X 

y 

Incident ,< 
Scattered 

Figure 1. 
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the xy plane. Similarly, the unpolarized (total), 

or vertical or horizontal components of scattered 

light are measured in the scattering plane.* The 

scattering system is composed of n units, either 

identical or different, each of which is selected 

so small that it can be regarded as a point scat­

terer. Apart from a well-known factor to be 

multiplied (see, e.g., ref 2a, eq 7 and 8) the 

intensity of scattered light is given by 

f=L,<(JJTr;JJ 1)(JJTrjJJ1)exp(ikS•f;3)) ( 1) 
i,i 

where v' and JJ are the unit vectors along the 

electric vectors of incident and scattered beams; 

r; and r i are the polarizability tensors of units. 

i and j (the excess polarizability tensors of units 

of a solute molecule in the case of solution); i 

before k is (-1)112 ; k=2n/J. with J.thewave 

length of light in the medium; s=s; -s8 with 

S; and S8 being the unit vectors along the incident 

and scattered beams; s= Isl =2 sin (0/2) with (j 

the scattering angle; r;3 is the vector from unit 

i to unit j; the superscript T denotes the trans­

pose of a vector; the summation on i and j is 

taken over all units; and the averaging is taken 

over all conformations of the system. 

The averaging is carried out in two processes: 

(i) on the external coordinates, i.e., the free 

orientation of the system with a specified con­

formation with respect to the xyz system and 

(ii) on the internal coordinates of the system. 

r; can be expressed 

r;=r;iµ;1µT1 +r;2µi2µf2+r;aµiaµfa ( 2} 

where r;1, r;2, and r;a are the three principal 

values of the tensor ri and µi1, µi2, and µi3' 

are the unit vectors along the corresponding 

axes. Substitution of ri and rJ, expressed as in 

eq 2, into eq 1 yields 9n2 terms, which can each 

be written representatively as 

I' =<rr' (v · µ)(v · µ')(v' · µ)(v' ·µ')exp (iks-r)) ( 3), 

* On the occasion of the U.S.-Japan Seminar 

Prof. W. Prins at Syracuse University kindly pointed 

out to the author the importance of the out-of-plane 

scattering, i.e., the scattering outside the xy plane. 

This case appears to be able to treat within the 

framework of the present theory, i.e., by still leav­

ing the scattered beam in plane while modifying 

JJ and JJ' properly. We will discuss this problem 

in the near future. 17 
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Separating the two processes of averaging we 

write 

I' =<rr' < )ext)int=(rr' !")int ( 4) 

J" =( )ext=(8ir2)-l (J.1 • µ)(J.1 · µ 1)(.1/ · µ)(J.11 
• µ') 

X exp (iks, r) sin 01 d0' d<pd¢ ( 5 ) 

where < )ext and < )int denote the averaging 

on the external and internal coordinates, i.e., 

processes (i) and (ii) above. For a specified 

(internal) conformation the relative spatial dis­

position of µ, µ', and r in space is definite, 

and the averaging on the external coordinates 

can be carried out by introduction of the Eulerian 

angles 01 <p<p, as implied in eq 5. The integral 

in eq 5 is of fundamental importance in theories 

of light scattering and is elementary in nature, 

but has never been evaluated (to our best know­

ledge) possibly because of its complexity. 

To evaluate I" in eq 5 we introduce two 

right-handed coordinate systems: one is the XYZ 

system fixed to the xyz system and the other 

the X'Y' Z' system fixed to the scattering system. 

The Z axis coincides with s and the X axis 

with the z axis (Figure 1). The XYZ and xyz 

systems are correlated by 

[ ;]=[-c~~(0/2) -si~(0/2) ~][;] (6) 

Z SID (0/2) -COS (0/2) 0 Z 

Let 1.J/ and J.1/ stand for J.1 1 for the vertically 

and horizontally polarized incident beams, and 

J.lv and J.IH for the vertically and horizontally 

polarized scattered beams. J.1/, J.1/, J.lv, and J.IH 

are given in the xyz system by (0 0 If, (0 1 Of, 

(0 0 1 f, and ( -sin 0 cos 0 of, and therefore by 

J.1/=[~], J.1/=[-si:(0/2)], J.lv=[o
0

1
], 

0 -cos(0/2) 

and 

J.IH=[ si:(0/2)1, in the XYZ system ( 7) 

-cos(0/2) 

The Z' axis is chosen to coincide with r and 

the X' and Y' axes are chosen arbitrarily (but, 

of course, so as to constiute a right-handed sys-
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tern), so that r, µ, and µ' are expressed 

in the X'Y' Z' system ( 8 ) 

The X'Y' Z' system is correlated with the XYZ 

system by an orthogonal transformation matrix 

involving the Eulerian angles: (X Y Z)T = 
A(X' Y' zy with 

A=A;,A0 ,A1 

[cose -sin <p ~][ co~,, 0 ''~''] = si:<p cos <p 1 

0 1 -sin 0' 0 coso' 

[cos¢ -sin¢ : X si:¢ cos¢ ( 9) 

0 

It is unnecessary to describe here the explicit 

geometrical meaning of the Eulerian angles ex­

cept to say that the Z and z' axes are chosen 

as the polar axes, i.e., the angle between them 

being 0'. 

With J.1 and J.1 1 expressed in the XYZ system 

(eq 7) while with µ and µ' in the X'Y' Z' system 

(eq 8), I" becomes 

I" =(8ir2)-l (J.IT Aµ)(J.11T Aµ)(J.IT Aµ')(J.l'T Aµ') 

x exp (iksr cos 0 ') sin 0 'd0 'dipd¢ ( 10) 

The integral can in principle be evaluated by 

substituting A in eq 9 into 10, decomposing 

matrices, and performing the integration. This 

method is liable to lead to errors because of 

numerous terms ensuing. We have found a 

more systematic means of achieving this end. 

Expressing the product of the two scalar fac­

tors as their direct product and rearranging by 

the direct-product theorem* we obtain6 

* The direct product of the two matrices a= {a;1} 

and b= {b;1) is defined as 

axb~ [ :!:: ;: : : : 
The important theorem of direct product needed 

below is 
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(vT Aµ)(1/T Aµ)=(vT Al"A0 ,A¢µ) X (v'T Al"A0 ,A¢µ) 

=(vr xv'r)(AI" xAl")(Ao, xAo,)(A¢ xA1')(µ xµ) 

(11) 

where X denotes the direct product of two 

matrices.* The motivation for this procedure is 

to partition the same matrices into the same 

factors. 6 The size of matrices in eq 11 can be 

reduced from 9 X 9 to 6 X 6 by utilizing the fact 

that these are written in the form of self-direct­

products. Referring for the method elsewhere, 6 • 7 

we obtain 

and s in the brackets as subscripts and c0 , and 

s0 , are the abbreviations of cos 0' and sin 0', and 

similarly with <p and ¢. Similarly we obtain 

(vT Aµ')(v'T Aµ') =YBl"B0,B¢x' (17) 

x'=(xi' xz' xa' x,' xs' x/f 

=(µ/2, µ/µ/, µ/µ/, p/2, p/µ/, Pa' 2f (18) 

Thus we have 

(vT Aµ)(v'T Aµ)(vT Aµ')(v'T Aµ') 

=(yBl"B0 •B¢x) X (yBl"B0 ,B¢x') 

=(YXY)(BI" xBl")(B0, xB0,)(B¢ XB¢)(xxx) (19) 

with 

(12) The size of matrices in eq 19 can similarly be 

reduced from 36x36 to 2lx21: 

Y=(Y1 Y2 Ya Y 4 Ys YG) 

=(i;1i;/, 1)11)/ +1)21)i', i;1i;a' +i;ai;/, 
I 

V2lJ2 , 

+i;ai;z', i;ai;a') 

X=(X1 X2 Xa X4 X5 XG)T 

=(µ/, µ1µ2, µ1µ3, µ/, µ2µ3, µ/f 
c2 -2cs 0 s2 0 0 

cs c2-s2 0 -cs 0 0 

0 0 C 0 -s 0 
Bl" or B¢= 

s2 2cs 0 c2 0 0 

0 0 s 0 C 0 

0 0 0 0 0 

c2 0 2cs 0 0 s2 

0 C 0 0 s 0 

-cs 0 c2-s2 0 0 cs 
Bo,= 

0 0 0 1 0 0 

0 -s 0 0 C 0 

s2 0 -2cs 0 0 c2 
0' 

I 1)21)3 

( 13) 

(14) 

<p or¢ 

( 15) 

( 16) 

(vTAµ)(v'T Aµ)(vT Aµ')(v'T Aµ') 

=(y/, Y1Y2,· · .,y/) 

X Dl"Do,D¢(x1xi', x1xz' +x2xi', .. . , xGx/f (20) 

The matrices DI" (or D¢) and D0 ,, are shown in 

Tables I and II, together with the row and 

column vectors, due to limitations of space. 

Upon substitution of eq 20 into eq 10 and inte­

gration on <p and ¢, the 12 rows and columns 

out of 21 in DI" and D¢ become zero, as is 

apparent from Table I (the nonvanishing 

rows and columns are indicated by asterisk). 

Therefore, the corresponding rows and columns 

of D0 , also become zero. Some of the non­

vanishing rows and columns of DI" and D¢ are 

identical (of course after integration); those cor­

responding to y/ vs. y/, y 1y 6 vs. y4y6, and y/ 
vs. y/, and similarly those corresponding to 

x1xi' vs. x4x,', x6xi' +x1x,' vs. x6x,' +x4x/, and 

x3xa' vs. x5x/. This fact permits further reduc­

tion in the size of matrices. Thus deleting the 

vanishing rows and columns and then condensing 

where the subscript 0' is implied to apply to c the ensuing matrices we find 

I" 1 i IT[3 2 2 2 3 2 2 6 2 2 
= 128 Jo Yi+ :Y1Y4+Y2 + Y4, Yi+ Y1Y4-Y2 +Y4, 

4(y/-2y1y4+y22+y/), 4(y/+y/), Sy/] 

l +c4 0 c2s2 0 4c2s2 s4 

O c2 s2 0 0 0 

2c2s2 s2 c4 +s4 +c2 0 -8c2s2 2c2s2 
X 

c2 s2 0 0 0 0 

c2s2 0 -c2s2 s2 (c2-s2)2+c2 c2s2 

s4 0 c2s2 0 4c2s2 c4 
O' 

X exp (iksr cos 0') sin 0' dB' 

70 

3x1xi' +x4xi' +x1x,' +4x2xz' +3x4x,' 

2x1xi' +6(x,xi' +x1x,')-8x2X21 +2x,x,' 

4(x6xi' +x1x/ +x6x,' +x,x/) 

x1xi' -x4xi' -xix.' +4x2xz' +x4x,' 

4(x3xa' +xsxs') 

8x6x/ 

(21) 
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Going back from y to 1J and from x to µ and 

grouping the same powers of cos()' we obtain 

l" =(128f1~: V(Q 0 +Q 1 cos2 ()' +Q2 cos4 0')U 

x exp (ikrs cos 0') sin()' d()' (22) 

where 

V=[l, J.J/+J.J/2, J.J/J.J/2, (1J·1J')2, (1J·1J 1 )J.J3 J.J/] (23) 

U=[l, µ/+µ/2, µ/µ/2, (µ·µ')2, (µ·µ')µ3µ/f 

(24) 

1 -5 3 2 

'] 9 -15 6 -12 Q.~[ 105 6 -60 

4 -8 

sym 48 

[-10 
18 -30 12 

-Ml -42 150 -12 -24 

Q1= -1050 -60 600 

-8 48 

sym -384 

1 -5 35 2 

-W] 25 -175 -10 100 Q,~[ 1225 70 -700 

4 -40 

sym 400 

Upon integration we have 

I''= (64)-1V(Q0F0 +Q1F1 +Q2F2)U 

where 

' oo 2k 

Fo= smz = I: (-ll--z __ 
Z k=O (2k+l) ! 

F1= -- 3 smz+~-2~ ( 1 2) . 2 cos z 

z z z 

oo z2k 

= ~o (-l)k (2k) ! (2 

(25) 

(26) 

(27) 

(28) 

(29) 

(31) 

with z=ksr. I" is symmetric with respect to 1J 

and 1J' and µ and µ' as it should be from eq 

10. 
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We proceed to substitute I" into eq 4 and 

sum I' first on the respective three eigenvalues 

of the polarizabilities of units i (unprimed) and 

j (primed). Upon this summation, the first term 

unity in U leads to (r1 +r2+r3)(ri' +r/ +ra')= 

(Tr r)(Tr r'), where Tr denotes the trace of a 

tensor; µ/+µ/ 2 to (r1µ~s+r2µis+raµ;s)(ri' +r/ 

+ra')+a similar term=r-2[(rTrr)(Trr')+(rTr'r) 

(Trr)]; µ/µa' 2 to r-vTrr)(rTr'r); (µ·µ')2 to 

I:rkr/(µk·µ/)2=Trrr'; and (µ·µ')µ3µa' to 

I:rkri' (µk 'µ/)µk3µ[a=r- 2rT rr'r. Some of these 

relations were established with the X'Y'Z' sys­

tem, but they are invariant to a coordinate 

transformation and hence valid in any coordinate 

system. Thus we reach 

1=(64)-1I:<[V(Q0F0 +Q1F1 +Q2F2)U'];;) (32) 
i ,j 

where 

(33) 

The subscript ij in eq 32 implies the following 

substitutions to be made: r and r' in U' tor;, 

and r;, respectively, r in U' to r;; and r in U' 

and F's to r;;, This notation, introduced to 

simplify expressions, will be used throughout 

this paper. The average in eq 32 refers to the 

intrasystem average; the subscript int is hereafter 

omitted for brevity. 

V's for the four combinations of vertically 

and horizontally polarized incident and scattered 

beams are given, according to eq 7 and 23, by 

Vvv=(l O O 1 0) (34) 

V vh = V Hv = [l, ½(l +cos 0), 0, 0, O] (35) 

VHh=[l, 1 +cos(), ¼(I +cos 0)2, cos2 (), 

½(1 +cos 0) cos 0] (36) 

where the first, capital subscript refers to the 

polarization of scattered beam, and the second, 

small subscript to that of incident beam (the 

same holds for I and R below). 

Substituting eq 34-36 into eq 32 and decom­

posing matrices we obtain 
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lvv=(64f1I:<[(3Fo+2F1 +3F2)[(Tr r)(Tr r')+2Tr rr 1]+(F0 +6F1-15F2)[(Tr r)rTr'r 
i,j 

+ (Tr r')rT rr+4rT rr' r]r - 2 + 3(3Fo- 30F1 + 35F2)(rT rr)(rT r' r)r - 4];;) 

lvh=lHv=(128)-1l:<[-(3F0 +2F1 +3F2)(Tr r)(Tr r')-(F0 +6F1 -15F2) 
i,j 

X [(Tr r)rT r'r+(Tr r')rT rr]r-2 -3(3Fo-30F1 +35F2)(rT rr)(rTr'r)r-4 

+2(5F0 +6F1-3F2)Tr rr' + 12(F0-6F1 +5F2 )(rTrr'r)r-2 

+{-(5F0 - l8F1 +5F2)(Tr r)(Tr r')+(9F0 -42F1 +25F2) 

X [(Tr r)rTr'r+(Tr r')rTrr]r-2-5(3Fo-30F1 +35F2)(rT rr)(rTr'rV 4 

+ 2(3Fo- 6F1 - 5F2)Tr rr' -4(3Fo +6F1 - 25F2)(rT rr' r)r - 2} cos 0];;) 

/Hh=(256)-1I;<[(-13F0 +2F1 + 19F2)(Tr r)(Tr r 1)+(F0 +54F1 -95F2) 
i,j 

X [(Tr r)rT r'r+(Tr r')rT rr]r-2 + 19(3Fo-30F1 +35F2)(rT rr)(rT r'r)r- 4 

+2(19F0 -30F1 +19F2)Tr rr' -4(15F0 -102F1 +95F2)(rTrr'r)r-2 

+{2(5F0 -l8F1 +5F2)(Tr r)(Tr r')-2(9F0 -42F1 +25F2) 

X [(Tr r)rT r'r+(Tr r')rT rr]r-2 + 10(3Fo-30F1 +35F2)(rT rr)(rT r'r)r-4 

+4(5Fo-18F1 +5F2)Tr rr' -8(9Fo-42F1 +25F2)(rTrr'r)r-2
} cos 0 

+{(35F0 -30F1 +3F2)(Tr r)(Tr r')-3(5F0-l8F1 +5F2) 

X [(Tr r)rT r'r+(Tr r')rT rr]r-2 +3(3Fo-30F1 +35F2)(rT rr)(rT r'r)r- 4 

+2(3Fo+2F1 +3F2)Tr rr' +4(Fo+6F1 -15F2)(rTrr'r)r-2} COS2 0];;) 

(37) 

(38) 

(39) 

The complexity of these expressions will be com­

pensated in part by their exactness. For an 

isotropic, inhomogeneous solid in which the 

mutual spatial dispositions of all units are defi­

nite, the averaging is taken over all pairs of 

units, the summation over i and j being thereby 

avoided. 3- 5 

isotropic units it is convenient to write 

lvv=lvv(iso)+lvv(aniso) (43) 

lVh=lHv=lVh(aniso)=lHv(aniso) (44) 

/Hh=/Hh(iso)+/Hh(aniso) (45) 

where /(aniso) is the contribution from aniso­

tropic parts of polarizability of units (anisotropic 

scattering) and /(iso), given by eq 40-42, is the 

isotropic counterpart (isotropic scattering). /(iso) 

is the intensity which we would have if every 

unit were isotropic, having the mean polari­

zability j';=¼ Tr r;. 

Consider a special case where every unit is opti­

cally isotropic, i.e., r; 1=r;2=r;a- In this case rTrr 

reduces to ¼r2 Tr r; Tr rr' to ¼(Tr r)(Tr r'); rT rr'r 

to tr\Tr r)(Tr r'). Hence lvv, etc., reduce to 

lvv(iso)=9-1 I;([Fo(Tr r)(Tr r 1)];1) (40) 
i,j 

/Vh(iso)=lHv(iso)=0 (41) 

/Hh(iso)=9-1I:<[F0(Tr r)(Tr r')];1) cos2 0 (42) 
i,j 

These are Debye's results.1 For the case of an-

For most models of interest the averages in 

eq 37-39 are difficult to calculate, but often 

become amenable when F's are expanded in 

in power series in z=ksr. Substituting eq 29-31 

into eq 32 we have 

l=2-1I; £ <[(-1)"[(2k+l) ! (2k+3)(2k+5)r\ksr)2"VW1cV 1
];1) (46) 

with 

72 

i,j k=O 

W1c=[-(k2+3k+l) 

sym 

k(k+3) k(k-1) 

-k(k+5) -Sk(k-1) 

35k(k-l) 

2k2+6k+3 

-2k(k+2) 

2k(k-l) 

1 

-4k(k+2) l 
2k(4k+5) 

-20k(k-l) 

4k 

4k(2k-5) 

(47) 
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lvv, etc., in series form can be obtained by sub- ment in the usual manner8 

stituting eq 34-36 into eq 46. j=(n0cV/2rrN)(dn/dc)=(n0M/2rrNA)(dn/dc) (49) 

GENERAL POLYMER CHAINS we find for the reduced intensity R 

In this section we consider light scattering by 

a polymer solution which is assumed so dilute 

that interactions between polymer chains are 

negligible; that is, we consider substantially 

single-chain scattering. 

R=KcMj-21 (50) 

K=( 4rr2n// J.4NA)( dn/dc)2 (51) 

Regarding 

n 

r=¼ Tr r=¼ I: Tr ri (48) 
i=l 

as the excess polarizability of a polymer chain 

and correlating it with the refractive index incre-

where N is the number of polymer molecules in 

the scattering volume V; c is the concentration 

in g/cc; Mis the molecular weight of a polymer; 

n0 is the refractive index of a solvent; NA is the 

Avogadro number; and dn/dc is the refractive 

index increment of a polymer. Separating the 

isotropic and anisotropic parts of scattering and 

expanding only the latter in a series we obtain 

Rvv=KcMj-2[J2-/a(sk)2 + · · · + I:<[rr' Fo]ij)] 
i,j 

RVh=Rr1v=KcMr2[¾/2-/4(sk)2-/6(sk)2 cos 0+ · · ·] 

Rr1h =KcMj-2{¾f2-f6(sk) 2 - f 7(sk)2 cos 0 + · · · +[¼/2-/s(sk) 2 + · · · + I:<[rr' Fo)]ij)] cos2 0} 
i,j 

2 I I 2 , , I 2 3 2 2> 2 •2 
J2=-I:<[3Trrr-(Trr)(Trr)]ij>=-I:<[Trrr]ij>=-< Trr-(Trr) =-<Trr> 

45 i,j 15 i,j 45 15 

/s=-1- I: <[-jr2(Tr r)(Tr r')-(Tr r)rTr'r-(Tr r')rTrr+6r2 Tr rr' -4rTrr'r]ij> 
105i<j 

1 T•I IT• 62T ,,, 4T'''] > =~I:<[-77(r r r)-7j (r rr)+ r r rr - r rr r ij 
105i<j 

/4=-1- I: <[-3r2(Tr r)(Tr r')+(Tr r)rTr'r+(Tr r')rTrr+Sr2 Tr rr' -3rTrr'r]ij> 
210 i<j 

=-1-r: <[Sr" Tr rr' -3rTrr'r];j) 
210i<j 

/5=-1- I: <[2r2(Tr r)(Tr r')-3(Tr r)rTr'r-3(Tr r')rTrr-3r2 Tr rr' +9rT rr'r];}) 
210 i<j 

=-1-I: <[-3r2 Tr rr' +9rTrr'r];}) 
210i<} 

/s=-1-r: <[-r2(Tr r)(Tr r')-2(Tr r)rTr'r-2(Tr r')rTrr+5r2 Tr rr' +6rTrr'r];j) 
210 i<i 

=-1- I: <[5r2 Tr rr' +6rTrr'r];}) 
210 i<j 

=-1-I; <[2lj(rTf,'r)+21j'(rTf'r)-4r2 Tr 7'r 1 +12rT7'7' 1f];i) 
210i<} 

/s=-1- I:<[- ~r2(Tr r)(Tr r')+3(Tr r)rTr'r+3(Tr r')rTrr+3r2 Tr rr' -2rTrr'r]ii> 
210 i<j 9 

=-1-I; <[7j(rTf,'r)+ 7j'(rTf'r)+3r2 Tr rr'-2rTfr'r]i}) 
210i<j 

Polymer J., Vol. 3, No. 1, 1972 

(52) 

(53} 

(54} 

(55) 

(56) 

(57), 

(58) 

(59) 

(60) 

(61) 
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Here fi=¼ Tr Ti and r is the traceless part of T, 

i.e., Ti=Ti-fiEa, E3 being the unit matrix of 
order 3. The / 2 term, related to the optical aniso­
tropy J(Trj-2), has been well known in connection 

with the depolarization ratio in the Rayleigh­

Debye9 and Raman scattering. The other f 
terms are new. For the random chain all the 

J and higher [in (sk)2] terms except for /2 vanish. 
All f are calculable for any model of polymer 

chains, either hypothetical or realistic, under the 
assumption of the absence of the excluded 
volume. It seems impossible, however, to deter­

mine these /, except for / 2, from experimental 

data of R, the unknowns being too many com­

pared with the observables. In this paper we 

calculate the f for the Porod-Kratky chain. 
Methods of ad justing this model chain to a real 

chain are by no means unique, and hence so is 

the relation of the parameters of this model 

chain with structures of a real chain.10·11 How­

ever we expect this model chain to predict at 
least the correct chain-length dependences off 
for a real chain. 

POROD-KRATKY CHAIN 

The problem of light scattering by the Porod­
Kratky chain12 composed of anisotropic units 

was formulated first by Hermans and Ullman.13 

However, their theory was not carried through 
far enough to be usable for analysis of experi­

mental data. An unpleasant assumption con­
cerning the optical anisotropy of units was intro­

duced, which will severely limit the applicability 

of the theory (see later). Methods explored by 

them for obtaining various averages are powerful 

and sufficiently general for the present purpose, 
and we will make full use of them in this paper. 

Consider the Porod-Kratky chain of contour 

length t and persistent length a. For its optical 

property we assume that the chain has, per unit 
length, the three principal polarizabilities, a1 
along the contour and a 2 along the two direc­

tions perpendicular to the contour, i.e., we 
assume the cylindrical symmetry a3=a2. A lower 

symmetry a3 * a2 is not practical for this model. 
Units i and j are regarded as referring to the 
increments di and dj of the chain, which depart 

by the contour lengths i and j from one end. 

The polarizability tensor Ti of unit i (but per 
unit length) can be expressed 

74 

Ti=(a1 -a2)µiµl +a2Ea 

=Jaµiµl +(a-¼Ja)Ea (62) 

where µi is the unit vector along the contour 

of unit i; a=¼(a1 +2a2) and Ja=a1-a2 are the 
mean and anisotropic polarizabilities per unit 

length of the chain. We immediately have 

ri; T Tiri;=Ja(ri; · µi)2 +(a-¼Ja)ri; (63) 

Tr TiT;=(Ja) 2(µi · µ 3)2 +3a2-¼(Ja)2 (64) 

rJ TiT 3ri3=(Ja)2(rii · µi)(rii · µ 3)(µi · µ;) 

+Ja(a-¼Ja)[(rii · µi) 2 +(rii · µi) 2
] 

+(a-¼Ja) 2ri/ (65) 

From eq 55-61 and 63-65 it is clear that we 

need the following averages: (ri/), <(µi · µ 3)2), 

<(rwµi)2) [or equivalently <(rwµ;)2)], (rf3(µi· 

µ 3)2), and <(rwµi)(rwµ 3)(µi·µ 3)). For the 
Porod-Kratky chain these averages do not 

depend on where on the chain the pair of units 

i and j is selected if j-i is kept constant. There­

fore it suffices to calculate these averages for the 

two terminal units, i.e., i=O and j=t. We 

omit the subscript to r, now r being the end-to­

end vector. All the required averages can be 

cast into 

Uklmn=(7J!)=(rk(r · µoi(r · µt)m(µo · µt)"') (66) 

Hermans and Ullman 13 developed a method 

for calculating averages like eq 66 for the Porod­

Kratky chain in the absence of the excluded­

volume effect. They treated simpler averages of 
the form (rk(r. µt) ""') a special case of eq 66, but 

their method is applicable to more complex 

averages in eq 66. We follow their method 
exactly. 

The first step of Hermans and Ulllman's theory 

is to derive a differential equation for a distribu­

tion function /(r, µt, t) for one end (with t=t) 

when the other end (with t=O) is at the origin 
of a cartesian coordinate system xyz and has the 

initial tangent µ 0 • The derived differential equ­

ation is insoluble exactly, but the required 

averages can still be obtained by utilizing it in 

the following manner. The differential equation 
for /(r, µt, t) is converted to that for its dimen­

sionless Laplace transform with respect to t: 

J' =J' (r, µt, p)=Lct1[/(r, µt, t)] 

=p[f(r, µt, i)e-tpdt (67) 
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that is, 

(68) 

where A=(2af1, gradr=(a/ax, a;ay, a;azf, and 

/7 =--- sm(}- +---2 1 a ( . a ) 1 a2 

sin(} a0 a0 sin 2 (} a<p2 

with µt=(cos (}, sin(} cos <p, sin(} sin <pf, (these 

(} and <p should not be confused with those 

defined previously, i.e., the scattering angle and 

one of the Eulerian angles; similarly ,1 in eq 68 

should not be confused with the wave length of 

light). It is to be noted that the dimensionless 

Laplace transform defined in eq 67 differs from 

the ordinary Laplace transform 

Lod[/(r, µt, t)]= [f(r, µt, t)e-tpdt 

=p-lf' 

We find immediately 

f =L;;-l[f']=L~J[p-1 J'] 

(69) 

(70) 

Multiplication of 1Jf in eq 66 to eq 68 and inte­

gration over the entire r, µt space yield 

p(1Jf)1 -p1ff o=<µt · grad,1Jf) 1 +,1</721/f)' (71) 

where 1Jf O is the value of 1Jf at the origin and 

the primed averages refer to those in the p space, 

i.e., < )'=Ld1[( )]. Similarly let u£zmn= 

Ld1[uklmn]- Repetitive use of eq 71 with proper 

1Jf leads, after some lengthy but straightforward 

calculations (see ref 13) to: 

(p+2,1)u6010= 1 

pu~ooo = 2U6010 

(p+6,1)U6002=p+2,1 

(p + 2,1 )U6101 = U6002 

(p + l2,1)U6012= U6002 + 2AU6010 +4AU6101 

(p + 6,1)ufoo2 = 2U6012 + 2,1u~ooo 

pu6200 = 2U6101 

(p+6,1)u6m =U6101 +u6012+2AU6200 

Solving these relations we obtained 

We reach 

(72) 

(73) 

(74) 

Uo2oo=<(r·µo)) =- ~---I 21 1(1 1) 
3,1 p p+6,1 

(75) 

1 (5 6 5 4 ) 
=-15-,1 p __ p_+_2_,1 +-p-+_6_,1 --p-+-12-,1 

(76) 

(77) 

Laplace inversion, i.e., Lctf[u£zmn] = L~J 

· [p- 1u~zmn] yields the required Ukzmn· Inversion 

at this point is not wise. 13 All u are followed 

by the following integration 

l(t)= Bu(j-i)didj= ~:iu(t-i)di (78) 

i<j 

Note that the above integral is of the so-called 

convolution type. Remembering that the ordinary 

Laplace transform of a convolution integral is 

the product of those of the constituent functions 

we find 

p-1Ld1[ l(t)] =Loct[ l(t)] =Loct[t]Loct[ u(t)] 

=p-2Loa[u(t)]=p-3Lai[u(t)]=p-3u' (79) 

where L0d[t]=p- 2 is used. Therefore we have 

Lct1[I(t)]=p-2u' 

or 

/(t)=Lctf(p-2u')=L~J(p-3u') (80) 

Namely, a number of calculations are reduced 

by inversion of p- 2u' to obtain directly I(t), 

instead of inversion of u' followed by integration 

in eq 78. The remaining calculations are still 

lengthy but elementary in nature. We simply 

mention the theorem 

(81) 

R M{ 8 -1 2 4 2 k 2 [ 1 k 2 ]} vv=Kc 135 x •ll2+ 135 as(s )us+···+ 1- 9 at(s )U1+··· (82) 
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R R { 2 -1 2 11 -1 2 k 2 1 -1 2 k 2 } 
Vh= Hv=KcM 45x s U2 - 5670 ax s (s ) U4 - 630 ax s (cos 0)(s ) Us+··· (83) 

Hh=.n.c -x s U2---x s (s ) Us+···- -a s(s ) U7 + · · · cos{) R V M{ 2 -1 2 2 -1 2 k 2 ( 2 2 k 2 ) 
45 567 45 

( 2 -1 2 2 2 k 2 [ 1 k 2 ]) 2 } + 135x su2-135as(s )us+···+ 1-9at(s )u1+··· cos{) (84) 

U1(X)=l-~ + j 2 --; +-;e-x 
X X X X 

(85) 

( ) 1 1 1 -3x 
U2X= --+-e 

3x 3x 
(86) 

g 3(x, s)=l-__±__(42+s)_!__ + - 1-(1638 + 51s)~- - 1-(30+s)~e-x +-1-(42+5s)~e-3" 
63 X 567 X 10 X 378 X 

1 c -3x 1 c -6x 
---e ----e 

63 X 315 x2 
(87) 

( ) 1 97 1 + 189 1 -x 19 1 -3x 1 -3x 13 1 -6x 
U4 X= --- ---e ---e +-e +---e 

66 X 110 X 66 X 11 330 X 
(88) 

Us(X)= 1-~ _!__ + E..__!__e-x - _!__ _!__e-3x - _!__e-3x + _1 _ _!__e-sx 
54 X 10 X 2 X 3 90 X 

(89) 

Us(X)= 1-~ _!__+ 189 _!__e-x -~ _!__e-ax __ l_e-ax + -3_ _!__e-Gx 
15 X 100 X 60 X 10 75 X 

(90) 

g7(x s)=l--1-(56-s)_!__+-1-(1092 -29s)_!__- - 1-(30-s)_!__e-x +-1-(14-3s)_!__e-ax 
' 21 x 378 x 2 10 x 2 126 x2 

- _1_ !_e -3x + _1 - !_e -6x 

63 X 1890 x2 
(91) 

Us(X s)=l--1-(168-2s)_!__+ - 1-(1092- 17s)_!__ - - 1-(60-s)_!__e-x +-1-(84-5s)_!__e-ax 
' 63 x 378 x2 20 x2 756 x2 

+ I c -3x I c -6x 

126 ~e + 630 x2e 
(92) 

with 

x=2J.t=t/a and s='1o:/a (93) 

The series in the square brackets in eq 82 and 84 is the isotropic-scattering term. Hermans and 

Ullman13 neglected terms in s2 regarded as small compared with those in s, i.e., assuming Isl« I. 

This assumption will not necessarily be valid; a large negative value of s is expected for poly­

styrene and its derivatives. 

Expansion of u into Taylor series in x yields expressions for R which are useful for somewhat 

flexible rods. (The case of rigid rods was treated by Horn, Benoit, and Oster. 14) On the other 

hand, for long, flexible chains we obtain 

vv=KcM +--x s --at 1----- (s) R [ 1 8 -l 2 I ( 3 4 c ) k 2] 
135 9 X 15 X 

(94) 

(95) 

Hh=A'-C -x s --a s(sk) cos{)+ 1 +--x s --at - -+-- (s ) cos {) R v M{ 2 -1 2 2 2 2 [ 2 · -1 2 1 (1 3 2 c ) k 2] 2 } 
45 45 135 9 X 15 X 

(96) 
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In obtaining eq 94-96 we truncated the series at (sk)2 and still ignored many terms higher in t-1 

than t-1 with respect to (sk) 0 terms and than unity with respect to (sk) 2 terms. Eq 96 can be 

rearranged to 

~---- (cos0) - +--- cos0 (s) [( RHh 2 c2
) -1 (l 2 °2

) ] k -2 

KcM 45 x 135 x 

(97) 

We can determine the parameters of the Porod-Kratky chain from experimental data of R at 

low angles on polymer chains of moderate length by using eq 94, 95, and 97, in the following way. 

First, Mx-1.2 is determined from RVh=RHv or RHh (rr/2), the latter being RHh at 0=rr/2. Second, 

Mand x-1•2 are determined from Mx- 1.2 and the intercept in the plot of Rvv (or equivalently R;~) 

against (sk)2. The slope in this plot gives 

at( 1- 2-_ __±_ _:__) 
X 15 X 

Plot of the left-hand side of eq 97 against sin2 (0/2) yields 

at 1--+--( 3 8 c ) 

x 15 X 
and at 1--+--( 3 2 c ) 

x 15 X 

as its intercept and slope. [Note added in proof: the slope may be influenced by the neglected (sk)4 

term, but the intercept is not. See ref 17 soon to appear.] From either pair of two relations out 

of the three we can obtain at(l-3x-1) and atsx- 1 (of course if the latter is not negligibly small 

-compared with the former). Let us define 

C1 = : , C2 = at( 1 - ! ) , and (98) 

If C1 and C3 are sufficiently accurate, being significantly different from zero, we can solve eq 98 to 

obtain 

at=½[C2+(C22 +12c1-1C/)112] 

x=3[1-(at)- 1C2r 1 

s=3C3(at-C2f 1 

We can use at and x=t/a to separate a and t. We can split Lia from 

-combined with r=at. Thus all the parameters can be determined. 

(99) 

(100) 

(101) 

s=Lla/a by using eq 49 

The reciprocal intensities can equally be used to the same end: 

Kc =_!__[ 1 +_!__( 1_2_ _ __±__:__)(sk)2] 
Rvv M l+-8-~ 9 x 15 x 

135 X 

(941) 

[ 
KcM 1 l -1 k -2 l (l 3 8 z ) 
--- 2 2 (cos0) (s) =-at --+--

RHh ~_:__+(t+-2 _ _:__)cos20 9 x 15 x 
45 X 135 X 

2 ( 3 2.)·28 
-9at 1- x+ 15x sm 2 (97 1

) 

If C1 =C3 =O or C1:=O and C3 :=O, the relations eq 99-101 are invalid or subject to great un­

-certainty. In these cases the only obtainable information is C2 or three times the radius of gyration. 

It is imposible to separate a and t from data on one sample. (The chain-length dependence of 

C 2 should permit this.) Thus light scattering gives more information on chain conformations for 
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Table I. DI' (or D¢) and the row and 

* * * * 
Y12 Y1Y2 Y1Y3 Y1Y4 Y1Ys Y1Y6 Y22 Y2Y3 Y2Y4 Y2Ys Y2Y6 

c4 -2c3s 0 c2s2 0 0 4c2s2 0 -2cs3 0 0 

2 2c3s c2(c2-3s2) 0 -cs(c2-s2) 0 0 -4cs(c2-s2) 0 s2(3c2-s2) 0 0 

3 0 0 c3 0 -c2s 0 0 -2c2s 0 2cs2 0 

4 2c2s2 2cs(c2-s2) 0 c4+s4 0 0 -8c2s2 0 -2cs(c2-s2) 0 0 

5 0 0 c2s 0 c3 0 0 -2cs2 0 -2c2s 0 

6 0 0 0 0 0 c2 0 0 0 0 -2cs 

7 c2s2 cs(c2-s2) 0 -c2s2 0 0 (c2-s2)2 0 -cs(c2-s2) 0 0 

8 0 0 c2s 0 -cs2 0 0 c(c2-s2) 0 -s(c2-s2) 0 

9 2cs3 s2(3c2-s2) 0 cs(c2-s2) 0 0 4cs(c2-s2) 0 c2(c2-3s2) 0 0 

10 0 0 cs2 0 c2s 0 0 s(c2-s2) 0 c(c2-s2) 0 

11 0 0 0 0 0 cs 0 0 0 0 c2-s2 

12 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 cs2 0 -s3 0 0 2c2s 0 -2cs2 0 

14 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 

16 s4 2cs3 0 c2s2 0 0 4c2s2 0 2c3s 0 0 

17 0 0 s3 0 cs2 0 0 2cs2 0 2c2s 0 

18 0 0 0 0 0 s2 0 0 0 0 2cs 

19 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 8 9 10 11 

.. c and s stand for cos <p and sin 'P· The nonvanishing (after integration) rows and columns are indicated 

Table II. 

* * * * 
1 2 3 4 5 6 7 8 9 10 11 

* 1 c4 0 2c3s 0 0 c2s2 0 0 0 0 0 

2 0 c3 0 0 c2s 0 0 2c2s 0 0 cs2 

3 -2c3s 0 c2(c2-3s2) 0 0 cs(c2-s2) 0 0 0 0 0 

* 4 0 0 0 c2 0 0 0 0 0 0 0 

5 0 -c2s 0 0 c3 0 0 -2cs2 0 0 -s3 

* 6 2c2s2 0 - 2cs( c2- s2) 0 0 c4+s4 0 0 0 0 0 

* 7 0 0 0 0 0 0 c2 0 0 cs 0 

8 0 -c2s 0 0 -cs2 0 0 c(c2-s2) 0 0 c2s 

9 0 0 0 0 0 0 0 0 C 0 0 

10 0 0 0 0 0 0 -2cs 0 0 c2-s2 0 

11 0 cs2 0 0 s3 0 0 -2c2s 0 0 c3 

*12 c2s2 0 -cs(c2-s2) 0 0 -c2s2 0 0 0 0 0 

13 0 0 0 -cs 0 0 0 0 0 0 0 

14 0 cs2 0 0 -c2s 0 0 -s(c2-s2) 0 0 -cs2 

15 -2cs3 0 s2(3c2-s2) 0 0 -cs(c2-s2) 0 0 0 0 0 

*16 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 -s 0 0 

*18 0 0 0 s2 0 0 0 0 0 0 0 

*19 0 0 0 0 0 0 s2 0 0 -cs 0 

20 0 -s3 0 0 cs2 0 0 2cs2 0 0 -c2s 

*21 s4 0 -2cs3 0 0 c2s2 0 0 0 0 0 

• c and s stand for cos 81 and sin 81 • The nonvanishing rows and columns are indicated by asterisk. 
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column vectors in eq 20. • 

* * * * * y3Z Y3Y4 y3y5 Y3Ys y42 Y4Y5 Y4Ys y52 Y5Ys Ys2 

0 0 0 0 s4 0 0 0 0 0 X1X/ * 
0 0 0 0 -2cs3 0 0 0 0 0 x2x1' +xix/ 

0 cs2 0 0 0 -ss 0 0 0 0 xsx1' +x1xl 

0 0 0 0 2c2s2 0 0 0 0 0 X4X/ +x1xl * 
0 s3 0 0 0 cs2 0 0 0 0 X5X1 1 +x1X51 

0 0 0 0 0 0 sz 0 0 0 XsX1' +x1xs' * 
0 0 0 0 c2s2 0 0 0 0 0 XzX/ * 
0 -c2s 0 0 0 CS2 0 0 0 0 X3X/+x2xl 

0 0 0 0 -2c3s 0 0 0 0 0 X4Xz' +xzxl 

0 -cs2 0 0 0 -c2s 0 0 0 0 X5X/+xzX51 

0 0 0 0 0 0 -cs 0 0 0 xsx/+xzxs' 

cZ 0 -cs 0 0 0 0 sz 0 0 X3X/ * 
0 c3 0 0 0 -c2s 0 0 0 0 X4x/+xaxl 

2cs 0 c2-s2 0 0 0 0 -2cs 0 0 X5X3 1 + X3X51 

0 0 0 C 0 0 0 0 -s 0 Xsxl + X3Xs' 

0 0 0 0 c4 0 0 0 0 0 X4X/ * 
0 e's 0 0 0 c3 0 0 0 0 x5xl+x4x5' 

0 0 0 0 0 0 cz 0 0 0 xsxl +x4Xs' * 
sZ 0 cs 0 0 0 0 cz 0 0 X5X51 * 
0 0 0 s 0 0 0 0 C 0 xsxs' +x5Xs' 

0 0 0 0 0 0 0 0 0 1 XsXG' * 
12 13 14 15 16 17 18 19 20 21 

------------~~-

by asterisk. 

Do, in eq 20. a 

* * * * * 12 13 14 15 16 17 18 19 20 21 

4c'sz 0 0 2cs3 0 0 0 0 0 s4 

0 0 2cs2 0 0 0 0 0 s3 0 

4cs(c2-s2) 0 0 s2(3c2-s2) 0 0 0 0 0 2cs3 

0 2cs 0 0 0 0 sz 0 0 0 

0 0 2c2s 0 0 0 0 0 cs2 0 

-8c2s2 0 0 2cs(c2-s2) 0 0 0 0 0 2c's·' 

0 0 0 0 0 0 0 s' 0 0 

0 0 s(c2-s2) 0 0 0 0 0 cs2 0 

0 0 0 0 0 s 0 0 0 0 

0 0 0 0 0 0 0 2cs 0 0 

0 0 -2cs2 0 0 0 0 0 c2s 0 

(c2-s2)2 0 0 cs(c2-s2) 0 0 0 0 0 czs2 

0 cz-s2 0 0 0 0 cs 0 0 0 

0 0 c(c2-s2) 0 0 0 0 0 c2s 0 

-4cs(c2-s2) 0 0 c2(c2-3s2) 0 0 0 0 0 2c3s 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 C 0 0 0 0 

0 -2cs 0 0 0 0 cz 0 0 0 

0 0 0 0 0 0 0 cz 0 0 

0 0 -2c2s 0 0 0 0 0 cs 0 

4c2s2 0 0 -2c3s 0 0 0 0 0 c4 
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a short (so short that RVh takes an accurate, 

nonzero value) chain composed of anisotropic 

units than for a finite chain of isotropic units 

and for an infinite chain of anisotropic units. 

It is to be noted, however, that for very short 

chains eq 94-96 and the foregoing arguments 

cease to be valid because neglected higher order 

terms in t-1 become significant. 

DISCUSSION 

We first return to the case of linear polymer 

chains of completely general type. We are par­

ticularly interested in how the procedure for 

analyzing experimental data, described in the 

preceding section, is to be modified when we 

consider such general chains instead of the 

Porod-Kratky chain. To this end we assume 

that chain-length dependences of / for general 

chains are identical with those for Porod­

Kratky chain. 

Comparison of eq 52-54 with eq 82-84 indi­

cates immediately 

/rn; /,, /s, /6-n; and /3, /1, /s-n2 (102) 

It follows therefore that 

I: <[r2 Tr rr'];;), I; <[rTrr'r];;)-n (103) 
i<i i<j 

I; <[f(rTfr)+7 1(rT7r)];;)-n2 (104) 
i<j 

The first relation of eq l 02 was confirmed with 

realistic chain models. 9 • 15 ' 16 If only the leading 

terms in / are retained, eq 52-54 can be cast 

into eq 94-96 with the following substitutions 

made: 

.2 CI 9 1· -2<T ,2> -t l = Im nf r r 
X 4n n-= 

(105) 

ats C, 9 1. -2 <[-( r,, ) -'( r, )] ) - -t 3 = Im f I; r f r f +r f rr ij 
X 4 n-00 i<j 

at ( 1- ! )-t C/ =3(G1n-Go) 

with 

(106) 

(107) 

f- 2 I; <[rf'r2];;)=G1n-Go+O(n- 1) (108) 
i<j 

For a polymer chain composed of identical units 

the left-hand side of eq 108 reduces to 

n- 2 I;;<; <rL> the radius of gyration. C/ is 

80 

three times the radius of gyration truncated at 

the term of order unity. Ci', C/, and C/ can 

be determined experimentally, and also are 

amenable to rigorous calculation for realistic 

chain models. 

We proceed to compare the results for the 

Porod-Kratky chain or for more general chains 

with those for the random chain. To this end 

we quote results of Utiyama and Kurata's theory 

for the random chain. 2 They obtained 

Rvv=KcM[4o-2A2MQ(ll)c+P(ll)] (109) 

RVh=RHv=3KcMo (110) 

RHh=KcM{3o +[o-2A2MQ(ll)c+P(ll)] cos2 0} 

(111) 

For infinitely dilute solutions where interchain 

interactions are negligible, eq 109 and 111 sim­

plify to 

Rvv=KcM[4o+P(0)] (112) 

RHh=KcM{3o+[a+P(0)] cos2 0} (113) 

a is given by 

B2 
o= 6nA2 (114) 

1 
A=3 (a1 +a2+a3) (115) 

where n is the number of random links in the 

random chain and a 1, a 2 , and a 3 are the three 

principal polarizabilities of each random link. 

A2 is the second virial coefficient, Q(ll) is the 

interchain correlation function, and P(/l) is the 

well-known scattering function, which is expressed 

P(ll)=l-J__<S2)(sk)2+ · · · (117) 
3 

where <S2) is the mean-square radius of gyration. 

From comparison of eq 112, 110, and 113, 

with eq 52-54 and 82-84, we find the follow­

ing correspondences exist: 

a 2 •2Y2 1 --2r 1 --2<T ,2) (118) 
...... 135~<--->4r J2=30r rr 

P(/l) <---> [ 1 - -¼-atgi(sk)" + · · ·] 

<---> r- 2 I; ([rr' Po];;) 
id 

(119) 
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Some differences are also apparent. The terms 

involving / 3 , / 7 , / 8 and [ 4 , / 5 , [ 6 for general 

chains do not have their counterparts for the 

random chain. The / 4 , / 5 , and / 6 terms are 

usually negligible, being smaller than the f 3,f7, 

and / 8 terms by a factor of n-1 or t-1, while the 

latter terms are not necessarily negligible. 

Utiyama and Kurata2 suggested a method for 

deducing the mean-square radius of gyration, 

which is free from the influence of anisotropic 

scattering. From eq 112, 113, and 117 we find 

4 
Rvv(0)-3 RHh(rr/2)=KcMP(8) 

=KcM[l --½-<S2)(sk) 2 + ·. ·] , 

for the random chain (120) 

Hence plot of the left-hand side (or equivalently 

its reciprocal) against (sk)2 would yield <S2) as 

its slope. On the other hand we have from eq 

94 and 96 

Rvv(8)- : RHh(rr/2)=Kc~ 1 - ¾at 
x(l-~-_i__s__)(sk) 2 + .. ·], 

X 15 X 

for the Porod-Kratky chain (121) 

"By the suggested2 plot, <S2) for the Porod­

Kratky chain is overestimated for s < 0. The 

situation is similar for more general chains. 

Apart from this difference the present work 

,confirms many important aspects of Utiyama 

and Kurata's theory. 2 When anisotropic scatter­

ing is non-negligible compared with isotropic 

scattering, Mand <S2) (and possibly A2) cannot 

be estimated correctly by the usual plots, limo-o 

Kc/Rvv against c and lim0-o Kc/Rvv against (sk)2, 

and the similar plots for Kc(l +cos2 8)/2Ruu, 

where Ruu is R for unpolarized, incident and 

scattered beams, i.e., Ruu =½(Rvv +2RVh +RHh)• 

The correction for the anisotropic-scattering effect 

by a Cabannes' factor, which is valid for small 

molecules, is not valid any more for polymer 

,chains. The optical anisotropy (3/2)<Tr 72) can­

not be obtained from the depolarization ratios 

at B=rr/2 for polymer chains because of the in­

fluence of the intrachain interference of light, 

i.e., the presence of the (sk)2 and higher terms. 

In the present treatment we ignored the effect 
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of interchain interactions both optical and 

thermodynamic. We can take these into account 

formally (and approximately) in light of Utiyama 

and Kurata's theory. 2 It seems sufficient to 

add the term -2r2A2MQ(8) just before the 

isotropic-scattering term in eq 52 and 54, and 

similarly in the case of the Porod-Kratky chain. 

GLOSSARY OF PRINCIPAL SYMBOLS 

(Symbols referring to the Porod-Kratky 

chain are grouped at the end) 

A, =½(a1 +a2 +a3), mean polarizability of 

the random link. 

A2, second virial coefficient. 

A=Al'A0,A¢, transformation matrix correlating 

X'Y'Z' with XYZ (eq 9). 
B2 , quantity related to the optical anisotropy 

of the random link (eq 116). 

Bl', B¢, and B0 ,, eq 15 and 16. 

c, concentration in g/cc of polymer. 

C/, C/, and C/, eq 105-107. 

DI', D¢, and D0 ,, eq 20 and Tables I and II. 

F0 , F1, and F2 , eq 29-31. 

[2, /3, · · ·, / 8, eq 55-61. 

/, intensity of scattered light with an obvi­

ous factor omitted (eq 1). 

/Hv, etc., I of horizontally polarized scattered 

light for vertically polarized incident 

light, etc. (eq 37-39). 

/Hv (iso), /Hv (aniso), etc., isotropic and aniso-

tropic parts of /Hv, etc., (eq 40-45). 

I' and I", eq 3-5. 

K, eq 51. 

k, =2rr/J. with J. the wavelength of light 

in the scattering medium. 

M, molecular weight of polymer. 

n, number of units in the scattering system 

or 

number of links in the random chain. 

P(O), particle scattering function (eq 117 .) 

Q(O), interchain correlation function. 

Qo, Q1, and Q2 , eq 25-27. 

R, reduced intensity or the Rayleigh ratio 

(eq 51). 

RHv, etc., R of horizontally polarized scattered 

light for vertically polarized incident 

light (eq 52-54). 

rii and rii, distance vector from unit i to unit 

j and its magnitude. 
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r and r, abbreviation of ri; and rii· 

<S2), mean-square radius of gyration. 

s, =S; -S8 with S; and S8 the unit vectors 

s, 

u, 
U' 
V, 

' 

along the incident and scattered lights 

(Figure 1). 

absolute magnitude of s, i.e., 2 sin (0/2). 

eq 24. 

eq 33. 

eq 23. 

VHv, etc., V of horizontally polarized scattered 

wk, 
xyz, 
XYZ, 

light for vertically polarized incident 

light (eq 34-36). 

eq 47. 

laboratory coordinate system (Figure 1). 

laboratory coordinate system dependent 

on O (Figure 1). 

X'Y' Z', rotating coordinate system fixed to the 

scattering system. 

X=(x1 • • ·x6l, eq 14. 

x' =(xi'·· -xs')T, eq 18. 

Y=(Y1 .. ·Ys), eq 13. 

ai, a 2, and a 3, three principal polarizabilities 

of the random link. 

r, polarizability tensor of the total scattering 

system. 

ri, polarizability tensor of unit i. 

Tik, (k=l, 2, 3), three principal values of ri­
r and r', abbreviations of Tik and r;i· 
f and f'i, mean (excess) polarizabilities of the 

scattering system and unit i (eq 48 and 

and below eq 61). 

r and Ti, traceless parts of r and ri (below 

eq 61). 

o, eq 114. 

O, scattering angle (Figure 1). 

O' cp<p, Eulerian angles correlating X'Y' Z' with 

XYZ (eq 9). 

µ;k, (k= 1, 2, 3), unit vectors along the prin­

cipal axes of r ;. 
µ and µ', abbreviations of µ;k and µ 11 • 

µ=(µ 1 µ2 µ3f andµ'=(µ/µ/ µa'f, expressions 

of µ andµ' in the X'Y'Z' system (eq 8). 

JJ and JJ', unit vectors along the electric vectors 

of scattered and incident lights respec­

tively. 
( ) T d I ( I I l)T • 

JJ= ll1 ll2 ll3 an JJ = ll1 ll2 lis , expre~s10ns 

of JJ and JJ 1 in the XYZ system (eq 7). 

I 
'JJv and JJh', JJ 1 for vertically and horizontally 

polarized incident lights (eq 7). 

aT, transpose of a. 

s-r=sTr, scalar product of two vectors. 

Tr r, trace of a tensor, i.e., Tr r=rn +r22+rss· 

axb, direct product of two scalars, vectors, or 

matrices (footnote on p 69). 

< ), external and internal average, or internal 

average. 

< )ext, external average. 

< )int, internal average. 

[ c2 -cs] _ [ cos2 cp -cos cp sin cp] 

cs c2-s2 'P = cos cp sin cp cos2 cp-sin2 cp 

I: <[(Fo +6F1 - l SF2)r-2(rT rr'r)];;) 
i,j 

= I: <[F0(ksri;)+6F1(ksr,1)-15F2(ksri;)] 
i,j 

xr-;/(ri/rir;r;;)) 

Porod-Kratky Chain 

a, persistent length. 

C1, C2, and C3 , eq 98. 

f =f(r, µ 1, t), distribution function of rand µ 1• 

J'=f'(r, µ 1,p), dimensionless Laplace trans-

form of /(r, µ 1 , t) (eq 67). 

U1, · · ·, Us, eq 85-92. 

Ld1 and L;;-f, dimensionless Laplace transform 

operator and its inverse operator (eq 67). 

L0d and L;;J, ordinary Laplace transform opera-

tor and its inverse operator (eq. 69). 

p, Laplace transform parameter (eq 67). 

r and r, end-to-end vector and its magnitude. 

t, contour length. 

uklmn=(fJf), eq 66. 

uti,,,.,.=(IJT)', =Ld1[Uklmn]· 

x, =2J.t=t/a. 

a 1 and a 2, longitudinal and transverse polari­

zabilities per unit length. 

a and ,:la, mean [a=¼(a1 +2a2)] and anisotropic 

(,:Ja=a1-a2 ) polarizabilities per unit 

length. 

c, =,:la/a, degree of anisotropy of polari­

zability per unit length. 

O and cp, polar coordinates of µ 1 • 

µi, tangent at the point that departs by 

length i from one end along the chain 

contour. 

JJv and JJH, JJ for vertically and horizontally )., =1/(2a). 

polarized scattered lights (eq 7). 
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