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A general theory of line-shapes of the exciton absorption bands is developed with the help of 

generating function. method. When the exciton-lattice coupling is weak, and the exciton effective mass 

.. is ~all, the absorption band is of a Lorentzian shape, provided that the temperature T is not too 

high. The half-value width H is given by the level broadening of the optically produced K=O ex· 

citon due to lattice scattering, so that it is proportional to T except at low .temperatures. If the 

coupling is strong, or the exciton efFective mass is large, or the temperature is very high, the absorp­

tion band is expected to be of a Gaussian shape, and H is proportional to VT. The mutual influence 

of adjacent absorption bands is also discussed ; it causes the asymmetry and repulsion of the compo­

nents as temperature rises. 

If we replace T by the density of lattice imperfections, the ·above statements are valid, without 

substantial modifications, as regards the dependence on the degree of imperfections. 

These conclusions are in qualitative agreement with experimental data. The comparison further 

provides us with information on the strength of the exciton-lattice coupling and the energy band 

structure of the exciton. 

§ 1. Introduction 

53 

Since the " exciton " model was first introduced by Frenkel, I) and was applied to 

the explanation of several sharp peaks which are observed on the low energy sides of 

characteristic absorption bands in typical insulating crystals, most of theoretical attention 

was directed to the electronic structure of the exciton.2>-s> Results of calculations can 

be compared with the experime~tal data, as regards peak positions,2>-5l oscillator strengths,6l 

!llultiplet structures7l,S) and so on. However, the observed peak position corresponds to 

the energy of the exciton with wave number K nearly equal to zero, so that it does 

not directly give us the information on the energy band structure of the exciton. 

On the other hand, the problem of exciton-phonon interaction has been attacked by 

several authors ; some dealt with the stationary state problem of the exciton phonon 

system,u),JO) while others calculated the probability for the scattering of an exciton by 

phonons.11> To relate these results directly with experimental data seems rather difficult, 

at least in the present stage. 

As for the line-shapes of the exciton absorption bands, however, it does not seem 

that remarkable progress bas been made on the theoretical side since the pioneer work 

by Peierls.12> It is the purpose of the present paper to develop a general theory of the 

line-shape in such a way that as much information as possible is obtained through c~­

parison with experiments. We also wish that it could contribute to inter-relating more 

closely· the theoretical and experipJ.ental works stated above. 
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54 Y. Toyozawa 

In § 2 of this paper, the exciton-lattice interaction'Hamiltonian H.L is derived with 

Wannier's exciton wave function, including the effective mass approximation as a special 

case. A general formula for the optical absorption ·coefficient of this electron (exciton)­

lattice system is derived, in § 3, as a function of the radiation frequency. The Fourier 

transform of the absorption coefficient, that is, the generating function, is expanded into 

an infinite power series H.L. In the two extreme cases, that is, weak and strong limits 

of the coupling H.L, the series can be brought into simpler expressions. Thus, in the 

limit of weak coupling ( § 4), the absorption band tends to a Lorentz ian shape due to 

the motional effect of the exciton. In the opposite limit the band takes a Gaussian 

shape, which means that the "localized exciton" model is valid in this case (§ 5). 

In the intermediate region, the absorption band may show an asymmetry, depending upon 

the energy band structure of the exciton. 

When two or more exciton absorption bands lie very close to each other, the 

influence of each component on the strengths, peak positions and shape asym111etries of 

other components becomes important, as is discussed in § 6. 

§ 7 is devoted to the derivation of criterion for the appearance of two extreme cases 

in a more explicit form, and to the arrangement of theoretical conclusions so as to be 

convenient for comparison with experimental data. In § 8 we carri~d out the analysis 

of a few of experimental data available, which proves to . be in satisfactory agreement 

with theoretical expectations. 

Further information is qbtained through this comparison: one is the strength of the 

exciton-lattice coupling, and the other concerns the energy band structure of the exciton. 

They will be utilized, in the next paper, for speculative investigations of the various 

dynamical processes which the exciton possibly- suffers.13l 

§ 2. The derivation of exciton-lattice interaction Hamiltonian 

Let us consider an insulating crystal consisting of N atoms and N valence electrons, 

and denote the Wannier functions4l for valence and conduction bands by a,(x, m) and 

ac(x, n), respectively, where m and n refer to lattice sites. 

In the approximation of one electron excitation, the wave function for an exciton 

with inner quantum number A and translational wave-number K is given by4l 

lJI">.K=N-r 12 ~exp(iK-m) ~U>.K(l)A(m, m+l), (2 ·1) 
m l 

where A(m, n) is the Slater determinant of N electrons for the configuration [a,(x, 1), 

a, (x, 2), · · · av (x, m -1), ac (x, n), a, (x, m + 1) · · ·, a, (x, N) J, that is, the configuration 

in which the valence electron of the m-th site is excited into the conduction barid, at 

the n'th site. The wave function U;.K (l) for the relative motion of the electron and 

the hole is to be determined from Wannier's difference equation, with Hamiltonian 

H • ..,= T + V, where T is the sum of the energies of the electron and the hole, and V 

denotes Coulomb and exchange interactions between them. 

If we make use of the effective mass approximation, the ·kinetic term T, as an 

operator on U;.K ( l)' can be replaced by 'a differential operator w (- i. a; at' K)' where 
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Theory of Line-Shapes of the Exciton Absorption Bands 55 

(2 ·2) 

and W.(k), W 0 (k) mean the one electron energies, with wave number k, of the valence 

and conduction bands, respectively. For a fixed value of K, one can expand W(k, K) 

around a minimum point km (K) : 

W(k, K) =J(K) + (k-km(K)) ·h2/2p.(K) · (k-km(K)) + ···, (2 ·3) 

the coefficient p.(K) being a reduced mass tensor. If we transform the wave function 

by 

T is replaced by 

J(K) -a;at·h2/2p.(K) .a;al. 

The potential part V, in this new representation, is written as 

(l! V!l') 

= -eikm(K) (l-l') ~eiKp H a.(x, o) a,* (x, p) 

Xe2/lx-x'!·ac*(x', l)ac(x', p+l')dxdx' 

+eikm(K) (l-l') ~eiKpH a.(x, o)a.*(x', p) 

Xe2/!x-x'!·ac*(x, l)ac(x', p+l')dxdx'. 

(2·4) 

(2·5) 

(2 ·6) 

It reduces to a Coulomb attraction -altl e2/ll! in the crudest approximation, as is well 

known. 

If we make further simplification by taking parabolic approximation for both of the 

energy bands : 

we have 

where 

W.(k) =- (k-k.) ·tl/2mh· (k-k.), 

Wc(k) =cu+ (k-kc) ·h2/2m.· (k-kc), 

km(K) =p,,· (k.+K) +p.·kc, 

](K) =c0 +K* ·h2/2m* ·K*, 

m* = m.+mh, p.-1 = mJ:1 +m;\ 

p,. = p.·mJ:1 =m.·m*-t, p. = p.·m;1 =m1, ·m*-\ 

(2 ·7) 

(2·8) 

(2· 9) 

The result is shown in Fig~ 1 schematically. Because of symmetry, of course, there are 

actually· equivalent branches on the opposite sides, 
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w.(k) -k 

(a) One electron energy levels. 

oL-------~--------~~-K 
K 0=k,-k, 

(b) Energy states for one electron excitation 

of N·electron system. 

Fig. 1. Energy level scheme in the effective mass approximation. 

We now consider the change of the potential energy between electrons and lattice, 

caused by an arbitrary lattice deformation : it is the sum of N equivalent one-electron 

energies: 

N 

aH.(xt> x2 , ···, xN) = ~aH 1 (x;). (2. 10) 
i=l 

Making use of the relation 

(A(m, n) laH.\A(m', n')) =-ann, J a.(x, m)aH1 Xa.*(x, m')dx 

+an,>m' J ac*(x, n)i'JH1 ac(x, n')dx, 

and then transforming the Wannier functions into the Bloch orbitals b.(x, k) and bc(x, 

k), we have 

c 1Jf ).K I aH.\1Jf wo) 

= -N- 1 ~~~Unc*(l) UMKt (l') exp{i(K+k) (l-l')} 
t u k 

X B.(k+K-K', k) +N- 1 ~~2jUJ.x*(l)Uw 0 (l') 
l lf k 

Xexp{i(K-K')l' +ik(l-l')} 2c(k, k-K+K'), (2 ·11) 

where 

(2·12) 

is the usual scattering matrix element of an electron-lattice system. 

The lattice distortion, which causes aH1 (x), may be an instantaneous pos1t1on of 

thermal vibration, or a static deformation due t() any kind of lattice. imperfections such 
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Theory of Line-Sbapes of the Exciton Absorption Bands 57 

as dislocations. For the acoustic mode of vibration we can take (i) the deformable atom 

approximation due to Bloch and Bethe14> or (ii) the deformation potential introduced by 

Bardeen and Shockley/5> as the case may be. In the case of optical mode of vibr~tion 

in ionic crystals, i3H1 is nothing but the electrostatic field due to the polarization of the 

lattice, and was given by (iii) Frohlich et al.16) Throughout these three cases (2 ·12) 

depends only on (k-k'), that is, B.(k, k')=f.(k-k'), and (2·11) IS written as 

-qh(J.K, J.'K')~.(K-K') +q.(J.K, J.'K')fc(K-K'). (2 · 13) 

If one takes the effective mass approximation (2 · 2)-. (2 · 9), which is tacitly ass~ed 

also when one calculates (2 ·12) in the three cases (i)-. (iii) stated above, q can be 

expressed as 

qh (J.K, J.' K') =" 2J uJ.K* (l) u)..l Kl (l) 

= "5p(h * (l)
1

SOM (l) exp{ -i(K-K') · p" ·l} = q"(K-K'; i.i.'), l 
q. (i.K, ).' K') = 2J UJ.K* (l) u).l Kl (l) exp {i (K- K') -l} 

l 

= 2Jso}. * (l) SOM (l) exp { +i(K-K'). p. ·l} = q.(K- K'; J.A'). 

(2·14) 

We now introduce, for convenience, the creation-annihilation operators aJ.K *, auc 

for the ( J.K) -exciton, whose energy we denote by Euc, and the creation-annihilation 

operators bv-w *, bv-w for the (,uw) -phonon with energy quantum fhvv-w, where f1- and w 

refer to the mode and the wave number 0f the phonon. a and a* satisfy approximately 

the commutation relations for bosons, but this is immaterial as far as we confine our­

selves to the electronic states in which the total nu!llber of excitons is zero or unity, as 

we do in later discussions. The Hamiltonian of the electron system and that of the 

lattice system are now written as 

H.= 2JcJ.KaJ.K* aJ.rc, l J.K . 

HL= '2J~cvv-whv-w*bww> 
'/-W 

(2·15) 

respectively, whereas the interaction between them is written, in linear approximation but 

otherwise quite generally, as 

(2. 16) 

In the three cases (i) "-(iii) stated above, we have explicit expressions for the 

matrix element (2 ·12), and (J.Ki,Bv-li.'K') depends on K and K' only through K-K' 

as is seen from (2·13) and (2·14). If we write (i.Ki,Bv-i).'K') =,Bv-(K-K'; i.).'), it 

IS given by 

,Bac(W; i.i.') = (2~j9NMu) 112 w 112 { -qh(w; i.i.') C.+q.(w; i.i.') Cc}, } 

,Bov(w; ).).') = {2r.~cve 2 jNv 0 • (1/tca-1/tc)} 112 1/w · { -qh (w; i.i.') +q. (w; i.).')}, 

(2·17) 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

0
/1

/5
3
/1

9
3
7
2
2
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Y. 'I'oyozawa ... 

for the acoustic and optical modes, respectively. In case (i) C is nothing but the kinetic 

energy of the Bloch function, whereas in case (ii) -2C/3 is the so-called deformation 

potential, that is, the energy change of the band bottom (or the top)· due to unit dila­

tion of lattice. M and v0 denote the mass and the volume of a unit cell, tc and tc0 are 

static and optical dielectric constants. u is an average sound velocity and wj21r is the 

frequency of optical vibration, both referring to longitudinal wav~s. Ansel'm and Firso~ 1 > 

used (2·17) for the calculation of the mean free path of an exciton, confining them­

selves to the case A~A' (=Is-state), that is, to the intra band scattering, whereas Haken10> 

took into account the interband te~ A~).' for the calculation of the self-energy of an 

exciton. Note that we can use. (2·17) with (2·I4), even when kc~"kvoF-0. 

q ( w) in ( 2 · 14) is the Fourier transform of the charge distributions of the electron 

or the hole in the internal motion, because p. ·l, for instance, is the electron coordinate 

relative to the center of mass. It represents ·the effectivity of the electron or hole 

charge for a particular phonon w. Now, q(w, AA1) tends to unity or zero as w tends 

to zero, according as ).=A' or A~A', while, in any case, it becomes very small when the 

wave: length 21Z' jw of the phonon is smaller than the radi'us of the exciton, that is, the 

mean distance between the electron and the hole. For example, in the case of the Is­

state of the relative motion with decay constant a, we have 

(2·I8) 

(2 ·I7) tells us that the optical mode is probably less important than the acousti~ mode 

for the intraband scattering of an exciton, for f1op(w) tends to zero as w when w tends 

to zero, whereas f1ac(w) tends to zero as w112 ; further it js in contrast with /1op(w)cx;w-1 

for the case of a single electron. To the interband scattering, however, both modes 

would make comparable contributions, because only the phonons with finite w would play 

a role in this case, due to the energy conservation. 

§ 3. A general formula for the absorption coefficient 

The Hamiltonian for the electron-lattice system is written as 

H=H.+HL+H.r., (3·I) 

where H., HL and H.r. are given by (2·15) and (2·I6). Wenowderivethecoefficient 

of the optical absorption of this system which corresponds to the creation of an exciton. 

Consider a radiation field R in the crystal medi~ which is assumed to be isotropic 

with refractive index n. Its Hamiltonian is given by 

(3·2) 

where u ( = I, 2) and K refer to the polarization (the directions being denoted by unit 

vectors e 0 x) and wave-number of the photon, and c:x and c0 x mean the creation-annihilation 

operators. c is the light velocity in vacuum. Strictly speaking, n is not constant in the 

frequency range we are considering ; on the contrary, the absorption itself contributes to 

the dispersion of n. The most satisfactory way would be to determine n and absorption 
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Theory of Line-Shapes of the Exciton Absorptton Bands 59 

ccefficient self-consistently. To avoid this rather complicated prcblem of dispersion rela­

tion, we take n to be constant over a range of frequency and equal to an appropriate 

average value. 

It is sufficient, for the present purpose, to take into account the interaction of R 

with the electron system alone, H.R, because in the frequency range at 1ssue (oJ---:-1016 

· sec-1), the vibration of lattice cannot follow that of the radiation field. Thus the total 

Hamiltonian is written as 

(3. 3) 

Denoting the number of (o-K)-photons by m0 rc, the matrix elem~nt of H.R which cor­

responds to the absorption of a (o-K)-photon with simultaneous creation of a· (..iK)­

exciton is calculated as 

(3·4) 

where 

(3. 5) 

Let us now assume that initially the electron system is in the ground state lf!0 (no 

exciton), the lattice system in state (/),. and the radiation field in state X,.. At the 

time T, the wave function of the total system is given by 

e-iHtot Tjf; lf! (/) X 
0 n m 

T 

=e-i(H+HR)Tf1;[1-i/b J ei(H+HR)tljfj H.Re-i(H+HR)tl/f;dt1 + ...... J lf!0 (/)nXm. 

0 

(3. 6) 

In the lowest order of perturbation, let us take, out of (3 · 6), the term correspond­

ing to the state in which a ( o-K) -photon is absorbed and an exciton (with any A) is 

created: 

T 

X r e-iWaKtle-iH(T-tl)/fJ·lf! . e-iHLtl/fJ(/)dt X -J "AK I ... ,maKl, ... (3. 7) 

0 

Taking the absolute square of (3 · 7), and averaging over the initial distribution n= 

( · · ·, nw, · · ·) of vibrational states, we have, as the probability for that state to be realized, 
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Here 

Y. Toyozaw<\ 

T T-t1 

X Idtl I dteiaJaKt{(J.Kie-iHt/fiiJ.'K)eiHr.t/'b}Av· 

0 -tl 

(3 ·8) 

·(3· 9) 

Trr, referring to the lattice system alone, and (!C/1) -l being the absolute temperature. 

When T is large enough in (3 · 8), most of the contributions to I~ dt1 come from 

large ~alues of t1 and T- t1 , so that we can replace the upper and lower bound of the 

second integration by ± co. Dividing by T maK, the lifetime 7: of (a K) -photon 1s 

given by 

+<X> 

X I dt eiaJaict { (J.KI e-iHt/fiiJ.'K) eiHr.t/fi} Av· (3. 10) 

The absorption coefficient is defined as the reciprocal of penetration depth for which 

the radiation attenuates to e-1• It is given, for the frequency m=cKjn, by 

A(m) =n/c·1/2 · :2j 1/r(o-, K), (3 ·11) 
a 

where average was taken for the two directions of polarization. 

(3 ·10) is nothing but the method of generating function (or the method of Fourier 

transform) which was applied to the radiative and non-radiative transitions of a trapped 

electron.17),lB) In the present case, however, we cannot generally use the adiabatic ap­

proximation for the electron-lattice system H, because the exciton energy levels constitute 

continuous spectra due to the translational motion. We proceed in another way, and 

expand the exponential in (3 · 10) : 

where 

Defining 

H' (t) = ei(H.+Hr.)t/fi H.~. e-i(H.+H1;)t/fi 

=i :2j :2j :2j /1,.).}.1 (w) ei(Et.K+w-EMK)t/fi 
I" I.MK·w 

X a'f:IC+wa}.IK (b,.we-iaJjJ.wt_ b:.-w eiro,.wt). 

(3·12) 

(3 ·13) 

(3. 14) 
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Theory of Line-Shapes of the Exciton Absorption Bands 61 

we have an infinite series expression for the absorption coefficient : 

+o:> 

X J dt ei(J)t-icJ.Kt/fi ~ Un(t; ;.).'; K), (3·15) 

where 

t tn-1 

U,. (t; ).J..'; K) = (io) -n J dt1 •• • J dtn(;.KIH' (t1) · • ·H' (t,.) \i.'K) Av· (3 ·16) 

0 0 

As H' (t) of (3 ·13) is linear in the lattice co-ordinates b.,.w and biJ.u•*• U,. vanishes 

for odd n. The first two terms are given by 

t t 

U2(t; ;.;.'; K) = -o-2 JdrJdt1 2J 2J 2J fl.,.nt ( -w) 
1'- At w 

0 't 

X (111;.1 J.' (w) ei(cJ.K-cJ.•K)tt/fi ei(cMIC-cJ.tiC w•h/fi 

X { (n.,_w+ 1) e-i(J).,.wt' + n.,_w ei(J)Jw•'l'}. 

The diagonal ( i. = i.') term is further reduced to 

t 

U2(t; ;.;. ; K) = -o-2J (t--r)dr 2J 2J 2J lfl.,.J.t}. (w) 12 

1'- At w 
0 

t +<» 

= -o-2 J dr J dE(t-r) e-iE .. ;t fuc(E), 

0 . -co , 

where 

§ 4. The weak coupling limit 

(3 ·17) 

(3. 18) 

(3 ·19) 

(3. 191) 

(3. 20) 

Consider a continuous function f(E), the value of which is assumed not to vary 

appreciably over the range LiE, or more specifically, If' (E) LiE I ~f(E), that is: 

ojLlE<, rc(E) =of' (E) /f(E). (4·1) 

For a value of It I much larger than '"' we have an asymptotic formuk19l 

t 

o-1 Jdr J e-t£ .. 11if(E)dE-.J {±nJ(E) -i.9(1/E)}{(E)dE (ltl}>u), (4·2) 

0 
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62 Y. Toyozawa 

where ± correspond to t :§:: 0. Thus (3 ·191) becomes 

where 

' +"' 

U2 (t; ).i!; K) = -~- 2 J dr J dE e-iE-rft;(t+i~ajaE) ·hx(E) 

0 

X { (nfl.w+ 1) a(E;.x-EhK+w-~W .... w) 

+nf£wa(E;.x-E;.lx +w+~wf£w}}' 

(4· 3) 

(4·4) 

(4·5) 

are the probability (per unit time) of the scattering, and the self-energy, of the (ilK)­

exciton due to lattice vibration. a (E) is Dirac's delta function and .9 means the 

principal value. Owing to I tJ ;;p '"' the first two terms of ( 4 · 3) are small compared 

with the remaining terms ; we therefore neglect the former for the present. 

For the ultraviolet and visible regions of radiation, the photon wave number K is 

much smaller ("'-106 cm-1) than the reciprocal lattice vector ("'-108 cm-1), so that we 

can put K = 0 in the above. 

If we take into account only the diagonal term il = il' in ( 3 · 15), and approximate 

as 

U0 ( t ; i.i! ; 0) + U2 ( t ; i!i! ; o) + · · · 

= 1 + {- (r;.o/2) ltJ-iu1;. 0 /~} + ··· ~exp {- (F;.o/2) ltl-itLI;. 0 /~}, (4 · 6) 

we have, for the contribution of J.-exciton band to the absorption coefficient (3 ·15), 

(4· 7) 

( 4 · 7) shows that the absorption hand is of a Lorentzian shape, with a peak at 

E;.o+LI;.0 and a half-value width H=~r;.o (if r;. 0 ~w as is always the case). The latter 

is nothing but the broadening of (i.O) -level due to lattice scattering. Each absorption 

peak il is expected to be free from the influence of other peaks if aw = IE;.o-Eml )' 
~T;. 0 and if the contribution of interband terms Un (t; ilil'; 0) is negligible. The latter 

effect will be shown, in § 6, to be small if a~ ;p r, Ll. 

Of course, our approximation fails if, for values of I t I satisfying It I ~ r c• the ex­

ponential of ( 4 · 6) already decays to values much smaller than unity. Thus our approxi­

mation ~s valid only when TM is so small th,a.t th,e c;:ondit;ion. 
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Theory of Line-Shapes of the Exciton Absorption Bands 63 

(4·8) 

is satisfied, in other words, when the exciton-lattice interaction is sufficiently weak. The 

more explicit form of the condition will be given in § 7. In any case, at the weak 

coupling limit, each of Ufl>n(t; AA; 0) (m=O, 1, 2, ···) reduces to simpler form, leading 

to* 

a> a> 

LjUfl>n(t; ..l..l; o) = Lj {- (F).o/2) ltl-itLI).o/o}.,.jm! 
m-0 m=O· 

Thus the approximation ( 4 · 6) proves to be exact in this limit. 

Next we investigate the effect of the first two terms of ( 4 · 3) . In the first ap­

proximation, we have, instead of ( 4 · 6), 

U0 +U2 + ... ~ {1-.9Jf' (E) /E ·dE} {1 =Fin{' (0)} 

X exp {- (F).o/2) ltl-itL1).0/o}. ( 4 ·10) 

Correspondingly, the Lorentzian function (the last factor of ( 4 · 7)) is replaced by 

where 

(1 +~).) (oT).o/2) +2~ {ow- (S).o+LI).o)} (4 · 11) 

{ow- (S).o+L1).0 ) F+ (oFAo/2) 2 

~}.=-.9Jf'(E)/E ·dE, 

~= (1t/2){'(0). 

(4·12) 

(4 ·13) 

The line shape of ( 4 · 11) is asymmetric : the peak position IS given by OWroax = 

(S).o+LI).o) +~~oT). 0 , the half-value position on the high energy side by ow+112 = (S).o 

+L1).0) + (!+~)oT). 0 , and that on the low energy side by octJ_112= (S).o+LI).o)- (i­

~)oT).o• The degree of asymmetry is thus given by 

{ (octJ+lJ2+om_t12) -2owmax} joF).o=~. (4 ·14) 

In the first approximation as regards {(E), the half-value width is not altered** 

whereas the peak height suffers the fractional change 1)).. As the total area of the A­

peak conserves so far as we neglect the non-diagonal U(t; AA1) (A' l'..l), the compensat­

ing change must. occur in the tail part of the absorption band. 

§ 5. The strong coupling limit 

If one takes the approximation of narrow exciton energy bands, whose exact meaning 

* As for the proof of this theorem, see, for example, a work by van· Hove:2Dl 

** Strictly speaking, r}.O in the exponential function of (4·10) suffers the fractional change .of the 

first order in f(E), when one takes U4 into account. However, so far as the product -of the peak-heish~ 

{ln4 th,e hlllf-value wig~ is ~oncerned, as will be jn ~ 7, '1/J. alope is effe~ive for t~ c~e. 
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64 · Y. Toyozawa 

will be explained later, it is appropriate to expand exp{i(cnc-cJ.tK+w =F lilt!ftw)r/fi} of 

.(3 ·19) in a power series of r. when A1=i., though it is not the case for A1 i=A. Thus 

we have 

where 

t 

= -fj-2 2J r (t-r.) ei(Enc-EJ..,IC)rftlJ-z­
)., J 

0 

CD 

X[BJ..t,n+ 2J (ir/fi)"/n!·Bi~~nK], 
n=l 

BJ..,,W = B'J..~.WIC (independent of K). 

The ratios of successive coefficients, B<n+lljB<nl, are of the order.of (b/2) where 

breadth of each exciton energy band (phonon energies ,fiwftw being neglected). 

Consider the ter.m A1 =A in (5 · 1) : 

and define 

D/=B).,).).· 

(5 ·1) 

(5 ·2) 

b 1s the 

(5. 3) 

(5 ·4) 

For values of ltl, for which the :first term of (5 · 3) is of the order of unity, the n-th 

term is of the order of (b/2D) ,._1/ (n+ 1)!. Assuming b/2 4 D, which means that the 

exciton energy bands are narrow enough, or that the exciton-lattice interaction is strong 

enough (see (5 · 4) and (5 · 2)), let us approximate 

U0 (t; ).).; K)+U2(t; ).).; Kh,-J..only+"· 

D).2 
2 ( D/ ... ) =1---t +"·"""exp ---• . 

2!i2 , 21i2 
(5 ·5) 

\ 

After Fourier transformation, we get the absorption coeffic~ent for the ·J.-th band: 

A ( ) _ 4rr 1i2e2 1gJ..ol 2 1 · {- (1iw-c}_0) 2 } 
J.. w --- _ / exp , 

3 m2 v0 cnw v r.: DJ.. 2D/ · 
(5. 6) 

which is of a Gaussian shape with a peak at cJ..o and a half-value width H = 2 fi (In 2) D).. 

(We have replaced cJ..K in (3·15) by eM, because D';;>bj2.) 

t Here we do not take K=O, because, for the X-ray exciton which is one of the typical CIISes of 

~tron~ coupling, K is not smal!-
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Theory of Line-Shapes of the Exciton Absorption Bands 65 

The e·ffects of A1 ~i. terms in (5 · 1), as well as those of non-diagonal U2 (t; ..li.' ; 

K) (..l~..l'), will be shown, in § 6, to be of secondary importance if we further assume 

that iJ '? D, that is, the exciton energy bands are well separated from each other. 

That we have taken out only the first term in (5 · 3) 1!leans that we have replaced 

H' (t) in (3 ·16) by H' (0). In this approximation, that is, in the limit 

(5. 7) 

we can calculate all U2m(t; AA; K) (m=O, 1, 2, ···)explicitly, with the result 

±u2n,(t;i.A;K)=± 1 (-it)2m{ (2m)!}Dlm 
m-D m=D (2m)! fj 2mm! 

(5 ·8) 

as is easily confirmed by considering the possible combinations of intermediate states in 

evaluating ( 3 · 16) . Thus ( 5 · 5) proves to be exact in this lim it. 

That the generating function is written in a closed form (5 · 8) can be understood 

from another 'view-point. When the energy band is very narrow, the "localized exciton" 

is a sufficiently good eigenstate, and one can consider an adiabatic potential of lattice 

vibration for this localized exciton state. We can repeat the same mathematical manipu­

lation as was done in the case of a trapped electron. 18> Thus, H=H.+HL+H. 1; is 

essentially the Hamiltonian for a harmonic oscillator system with equilibrium point dis­

placed due to H.r., the motion of the electronic system being practically freezed. Thus 

exp ( -<iHtj&) in (3 · 10) can be calculated explicitly, leading to the same result as (5 · 

8), provided phonon energies &w are neglected against D, as was done in deriving (S · 

8) . The width D;. of the absorption band is due to the difference in equilibrium posi­

tions of lattice b.!fore and after excitation. 

§ 6. The effect of interband interaction 

In the previous two sections we have neglected non-diagonal terms Un ( t ; ..li.' ; K) 

(i.~..l'), and further, in the strong coupling case, the terms A 1 ~i. in diagonal Un(t; }.j.; 

K). We now consider the effect of these terms on each absorption band i.. 

In the weak coupling case, we proceed in the same way as in § 4. Making use of 

the formula (4 · 2), we have 

- {± Wuro/2) +i(.::ln.,o/&)], (6 ·1) 

where ± depends on the sign oft, and F;.uK, J).J.tK are defined as in (4·4) and 

( 4 · 5), I.Br .. h). (w) 12 being replaced by .B:h). (w) .B!L>.tM (w). Multiplied with exp( -iEJ.o tj&) 

apearing in ( 3 · 15), it is easy to see that the first term in ( 6 · 1) contribute~ to the 

A1-peakl whereas the second to the A-peak. Thus the contribution from 
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66 Y. Toyozawa 

FH, (o) e-iE;~.ot/fi U2(t; i.i.'; o) +F}J) (o) e-iE;~.tot/fiu2(t; iA; o) 

of (3 ·15) to the A-peak becomes 

-i17 (c;. -cu) -l { ± Re (Fw rw) + (2i/17) Re (Fw Llw)} e-iE;~.t/fi, (6 · 2) 

where the suffix K=O has been omitted for brevity. 

Adding ( 6 · 2) to ( 4 · 6) as a correction term, we repeat the same procedure as 

used in the end of § 4. Finally we get the change of the peak height 

7,1). =2 2-:J'Re (Fw Llw) /Fu (c). -cu)}, (6 · 3) 
AI 

and the degree of asymmetry (the definition b!ing given by ( 4 · 14) ) 

~ = (1/2) ::SRe (F;.)., 17rw) I {Fu (c;. -c}.l)}, 
).1 

which are caused by the influence of other bands. 

(6·4) 

The effect of interband interaction represented by "'/} and .__S¥' is small if ou1 :? LI).AI, 

17r;.M, that is, if each energy band is well separated and the exciton-phonon interaction 

is sufficiently weak. 

Let us now consider the strong coupling case. As in § 5, we calculate ( 3 · 18) or 

(3 · 19) by expanding exp {i(c).,IC-c)., K+r,;±17aJ"'"') r/17} in power series, and take out 

the contribution to the A-peak in the same way as is described in the above. The 

calculation being rather tedious, we only mention the result in the following. 

Out of the summation 

2J 2j Fw" (K) e-iE).tiU/fi U2(t; A')"; K), 
).1 ).II 

we take the terms which have exp( -ifu.:t/17) as a principal factor; .the contribution to 

the coefficients from the non-diagonal part (i.' yf ..l") is given by 

"' 2J' 2J (c)./-c;.) -<m+Zl 2 Re[Fm. {Bf,'\,A- { -:-1) m Bi':'Jn}] 
)..t m=O 

"' + 2J' ::S' 2j (c),/ -c).) -tm+ll [ (cu,-c;.) - 12 Re (Fw;. B).';'\11).) 
).l'f)./1 m,..o 

"' "' + 2J' 2J (it/17)"/n! · ~ ( -1)m(cAI-c).) -(m+1l2Re (Fw Btr],tml) 
).t n=l m==D 

(6·5) 

while ,the contribution from the diagonal part is written as 

"" 2J' F;.I).I2J (-l)m(m+1) (c)J-c).)-<m+ 2 lBi~'],M 
).1 nt=O 
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Theory of Line-Shapes of the Exciton Absorption Bands 67 

00 

- 2J' FH2J (m+l) (c)J-c).)-<m+9JBi7?H 
).t m=O 

"' + 2J' Fm_,(it/h) 2J (-l)m(m+l) (cM-cJ.)-<m+ 2lBt'1/J., 
).t m=O 

00 

+ 2J' F).). (it/h) 2J (c)., -c).) -<m+ll Bi'I'?H 
)..1 rn=O 

"' "' + 2J' FMM 2J (it/h) n/n! · ::8 ( -l)m(m+ 1) (c).l-c).) -<m+tl Bi:t;";.l 
).1 n=2 m.=O 

"' 
+FH ~ (itjh)njn! ·Bt)}. (6· 6) 

n=2 

Here the primed summation means that A1 =A or A11 =A is to be omitted. 

The last term of ( 6 · 6) has been discussed in § 5. All the other terms of ( 6 · 6) 

and ( 6 · 5) represent the influence of other exciton bands. It is easy to see that these 

ter~ns are small compared with the last term of (6·6) fJr values of r;;:;;h/D;. (see (5· 

8)), if the condition (5 · 7) is satisfied. For instance, a typical term of the last line 

of ( 6 · 5) are smaller than the last term of ( 6 · 6) by the order of 

Thus it is reasonable to regard (5 · 7) as a sufficient condition for the absorption band 

to be. Gaussian and for the influence of other bands to be negligible, althc.ugh a com­

plete proof would require the considerations of U,. (t; ,l,l' K) with n:?: 4. 

The constant terms in (6·5) and (6·6) give the change of the strength (area) 

of the ,l-peak, the terms proportional to (it/h) give the shift, and the terms with (it/h) 2 

are related with the change of the width, due to the influence of other exciton bands. 

§ 7. Further discussions of the theoretical conclusions 

In this section we rewrite the conclusions of the previous three sections more ex­

plicitly, by making use of appropriate models or approximations in calculating relevant 

quantities. 

(i) Calculation of F:uc tn the effective mass approximation 

This quantity, given by ( 4 · 4), is not only related to the width of the absorption 

band in the weak coupling case, but it is also important in discussing the dynamical 

behavior of excitons in the vibrating lattice field. It consists of the intraband and inter­

band transitiol1S, of which we here confine ourselves to the former. 

Let us take the effective mass approximation (2 · 2) .-.... (2 · 9), m. and m,. being assum­

ed to be isotropic. We take the lowest exciton band, and assume that the wave function 

for 'the relative motion is of a hydrogenic Is-type: {/>1,(l)=(a3j7r) 112 exp,-al). 

Putting (2·16) (2·17) and (2·18) into (4·4), we get, as the contribution of the 

acoustical mode to the ls-~ ls scattering (see also ref. 11), 
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68 Y. Toyozawa 

r1s.K->1s (ac.) 

{
2Wac (K*<wac-region I), 

X (K* 2 +wa/)/K* (wac<K*~a, w0 -region II), 

4m* VotcT a 2 
( C.2 {1-(1 + pl K*2 

)-"} 

97rfJ3 Mu2 K* 3p,.2 a 2 

C/ { -( p/ K*2 )-~} +-- 1 1+---
3p/ a 2 

2C,,C. 

(Wac K* -region III) , 

(7. 1) 

(7 ·1 1) 

(7 ·111) 

where 

(7 ·2) 

the former being of the order of 106 cm-1 while the latter, the Debye cut-off wave­

number, of the order of 10,q cm-1• (7 ·1) ""'(7 ·1 11 ) are plotted, as a function of 

-K* 

(a) (b) 

Fig. 2. The scattering probabilities Fx of an exciton with wave number K=Ko+K*, due to 

acoustical and optical modes, as functions of K*. 

K* ( =.K- K 0) , in Fig. 2. They are valid at high tempera.tures T <: e 0 (K*), while at 

very low temperatures T ~eo (K*), T should be replaced by eo (K*) in the&e formulae. 

Here the characteristic temperat!,lre &0 (K*) is given by 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

0
/1

/5
3
/1

9
3
7
2
2
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Theory of Line-Sht~pes of the Exciton Absorption Bands 

(7. 3) 

(7. 31) 

69 

the expression for the region III b~jng omitted as it is rather complicated. It is plotted 

m Fig. 3 for a typical case. It is 'of the order of (ajw0) &D="huti¥./tc when K*.-....w0 • 

In the case of the optical mode we get 

r ( ) 2 ( 1 1 ) 1 (· 2 2) 2 m* ls,x ... r.. op. =(l)e ----- -- p,. - p. --
ICo tc 2 fj2 a 4 

{ n(2K*
2 +wo/)VK* 2 +w~v 2 (O<K*<wov-region I'), 

X; [n(2K* 2 +wov2)VK*2 +wov2 + (ii+ 1) (2K*2 -w0v2)V K* 2 -~ov 2 ] 

where 

wov= (2m*(l)/"h)li2~wo, 

the former being of the order of 107 cm-1• The 

expression for the region III' : K* >Wop has been 

omitted for brevity (see also ref. 11). These 

e.(K*) 

are plotted in fig. 2 for a typical case. 

It is to be . noted that for all values of 
' 

K* the . :.contribution of the optical mode is 

relatively unimportant, as is already stated in § 2. 

Especially, for small v~lues of K*, the contribu-

(7. 4) 

(7. 41) 

(7 ·5) 

tion is quite negligible compared with that of the 

acoustical mod~ (see Fig. 2a). Thus, a thermal 

exciton with .:K* .-.... (3m* tcT j"h2) 112 is scattered by 

acoustical vibrations alone. The mean free path 

l is given by 

Fig. 3. The characteristic temperature 

190 (K*) for r 18K-"l• (ac). 

4 m *2vo~T 
l-1 =T("hK*jm*)-1=- ·~ (C.-Cc) 2, 

91L "h4 Mu2 

(7. 6) 

for values of K* which are >wac and ~a, w0 , being independent of K*. It is valid 

at all temperatures, except at very low temperatures of a few degree (see (7 · 31)). 

Moreover, it does not depend on the wave function of the internal motion of the exciton. 

In the same way, we can calculate LIJ.K and DJ., which are related to the peak 

shift in the weak coupling case and to the half-value width in the strong coupling case, 

respectively; however the result is rather complicated, and will not be written here. 

(ii) A simplified approximation for the overall structu~e of f(E) 

The effective mass approximation used in the above has two drawbacks; firstly, it 

is valid only for the excitons near the extremum of the energy band ; secondly it 1s 

presumably not a good approx:imatimi for the internal motion of the exciton which has 

a binding energy as large as 1'"'-2 eV, as is the case for alkali-halide crystals. 
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70 Y. Toyozawa 

As regards the latter situation, it would be. more practical, at least in the present 

stage, to take into account the effect of internal motion by assuming, in (2 · 17), that 

when w< w>.<el, 

when »'>.(e)< w< w0 , 

(7. 7) 

where (w>. (eJ) - 1 is of the order of exciton radius. Then the calculation of D>. defined 

by ( 5 · 4) and ( 5 · 2) becomes quite simple, the result is written as* 

(7 ·8) 

where 

(7. 9) 

and C= Cc-Cv. 

As for the first problem, we note that not the local (the neighborhood of the 

bottom or the top) but rather overall structure of the exciton energy band is important 

in calculating {>.(E), which was defined by (3 · 20) and characterizes the main feature 

of the line shape. 

If we confine ourselves to intraband effect, and moreover neglect phonon energies in 

(3·20), {).(E) is different from zero in the interval (cM-c).0, cJ.t-c>.0), where c>.b and 

c>., .means the energies of the bottom and the top of the energy band. Further, it is 

easily confirmed that at the both ends of the interval f (E) tends ·to zero as { E- ( c>.b 

-c>.0) } 112 or { (cJ.t-c>.o) -E} 112• If most part of the A-energy band lies on the high 

energy side of c}.0 , it is rather plausible to suppose that the peak shift Ll is negative 

according to ( 4 · 5) , and that the asymmetry ..'>¥' is positive due to ( 4 · 13) . 

In order to take into account these situations in . a simplest. way we- assume. the 

following functional form for {(E) : 

s {( b )2 ( b )2}1/2 
f;.(E)=: -:- - E---:-p>. (-1<PA<+1), (7. 10) 

where b>. is the breadth of the J.-energy band, and fA is a parameter representing the 

position of c>.o in the whole energy band. p= +1 ( -1) corresponds to the .case that 

K=O is at the bottom (top) of the band. The nor!Ilalization constant 5>. is determined 

by considering that the integral of{>. (E) is equal to V./ according to. (3· 20) and (5 · 

2) ; that is : 

(7 ·li) 

Note that a large s corresponds to a large coupling constant, to high temperatures or to 

a narrow ·energy band, as is easily seen from (7 · 8) and (7 · 11) . In the following, we 

shall omit the suffix ). so far as the intraband effect is concerned. 

Making use of (7 · 10) we can calculate the quantities given by· (4 · 4) , (4 · 5) , 

( 4 · 12) and ( 4 : 13) ; the results are as follows : 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

0
/1

/5
3
/1

9
3
7
2
2
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Theory of Lin~-Siiapes of the Exciton Absorption Bands 

H=or=st/ 1-Jlb, 

J=- (spj2)b, 

...5'¥= (spfz)fv 1-p2, 

r;=s. 

{iii) Criterion for the classification into Lorent!(,ian and Gaussian cases 

(7 ·12) 

(7 ·13) 

(7 ·14) 

(7. 15) 

The power series (5 ·1) is calculated, with the use of (7 ·10) and (7 ·11), as 

U2=--1 D2(_t )2+-1 ipD2b(-t )a+_1 (f+-1 )D2b2(_t )4+···. 
2 fj 12 fj 96 4 fj 

(7 ·16) 

If s~ 1, we can neglect all but the first term in (7 · 16), as well as in U4 , U6 , 

t 
\ 

1.0 

' I \ 

\ \ 
\ I ' \ \ 

\ \ 

' \ 
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' ' 
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' ' ' ' 
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A 

' ' .... .... ..... 

0~--------------~~----------+----J 
0.5 1.0 

I PI-
Fig. 4. The classification into Gaussian; Lorentzian, Asynunetric and 

Intermediate cases according to values of p and s . 
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72 Y. Toyozawa 

and therefore get (5 · 8), which leads to a Gaussian line shape. 

Next we introduce the ratio of the half-value width formula for the Lorentzian case 

to that for the Gaussian case : 

1 ;-~ ;~ 

-~1; 1-p2 v s. 
ln2 

(7. 17) 

According as r ;> 1 or r ¢ 1, the dynamical region ( 5 · 5) or the stochastic region ( 4 · 6) 

becomes more important than the other. In order that the Lorentzian case is realized, 

not only the relation r ¢ 1, but also ( 4 · 8) should be satisfied. In the present approxi­

mation, r"c( 0) defined by ( 4 · 1) is calculated as* 

(7 ·18) 

and ( 4 · 8) is rewritten as follows : 

s\p\/V 1-p2=2\SY'\ ¢1. (7 ·19) 

In Fig. 4 we divide the (\p\, s) 

plane into several regions according to 

the above discussions. The region G 

(Gaussian) is defined by s> 1, where­

as L (Lorentzian) is determined by 

r< 1 and JeW\< 1/2. We denote by 

A (asymmetric) the region where 

s< 1 and \~CV'\ > 1/2, and the remain­

ing region will be called I (inter­

mediate). 

(iv) Temperature dependence and 

the effect of lattice imperfections. 

In the above discussions we have 

considered the dynamical vibrations of 

the lattice. When there are any types 

of lattice imperfections such as dis­

locations, vacancies, interstitial atoms 

or *mpurities, a static displacement of 

the lattice is brought about. The 

exp,ectation values b1w, *, 

generally not equal to zero. 

b~J.u• are 

If, how-

H 

I 
I 

e. 

«.. 
&; 
I 

T 

Fig. 5. A typical temperature dependence of the half­

value width H expected from theory. 

ever, the imperfections are distributed at random, as is presumably the case in actual 

crystals, the linear effect of b almost cancels out, and we have only to replace nww= 

b~'-w * b~'-""ocT (T "<:, Bn) by a suitable quantity which is proportional to the density of 

imperfections. Thus the effect of increasing imperfections are qualitatively the same as 

* We use -r0 (0) instead of -rc(E), because the value near E=O is the most important in using the 

o·function approximation ( 4. 2) . 
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Theory of Line-Shapes of the Exciton Absorption Bands 73 

that of raising temperatures. In the following statements, which concern the ttmperature 

dependence of the line-shape, the word " absolute temperature " can be replaced, when 

one deals with the dependence on imperfection, by "the density of imperfections" with 

a suitable proportionality constant, without any other substantial modifications. 

As we have seen in (iii), the exciton absorption band is of a Gaussian shape when 

the exciton-lattice coupling is strong or the exciton energy band is narrow (corresponding 

to large effective mass), while it is Lorentzian in the opposite limit. If these quantities 

are in suitable ranges, s increases from a value s < 1 at T = 0 ° K to values > 1 at high 

temperatures (see (7 ·11) and (7 ·B)); that is, the line shape is Lorentzian at low 

temperatures and tends to Gaussian as the temperature is· raised. If 8}.0 is near the 

bottom or the top of the energy band (1-jpj < 1), the line shape is strongly asymmetric 

in a rather wide-spread intermediate range of s (see Fig. 4). 

In the region L, the half-value width H is proportional to T except at low tempera­

tures (T-::;80 , see (7·12), (7·11) and (7·8)), while it is proportional to VT in 

G (see Fig. 5) . 
The· interband interaction becomes important when other exciton energy bands lie 

dose to the band we are considering. For example, the peak shift (being proportional 

to T) due to• the intraband effect is given by (7 · 13), and it is negative or positive 

according as 8}.0 is near the bottom or the top of the band, while the contribution of 

the interband effect is given by 

(7. 20) 

according to (4·5), which is negative for the lowest exciton band. In the region G, 

the contribution of intraband effect to the shift is small, whereas the interband transition 

causes a shift given by 

(7. 21) 

if we take the terms with the lowest order in < b 1 a) , out of the coefficients of <-it/&) 

in ( 6 · 5) and (6 · 6) . In the same approximation the dispersion in the region G is 

given by 

(7. 22) 

The first term of (7 · 22) is proportional to T while the second is to T 2• It is possible 

that as temperature rises the half-value width tends to saturate or even to decrease, 

although in such regions, the peak separation .becomes very poor due to v ....... a. 
As for the asymmetry in the region L, there is a contribution from the interband 

e1fect given by (6 · 4), besides the intraband effect (7 ·14). It is to be noted that both 

are proportional to T. If two exciton bands lie very close to each other, and if the 

interband contribution is dominant as regards .J¥, both absorption peaks are expected to 

have slower decents towards the outside (Fig. 6a) or the inside (Fig. 6b) according as 
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74 Y. Toyozawa 

(a) Re(F;.MF;.M)>o (b) Re(FHIFH,)<o 

Fig. 6. The interban.d effect on the asymmetries of adjacent peaks. 

Re(Fv.,r).).r) 'S 0, the smaller peak being distorted more strikingly than the larger one. 

In the region L, the product of the peak height and the half-value width varies 

as 1 + r;, where 7j is proportional to T (at T "?:, 80). The contribution from the intra­

band transition is given by (7 ·15) and is positive,* whereas the interband effect is given 

by ( 6 · 3) . In the region G, 7j is mainly due to the inter band effect. In the lo~est 

order of (bji3), it is given by 

+ '2i' 2 . Re{Fm(Bu,m-Bun)} 

M (c).0-cM0) 2 F).). 

(7. 23) 

(see (6·5) and (6·6)), and is proportional to T. 

( v) Physical meanings of the criterion 

Let us consider the meaning of rc(O) defined by (4·1). According to (4·2) and 

( 4 · 3), the probability that an exciton has suffered a collision by a phonon is propor­

tional to t only if Jtl > 'c· rc is considered to be a minimum duration time of collision: 

if we imagine a wave packet of an exciton which collides with a wave packet of a 

phonon and is then scattered, the collision duration time is of the order of rc in the 

most favorable cases (that is, for a.pprcpriate forms of the initial wave packets). Thus 

the condition ( 4 · 8) for the Lorentzian case means that the time between successiv.e 

collisions is large compared with the collision duration. This is the well-known condition 

f9r the validity of the usual transport equations, and was discussed by Peierls91 l for the 

case of metallic conductivity, by Seitz22) for the case of semiconductors, and has recently 

been extended to general case by van Hove.20) 

It is instructive to compare the division in Fig. 4 with the "polaron" problem.16l 

The region L corresponds to the weak-coupling case, where the usual perturbation theoretical 

calculation is valid, while the region G corresponds to the strong coupling case where 

* That it is positive seems to be very probable, irrespective of the .approximation (7 ·10). For, in 

(4·12), f' (E) is positive (negative) near the bottom (the top) of the band, where E is negative (positive). 
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Theory of Line-Shapes of the Exciton Absorption Bands 75 

the so-called self-trapped electron is a good approximation. The region A corresponds to 

a slow electron (note that 1-[P[ ~ 1) in the intermediate coupling case whose exact 

treatment is rather difficult. In our case, too, it would be necessary to take into account 

the cloud effect suitably, in order to discuss the line shape for the region A more elabo­

rately. 

The situation in the Lorentzian case is analogous to the motional or exchange 

narrowing effects of magnetic resonances. 23> Thus, excitation energy ( c~ 0 ), kinetic energy 

of an exciton (Enc-E>.o) and exciton-lattice interaction H.r. of our case correspond to 

Zeeman energy, exchange coupling and dipolar interaction, respectively, of the magnetic case. 

§ 8. Comparison with experimental results 

We now compare the theoretical conclusions stated in the previous section with 

several experimental data available at present. 

(i) Analysis of Fesefeldt's24> and Martienssen's25> data shows that at low and room 

tern peratures, the first exciton absorption bands of KI and RbBr crystals are Lorentzian 

in the main, while it approaches the. Gaussian shape at high temperatures, as is expected 

from theory (see § 7 (iv)). Other alkali-halides seem to show the same tendency, 

though not so clearly as in KI and RbBr. 

According to T1.1:tihasi's26> data on -AgCl crystal, the absorption curve on the low 

energy side of the first peak, at T= -184°C, is in excellent agreement with a Lorentzian 

curve, with half-value width H=0.177 eV. On the high energy side, overlaps with 

other bands prevent the analysis. 

+6 +5 +3 

0.6 

0.5 

0.4 

0.2 

0;1 

0 

0 

)( 

1!1 

\ 
X 

-1 

specimen 

specimen 

specimen 

Lorentzian 

Gaussian 

X 

' ' ' ..... 

-2 -3 

(f) 

(e) 

(b) 

-5 

Fig. 7. The absorpti<m curves for the first· peak of Kl (containing 10 mol % of KF) measured by 

Fischer. The peak height and the half-value width <Ire reduced to unity for each speciinep, 
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76 Y. Toyozawa 

Table 1. The results of analysis of Fischer's data on the first absorption peak of KI crystals 

·containing 10 mol % of KE 

specimen I peak position I peak height I half-value 
width H I line shape I asymmetry._!¥' I area 

(f) 5.844 eV 2.16 0.067 eV L very small 0.178 

(e) 5.840 1.40 0.115 L -0.08 0.198 

(d) 5.795 0.674 0.37 (L) -0.30 0.305 

(c) 5.63 

(b) 5.51 0.467 0.42 G 0.196 

(a) 5.48 0.434 0.40 G 0.174 

Fischer27> measured, at T = 20 ° K, the absorption coefficients of a number of KI 

(containing 10 mol % of KF*) films with different preliminary heat treatments. The 

higher the temperature is maintained or the longer the treatment is continued, the less 

will be the crystal imperfections. In his specimens (f) and (e), which are considered 

to be the most perfect ones, the first peak is of a ;Lorentzian shape with relatively small 

width, while the specimen 

(b) and (a) which must 

have high densities of im­

perfections show nearly 

Gaussian shapes with large 

widths, as ts shown in 

Fig. 7 and Tab. 1. These 

results again confirm the 

theoretical expectation (see 

§ 7 (iv)). 

In Fig. 8, we plot the 

half-value widths of the 

first peaks of KI and RbBr, 

as measured by Fesefeldt, 

Fischer and Martienssen at 

various temperatures. The 

temperature dependences are 

in qualitative agreement with 

the curve of Fig. 5, show­

ing a tendency of bending 

downward from the linear 

curves HOC T (extrapolated 

0.4eV 

H 

0.3eV 

0.2eV 

I 

I 
I I 

I I 

/ I 
I I 

I I 
I I 

I / 

X I 
t I 

I II 

/ I 

/ ~· I 1 
I / / 

I I / 

/ II 0/ 
I / / 

I / "' 
I I I 

• 

I I / 

//// / / 

O.leV X / 1 1 "' 

/// -o 

X RbBr (Fesefeldt) 

0 KI (Martienssen) 
0 // ./" 

I/ "' 
/1 / 

// / 

e KI (Fesefeldt) 

I// 
;y / 

[• 

-T -
Fig. 8. The observed half-value widths H of the first peaks of Rb 

Br and KI at various temperatures (after Fesefeldt and Martienssen). 

* Fischer carried out the experiments on Kl containing varions amounts of KF. Here we confine our­

selves to his specimens containing 10 mole % KF, ·because his data are most detailed for these, and in addi­

tion, the absorption curves seem· to be almost the same as in pure KI specimens. 
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Theory of Line-Shapes of the Exciton Absorption Bands 77 

from room temperature values), at high temperatures where the absorption bands are, 

in fact, Gaussian. The reason for the discrepancy between Fesefeldt' s and Martienssen' s 

data is not clear, but it might be due to some kinds of crystal imperfections contained 

in the former experiment. 

(ii) We now proceed to somewhat detailed analysis of Fischer's data on KI. The 

results of analysis of the first absorption peak are shown in Tab. 1 and Fig. 9. In the 

first column of Tab. 1, the specimens are arranged in the order of increasing imperfec­

tions. We can take the peak shift as a measure for the imperfection density because 

of (7·13), (7·20) and (7·21) (all of these quantities are proportional toT in the 

case of temperature variation), though the proportionality constant in the region L is 

different from that in the region G. In the last column the area defined by const. X 

(peak height) X (half-value width) are shown. In the L region, the constant is taken 

to be y'nln2 times of that in the G region (compare (4·7) and (5·6)). 

In the Lorentzian region, H, ._s:v. 7j and shift are expected to be proportional to 

each other according to (iv) of § 7. This relation is approximately satisfied for the 

specimens (f), (e) and (d), as is seen from Fig. 9. Making use of the values of H 

for (f) and (e), the area for the ideal crystal (which means that H=O, and is physical­

ly not attainable because of zero,point vibration) is extrapolated to be 0.150. For the 

specimen (e) , therefore, we have 

"f)= (0.198- 0.150) /0.150 = 

0.32, while ..5)1'= -0.08. Sub­

stituting these in (7 · 14) and 

(7 ·15) we have p= -0.45, 

and further comparing (7 · 12) 

with the experimental value 

for (e), we get b=0.40 eV. 

The peak shift between (f) 

and (e) is estimated, by (7 · 

13), to be Li=+0.012 eV 

whereas the observed value is 

Ll= -0.004 eV. This discre­

pancy would be mainly due to 

the interband effect (7 · 20), 

which is certainly negative for 

the first exciton band. 

In the Gaussian region, 

the peak separation is rather , 

poor, and we have analysed 

the absorption curve only on 

the low energy side ; the values 

of H for -(b) and (a) were 

obtained by assuming the sym-

0.3 

0.2 

0) 

5.85eV 

5.8eV 

5.7eV l ~k 
5.6eV 

-0.4 

-0.3 

-0.2 

-0.1 

0.2eV 0.3eV 0.4eV 

X~ 

t 
e specimen (f) 

l( (e) 

t " 
(d) 

1!1 (b) 

A p 
(a) 

H--

Fig. 9: The area, the asymmetry ..5)1' and the peak position 

as functions of the half-value width H (see Table 1). 
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78 Y. Toyozawa 

metry of the curve, though this is rather doubtful. The saturating or decreasing tendency 

of H, as the imperfection increases, is, however, well established from this data, and this 

is in accordance with the theoretical result (7 · 22). The second exciton peak of Kl is 

separat~d from the first peak by a--o.5 eV. We can write the shift of the first peak 

as J' = - v IY I a in view of (7 . 21) and ( 5 . 4) ' where v ( > 0) is a dimensionless quantity 

of the order unity. Consequently we get H--2(D2 -L1'2) 112 =2{-(ajv)J'-J'2 } 112, and 

the maximum of H is to be realized at J' (m) = -aj2v with H(m) =ajv. From Fig. 

9 we estimate H(m)--0.47 eV and J'(m)---0.20eV, though withsome ambiguity. 

The relation H(m) = -ZLI' (m) is approximately satisfied. On the other hand we have 

D(m) =H(m) /t/2 --0.33 eV; and according to (7 ·11), s(m) --5, the result which is 

consistent with our assumption that this neighbourhood is well in the region G. 

(iii) Let us now compare the observed and cal.culated half-value widths. According 

to Martienssen's data, the first peak of KI shifts to low energy side by 0.10 eV and 

the half-value width increases by 0.10 eV as the temperature is raised &om 155°K to 

293°K. According to Fischer's experim~nt (Tab. 1),' t~ ratio of the peak shift to the 

increment of H is 1/12 for (f)- (e) and 1/6 for (f)- (d). Thus the most part 

( --...0.09 eV) of the temperature shift of the peak is considered to be due to thermal 

expansion, the remaining part ( --...0.01 eV) being due to the dynamical lattice vibrations 

(self-energy). Making use of thermal expansion coefficient (linear) 0.4·10-4 deg-\ we 

estimate the deformation potential: E 1 =-0.09 eV/(3X0.4X10-4 Xl38)=-5.4 eV, 

C=- (3/2) X£1 =8.1 eV. If we take the effective mass appro~imation, this C cor­

responds to C0 - C,,, b~cause th~ exciton energy b:md shifts by E 1, J-E1• J wh~n the 

conduction band shifts by E1c J as a whole and the valence band by ElV J (Here J 

means the dilation). 

In this connection it is to be noted that Kawamura"s) has calculated the deformation 

potential for the conduction band of KCl crystal by the cellular method with result 

E1c= -5.4 eV. It would presumably be smaller for KI crystal. On the other hand, 

E1 • would be of the· order of +Mi/3a=2.4 eV for KI (M: Madelung constant, a.: 

lattice constant) because each of valence band electrons is considered to be fairly localized 

on a halogen ion. Thus the value E1 = -5.4 e V can be reasonably explained. 

Comparing (7·12), (7·11) and (7·8) with Martienssen's data H=0.20eV at 

T=293°K, and inserting C=8.1 eV, Mu2jv0 =c;;;;=0.25 ·1012 dyne cm2 (we follow the 

procedure due to Bardeen and Shockley15l in evaluating C;;;; ; as for the elastic constants 

see ref. (29) ), b=0.40 eV and p= -0.45, we get ~,<•ljw 0 =0.62. This means that the 

radius of the exciton is slightly larger than the lattice constant, which seems plausible 

in the case of alkali-halides. 

According to (7 · 8), the low temperature value of H should be ( 80/T) times the 

value at a high temperature T (still in the L region) . Com paring Fischer's data H = 

0.067 eV (the specimen (f) at 20°K) with Martienssen's data at T=293°K stated 

above, we get I90 =99°K. On the other hand, the Debye temperature fJIJ='huw0jJC is 

estimat;:d to be 190°K. Now, fJ0 must be smaller than fJIJ/2 according to the general 

theory. If we use (7 · 9) fJ0 is estimated to be 40°K. Although this estimation has 
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Theory of Line-Shap~s of the Exciton Absorption Bands 79 

only qualitative meaning, the observed H at 20°K seems too large to be explained by 

the zero-point lattice vibration alone. This .. discrepancy is presumably due to a small 

amount of imperfections frozen in, in an inevitable way, on cooling the crystal, the 

fractional contribution of which is larger for lower temperatures. We )IlUSt also add that, 

of Fischer's data, we are analysing only those specimens which contains 10 mol % of 

KF. 

(iv) In the above, we have neglected the interband effect (except in the Gaussian 

case). This effect is presumably not small, as is pointed out in (ii) in connection with 

: ~th~ p!ak. shift, and cons!qu~ntly th~ estimated values of b and p are of only qualitative 

meaning. Moreonr, the true width of th~ energy band might be larger than b, because 

the latter is the width of that part of the energy band which is connected with the 

point K = 0 through the transition coefficient {1 (K) of appreciable magnitude. b may 

be much smaller than the true width of the energy band if the exciton radius is large, 

while they do not differ very much for the case of alkali-halides. 

On the other hand, the band bottom c>.b is estimated, according to (ii), to lie 

(I-p)b/2=0.29 eV below c>.o· This is consistent with the observed value 0.32 eV 

for the energy difference between the first peak and the {1-absorption peak.so) The latter 

corresponds to the creation of an exciton which is trapped in the neighbourhood of the 

F-center, and the required energy must be smaller than c).b by a trapping energy. 

Here we should like to refer also to Howland's~ 1 l calculation on the energy band 

structure of KCl, according to which the valence band is fairly narrow (--I eV) and 

the uppermost branch has a maximum on a (011). direction nearly midway between the 

center and th~ edge of th~ first Brillouin zone. Making us! of his result, and assuming 

that th~ bottom of the conduction band is at K = 0 with effective mass equal to the 

tru~ electron mass, the procedure described in (2 · 2) '"""(2 · 9) leads to an exciton energy 

band which is fairly narrow and whose bottom is coincident with the top of the valence 

band in K-space. Th~ situation would be qualitatively the same for Kl (apart from the 

large spin-orbit splitting of the valence band32l). This rather speculative consideration is 

consistent with th~ result of the above analysis. 

( v) According to Martienssen/5l the first exciton peak of Csl is followed by the 

second and third peaks with rather S!llall gaps, and shows, at the same time, a strong 

asymmetry (&= -0.23 even at 20°K; compare with the specimen (f) of Kl in Tab. 

( 1) . It is very probable that this strong asymmetry is largely due to the interband 

effect. In the data of Philipp and Taft,as) the temperature dependence of the separation 

between the first peak. and the other two peaks is well expressed by the formula a+rT 
where a=0.21 eV and r=6.4·10-4 eV/K 0 • These values of c.W"and rare reasonably 

explained by ( 6 · 6) and (7 · 20) if we assume that the interband exciton-lattice coupling 

constant is as large as the intraband one. 

(vi) In Cu20 crystal, three hydrogenlike series of absorption lines are observed,34l 30> 

which are interpreted by Gross and Nikitine to be due to excitons. Each line has a 

very small width H, of the order of 10-3 eV at most.'"l This might be partly due to 

the large radius~"> of the exciton which ·makes (w<•> /w~) 3 of (7 · 8) fairly small, and partly 
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80 Y. Toyozawa 

due to the smallness of C itself (note that Hoc C2). In fact, the temperature shifts 

of the series limits35> are as small as one tenth of that of the first peak in KI, thus 

leading to a small deformation potential. 

(vii) In the case of an X-ray exciton, the hole corresponds to the innermost shell 

of an atom, and the effective mass m,. is very large. In this case, the dipole-dipole 

interaction of the Heller-Marcus36> type might be more important in determining the 

effective mass m* of the exciton; nevertheless m* would be large unless the oscillator 

strength for the transition is as large as '"'-l. Thus we expect that the absorption peak 

corresponding to an X-ray exciton is of a Gaussian type for any temperature. 

The experimental data for KCl due to Kiyono,~ 7 l as well as that due to Trischka38) 

seem to support this conclusion, as has also been noted by Parratt and Jossem,39> although 

a quantitative analysis of the line shape is rather difficult in the present stage of X-ray 

spectroscopy. The observed half-value widths ( 2 '"'- 3 e V), on the other hand, seem to 

be too large to be explained by the exciton lattice interaction alone. 

In conclusion, the author would like to express his sincere thanks to Profs. T. 

Matsubara, K. Tomita and R. Kubo for stimulating discussions, and to Prof. S. Kiyono 

for various information on the experimental works. He is also greatly indebted to Dr. 

F. Fischer, the University of Gottingen, for kindly sending him detailed experimental 

data which have been quite stimulus and useful. 
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