
Theory of Linear Equations Applied to
Program Transformation

Uday S.Reddy
University of Utah, Salt Lake City

Barat Jayaraman
University of North Carolina at Chapel Hill

Abstract

In this paper is presented a technique for transforming a class
of recursive equations called linear equations into iterative
equations. Linear equations are characterized by involving at
the most one recursive call for any invocation. In contrast to the
conventional techniques, the scheme of program transformation
presented here involves finding the solution of the given linear
equation and transforming this solution. The solutions of linear
equations can always be expressed using a construct called
abstract sequence. Two classes of abstract sequence programs are
identified: right-associative and left-associative sequence
programs. The former are obtained by solving linear equations
and the latter correspond to iterative programs. The task of
transforming linear recursive programs into iterative programs
is thus reduced to the task of transforming right-associative
sequence programs into left associative ones. Various
transformation rules are developed based on an algebra of
functional programs.

I Introduction

Since the pioneering work of [Darlington 1976, Burstall 19771,
program transformation has come to be widely recognized as a
program development tool. In this paper, we are interested in
the application of program transformation to develop iterative
programs from recursive programs. A generalized calculus for
such transformations called unfold-fold method was given in
I Burstall 19771. Given a recursive equation to compute a
function f one finds another function / ' , such that

1. there exists a recursive equation for f that is in iterative
form, and

2. /"can be defined in terms of/"' without using recursion.
Once such a function f' is found, the unfold-fold method can be
used to systematically develop the recursive equation for f from
that for f The main problem with the use of this method is to
find the target recursive function f.

We submit that the cause of the problem is that the unfold-
fold method attempts to transform one recursive equation into
another without regard to what the functions defined by these
equations are. If we can find the solution of the given recursive
equation, the function f, it may be possible to systematically
develop the function f for which an iterative equation exists.
But, unfortunately, it is not known how to express the solution of
an arbitrary recursive equation. Even though the solution of any
recursive equation can be specified as the limit of a

monotonically increasing sequence of functions |Scott 1970,
Manna 1972], the limit itself is, in general, not "expressible", i.e.,
cannot be specified using a closed form expression involving
other functions. Backus 119781 initiated the development of
notation and theory to formally derive and express the solutions
of certain classes of recursive equations. Further developments
of this approach can be found in I Backus 1979, Backus 1981,
Williams 1982).

In this paper, we shall consider the class of linear equations as
defined in IBackus 19811. The solutions of these equations can
always be expressed using a construct called abstract sequence
[Reddy 1982a I. Further, the solutions fall into a class of abstract
sequence programs called right-associative sequence programs.
We will identify another class called left—associative sequence
programs which are equivalent to iterative programs We will
then present examples of transformation rules to transform
right—associative sequence programs into left associative ones,
based on the "algebra of functional programs" introduced in
[Backus 1978].

II Notation

We shall use the FP system given in [Backus 19781 as the
language for presenting the transformations. An object in an FP
system is either the undefined object (I), or an atom or a
sequence of objects. The atoms include boolean values (T, F) and
numbers. Sequences are enclosed in angular brackets (...) and
the empty sequence is denoted by 0. A sequence containing I is
equal to 1. All functions accept a single object as argument and
yield a single object as result, either or both of which can be
sequences. The application of a function on an object is denoted
by the operator ":". All functions yield 1 when applied to I (i.e.
they are strict). Unlike other functional languages, in an FP
system, only first-order functions are defined. Using a small set
of higher order functions called functional forms, functions can
be defined without using X-abstraction. Such definitions are
called function-level definitions in contrast to the object level
definitions of the λ-calculus style.

Appendix I contains a list of Backus's functions and functional
forms which we shall use in this paper. Some new functional
forms that will be used are given below.
A bstract Sequence

. 1 n
seq r p:x - (x, r :x, ... , r :x)

if p:r :x = T and p:r :x - F for all i<n
J if no such n exists

U. Reddy and B. Jayaraman 11

For the sake of convenience, we shall use some purely
syntactic extensions to the FP notation. First ly, we shall use
object-level definitions as in λ-calculus based languages. Such
definit ions can be translated into pure FP definit ions in much
the same way as extended definit ions discussed in [Backus 1981].
Another notational extension we shall f ind useful is inf ix
notation for binary functions. We shall wr i te f:{x,y) as x f y
using inf ix notation. Prefix applications of functions have
precedence over inf ix applications.

The seq functional form was introduced in [Reddy 1982a]
where a sequence yielded by the seq functional form was called
an abstract sequence. As they play a pivotal role in our
manipulat ions, we shall introduce informal notation to denote
abstract sequences. In this notation,

12 U. Reddy and B. Jayaraman

U. Reddy and B. Jayaraman 13

14 U. Reddy and B. Jayaraman

If a powerful set of properties of associative duals, such as the
one of theorem VI.3, is found then the use of duals may be a
viable tool in transformations. But, currently we do not know
enough useful properties of them. Therefore, instead of directly
looking for the associative dual of the function used wi th inser t r ,
we would l ike to transform the given right-associative program
into another r ight-associative program, so that the technique of
duals can be used w i th the latter.

VII Right-associative-To-Right-associative
Transformations

For most programs, the function h used w i th i nse r t r
functional form, is too complicated to have an associative dual.
We then transform it into another rights-associative program in
which a simpler function h' is used w i th inser t r . The
transformations that are possible for a specific function h are
highly sensitive to the form of h and the properties that it
satisfies. The fol lowing rules identify certain widely applicable
forms and properties of h. But there may indeed be several
others. The proofs of these rules can be found in [Reddy 1982b|.

U. Reddy and B. Jayaraman 15

VIII Discussion

An automatic transformation system can be designed based on
the techniques described here. Such a system would have three
stages.

1. Rewrite the l inear equation using a canonical l inear form
and solve i t .

2. If the reduction sequence can be inverted, then use it to
produce a left-associative program. Otherwise, apply
rights-associative-to—right-associative transformations,
unt i l the right-associative function is sufficiently simple to
have a dual.

3. Transform the left-associative sequence program into an
iterative equation or equivalently a loop.

The stages 1 and 3 can be done algor i thmical ly, whereas the
stage 2 handles a hard problem. We envisage the best approach
for stage 2 to be a user—directed transformation system such as
that of | Feather 1982].

The main advantage of our transformation scheme over the
unfold-fold scheme IBurstal l 1977] is that the target recursive
function is not guessed (by the so—called eureka steps) but results
automatical ly from the transformation of the solution of the
source recursive equation. However, Arsac and Kodratoff [1982)
have recently suggested a generalization strategy which can be
used to guess the target recursive equation based on the form of
the source recursive equation. Even though their strategy is
radically different from ours, the effects achieved by them are
surprisingly close to ours. More investigation to f ind any
possible relationship of our strategy w i th theirs is worthwhi le.

The main drawback of our transformation scheme is that the
algebraic properties of the rights-associative function h have to
be restated in a form applicable to sequences, so they can be used
in right^associative— to-r ight-associat ive transformations. The
rules given in section V I I are such restatements. It is not always
clear how the properties can be so restated. The unfold-fold
method, on the other hand, directly uses the algebraic properties

16 U. Reddy and B. Jayaraman

of the functions involved. Further development of FP algebra
may alleviate this problem.

The r ight-associat ive-to-r ight-associat ive transformations
are proved using an inductive proof s imi lar to the unfold-fold
method. The rules used in such proofs are 1 and 2 or 1 and 3 of
the following.

1. i nse r t r h : (, z) = z
2. i nse r t r h : (s apndr a, z) - i nse r t r h : (s, a h z)
3. i nse r t r h : (a apndl s, z) ~ ah (inser t r h : (s,z))

This suggests that it may be possible to apply these
transformations directly on a recursive equation using un fo ld -
fold, in effect mimick ing the transformation of the sequence
programs (because every right-associative sequence program is
equivalent to a l inear equation and vice versa). Such a strategy
would el iminate the need to restate the algebraic properties of
functions in sequence form, and also integrate our technique
w i th the unfold-fold method which is a much more general
technique applicable to any recursive transformation.

If our techniques have to be used for equations other than
l inear equations, methods to express the solutions of those
equations must be found. [Wi l l iams 19821 was a step in that
direction. Further investigation of recursive equation solutions
would faci l i tate the development of transformation techniques
for nonlinear equations.

Acknowledgements

We would l ike to thank Don Stanat, Manton Matthews and
Gyula Mago for several discussions and suggestions.

References

[1) Arsac.J., Kodratoff, Y. 119821, Some techniques for recursion
removal from recursive functions, ACM Trans, on Prog.
Lang, and Systems, 4, 2, 295-322.

[21 Backus, J.W. [1978], Can programming be liberated from
the von Neumann style? A functional style and its algebra
of programs, Cornm. ACM, 21 , 8, 613—641.

[31 Backus, J.W. 11979], On extending the concept of program
and solving linear functional equations, I B M Research
Division, San Jose.

[41 Backus, J.W. [1981], The algebra of functional programs:
functional level reasoning, l inear equations and extended
definit ions, (in) Formalization of programming concepts, (ed)
Diaz and Ramos, Spr inger-Ver lag.

[5] Bursta l l , R.M., Dar l ington, J.[1977], A transformation
system for developing recursive programs, Journal of ACM,
24, 1,44-67.

[6] Dar l ington, J . , Bursta l l , R.M. [1976], A system which
automatical ly improves programs, Acta Informatica, 6,1,
41-60.

[7J Dar l ington, J. [1978], A synthesis of several sort ing
algori thms, Acta Informatica, 1 1 , 1 , 1-30.

18] Feather, M.S. [1982], A system for assisting program
transformation, ACM Trans, on Prog. Lang, and Systems,
4,1, 1-20.

[9 |K iebur tz , R.B., Shult is, J. [1981], Transformation of FP
program schemes, 1981 Conf. on Functional Programming
Languages and Computer Architecture, A C M , 41—48.

[10] Manna, Z., Vu i l l emin , J.[19721, Fixpoint Approach to the
theory of computation, Comm. ACM, 15, 7, 528-536.

[11] Reddy, U.S. [1982aJ, Programming w i th sequences, ACM
Southeast regional conference, Knoxvi l le , Tennessee.

[121 Reddy, U.S. [1982b], Transformation of linear recursive
programs using sequences, Dep. of Comp. Sci., Univers i ty of
Nor th Carolina at Chapel H i l l .

[13] Reddy, U.S. [1983], A simple characterization of linear
recursive equations, Dep. of Comp. Sci., Univers i ty of Utah,
Salt Lake City.

[14] Scott, D.[1970], Outline of a mathematical theory of
computation, Programming Research Group Tech. Memo.
PRG-2, Oxford Universi ty Computing Lab.

[15] Walker, S.A., Strong, H.R. [1973], Characterizations of
f lowchartable recursions, J. of Computer and System
Sciences, 7,404-447.

[16] Wi l l iams, J .H. [1982], On the development of the algebra of
functional programs, ACM Trans, on Prog. Lang, and
Systems, 4, 4, 733-757.

