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ABSTRACT: A theory for the interfacial tension and interface thickness of demixed 

polymer mixtures and polymer solutions is presented on the basis of the theory of Cahn 

and Hilliard, taking into account the change in the dimension of polymer coil at the 

interface. The following results are obtained from the theory: (I) Near critical tem­

perature Tc in a polymer mixture with the same chain length m (a symmetrical system), 

interfaical tension a increases with m in the t power of m, whereas in a polymer 

solution, a decreases with m in the-! power, compared at the same reduced tempera­

ture TITc. On the other hand, the thickness of the interface near Tc increases with 

increasing m, proportional to the unperturbed chain dimension, i.e., to ml/2, in a 

symmetrical polymer system, and to the t power in a polymer solution. (2) In high 

polymer systems, a first order transition from a diffuse interface to a sharp interface is 

predicted. The transition temperature reduced by Tc increase with increasing m. The 

thickness of the interface at a low temperature does not greatly depend on m and is of 

the order of a segment length. 

KEY WORDS Interfacial Tension 1 Interface Thickness 1 Transi-
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Phenomena I 

Studies on the interface profile and the 

interfacial tension between demixed liquid phases 

containing polymers have not been performed 

extensively. Langhammer and Nestler' measured 

the interfacial tension of demixed polymer 

solutions of polymer-polymer-solvent systems, 

and found very low values of interfacial 

tension, in the range of 10-4-10-2 dynjcm. 

Morozova and Krotova, 2 Gromav and Chalykh, 3 

Voyutskii, Kamenskii, and Fodiman, 4 Letz, et 

a!., 5 measured the thickness of the interfacial 

layer of polymer-polymer systems with phase­

contrast microscopes or electronmicroscopes, 

and found very large values of the interface 

thickness, in the range of 102-105 nm depending 

on the combination of polymers. It is not 

clear, however, whether the diffused interfaces 

measured were truly equilibrium interfaces or 

not. On the other hand, Vrij 6 derived the 

equation for the interfacial tension between 

demixed polymer solutions of symmetrical 

systems on the basis of the theory of Cahn and 

Hilliard, 7 and found qualitative agreement with 

the experiments of Langhammer and Nestler. 

96 

Helfand and Tagami8 presented the theory of 

interfaces of immiscible symmetrical polymer 

mixtures employing a mean field theory which 

involved a selfconsistent field calculation, and 

Helfand and Sapse9 extended it to be applicable 

to asymmetrical systems. They predicted the 

thickness of a polymer-polymer interface to be 

of the order of 1 nm in most cases, depending 

on the interaction parameter X· Recently, Roe10 

presented the theory for the interface between 

polymers and polymer solutions based on his 

own theory for non-uniform systems, which was 

derived by modifying the Flory-Huggins solu­

tion theory. The interfacial tension and interface 

thickness were evaluated as a function of x-xc 
and the chain length, where Xc was the value 

of x at the critical temperature. 

Generally speaking, the thickness of the 

interface strongly depends on the temperature 

T, especially near the critical temperature Tc. 

Therefore, the thickness of the interface layer 

should be discussed as a function of tempera­

ture or of TfTc. Previous works except the 

recent theory of Roe, 10 however, did not treat 
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the temperature dependence sufficiently. In a 

polymer system, the conformation or dimension 

of polymer coils at the interface may also be 

an essentially important problem, which may 

affect the interface profile and interfacial tension. 

In Roe's theory, the entropy arising from a 

distortion of polymer molecules from their 

equilibrium phase was taken into account by 

evaluating the possible difference in the distribu­

tion of chain ends in the interface from that 

of interior segments. In Vrij's theory, how­

ever, the segment distribution of a polymer 

chain is assumed to be invariable even at the 

interface. 

In this paper, equations will be derived for 

the interfacial tension and the quantities con­

cerned with the interface profile, such as the 

concentration gradient and the dimension of 

chain molecules at the interface, on the basis 

of the theory of Cahn and Hilliard, taking into 

account the change in the dimension of polymer 

coils at the interface. Interactions between 

polymers (or a polymer and solvents) are 

attributed to segment-segment (or segment­

solvent) interactions, and the large interaction 

range of a polymer molecule is due to the large 

dimension of a chain coil. In other words, 

polymer molecules can interpenetrate and have 

no hard core at the center of a molecule but 

each segment has a hard core and occupies the 

volume of a system. In the present theory, 

therefore, the local number density of segments 

(or local volume fraction of segments) and the 

local number density of molecules are distinc­

tively defined and are related to each other 

through the concentration gradient in a non­

uniform system. This idea was first introduced 

by Vrij and Esker11 in their recent theory for 

critical opalescence of polymer solutions. The 

present theory is for binary systems including 

asymmetrical systems. The main aims of the 

paper are to see what are expected for the 

changes in the concentration gradient and the 

dimension of a chain at the interface upon 

decreasing temperature from a critical tempera­

ture, and to evaluate the molecular weight 

dependence of the interfacial tension and the 

interface thickness in polymer-solvent binary 

systems and symmetrical polymer mixtures. 
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THEORETICAL 

Consider a mixture of N1 polymer molecules 

of species 1, each consisting of m1 segments, 

and N 2 polymer molecules of species 2, each 

consisting of m2 segments, in a total volume V. 

Thus, we can write 

( 1 ) 

where wi is the volume of a segment of species i. 

We assume w; to be constant by neglecting the 

volume change on mixing. The system is 

demixed into two liquid phases, having a 

concentration gradient in the z-direction. The 

interface, which is perpendicular to the z-direc­

tion, has an area A. The interfacial tension a 

is given as the surface excess free energy per 

unit surface area 

a=(F -F')/A 

={(F-F0)-(F' -F0 ))/A ( 2) 

where F is the Helmholtz free energy of the 

mixture, F' is that of a fictitious system without 

interface containing two homogeneous phases 

. with the same composition as in the two 

homogeneous phases of the real system, and Fo 

is the free energy of the pure components 

before mixing. F' -F0 is expressed by 

F' -F0 =Nd,u1(e)-p 1°)+N2{p2(e)-p2°) ( 3) 

where ,Ui(e) is the chemical potential of species 

i in phase equilibrium, and f!i0 is that of a 

pure component i. 

As pointed out in the introduction, we define 

the local number density of segments and the 

local number density of molecules, and relate 

them to each other. Let the numbers of 

segments and molecules of species i per unit 

volume be denoted by ni and ci respectively, 

which are both given as a function of the 

coordinate z along which the concentration 

!'radient exists, i.e., ni(z) and ci(z). Since a 
0 . 

segment with a hard core the volume 

of the system, we have 

( 4) 

In general, the relation* of C1m1w1 +c2m2w2= 1 

* In Vrij's theorys for interfacial tension this 
relation was used, although in the recent theory 
of Vrij and Eskeru for critical opalescence eq 4 was 
adopted. 

97 



T. NosE 

does not always hold, because n;=m;c; is not 

always satisfied under the existence of a con­

centration gradient. Designating the segment 

density of a molecule of species i whose center 

is located at a position z by p;(r; z) as a func­

tion of the distance r from the center of the 

molecule, n; is expressed in terms of c; by the 

equation 

n;(z)= [= c;(z+r.)p;( -r; z+r.)dr.drydr. ( 5) 

where r., ry, and r. are the x, y, and z com­

ponents of r, respectively, and the center of a 

molecule is defined by 

[= [= dr.dry pdr.= [= [= drydr. pdr. 

= [= [= dr.dr. pdry= [_ pdr.drydr./2 

The segment density p; 0 in a uniform system 

may be reasonably assumed to be Gaussian; 
. 12 
z.e., 

p;0(r., ry, r.)=(m;/a3rr 312) exp { -(r/+r/+r.2)ja/} 

( 6) 

The parameter a; is a measure of the dimension 

of a polymer coil. In a non-uniform system or 

in a liquid-liquid interface, however, it is a 

very difficult problem to determine the segment 

density rigorous! y, although many theoretical 

treatments have been presented for an isolated 

polymer chain on a rigid surface. Thus, in the 

present theory we introduce the local expansion 

coeffecient a of a chain as a function of the 

position and assume that when a part of a chain 

is at a position (x, y, z), its dimension is ex­

panded by a.(x, y, z), ay(x, y, z), and a.(x, y, z) 

times of that of unperturbed state in the direc­

tions of x, y, and z, respectively. Then it 

follows that 

p;(r; x, y, z)dr.drydr. 

=p;0(r.jii., ry/iiy, r.ja.)dr.drydr.j(axayaz) ( 7) 

where 

r.fiix= Cdr/fax, 

and 

98 

( 8 ) 

and a., ay, and a. in eq 8 are expansion 

factors at r'. In the present case, since the 

system has no concentration gradient in the x­

and y-directions, a. and ay are both unity.* 

Therefore, eq 7 and 8 are written as 

p;(r; z)dr.drydr.=p; 0(r., ry, r.fii)dr.drydr.ja ( 9} 

ii=r.j{[ dr/ja(z+r/)} (10) 

where a. is a function of z and is replaced by 

a for simplicity. Now, assuming that F is 

separately expressed by the sum of the free 

energy F associated with intermolecular and 

intersegmental interactions or liquidlike proper­

ties, and the free energy F 0 associated with 

chain conformation or elasticity of a polymer 

coil, one may write 

F -Fo=(F-F0)+(F0 -F0e) 

=(U-U0)-T(S-S0)+(F"-F0°) (11) 

where 0 is the internal energy arising from the 

potential energy of the intersegmental interac­

tions and S is the entropy in F (excluding the 

entropy associated with chain conformation). 

For S-S0 , the following expression is 

assumed** 

where k is the Boltzmann constant, and ¢; 

denotes the concentration of species i in volume 

fraction at a position z 

(13) 

because of eq 4. The integration in eq 12 is 

taken across the whole system. Equation 12 

* The following derivation can a be performed 

generally by putting ax and ay as a function of 

(x, y, z); thus we can obtain ax=ay= 1 and find that 

az depends only on z but not on x andy. How­

ever, we put az=ay=1 at the first stage (here) for 

more simplicity in the derivation. 

** Vrij and Esker11 used a different expression: 

S-So= -kA dz{c,ln (c,m,an)+c2ln (c2m2w2)) instead' 

of eq 12. The two expressions, however, are easily 

proved to be equivalent to each other in the present 

theory, using eq 25 and neglecting the higher (more 

than second) order derivatives. 
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is a well-known approximate formula for the 

entropy of mixing if applied to a homogeneous 

mixture. It is assumed that S-S0 can be ap­

proximated by the same formula as that of a 

homogeneous mixture without depending on the 

concentration gradient explicitly. 

For the evaluation of 0, the potential energy 

of the system is assumed to be the sum of the 

pairwise potential energy between segments. 

Then, 0 is expressed by 

2U=A dz(n,e 11 +n1e12 +n2e21 +n2e22 ) (14) 

where e;j is the potential energy of a central 

segment of species i at a position z due to the 

surrounding segments of species j, and is written 

as 

e;j(z)=- s;j(r)nj(z+r.)drxdrydr, (15) 

Here, -s;J(r) is the potential energy between 

segments of species i and j separated by r. 

In order to evaluate p•, we must know the 

conformational free energy f" for a polymer 

molecule having the segment density represented 

by eq 7 or 9, but we don't have a conventional 

way to evaluate it. When a chain molecule is 

uniformly expanded, i.e., when ax, ay, and a. 

are independent of the position r' in eq 8 or 

10, for a uniform expansion may be 

reasonably given by12 

L: {(ak2-1)- lnak2 ) 

2 k=xyz 
( 16) 

Then, it is assumed here that /; •- of species 

i is approximated by 

=-- - L: {(ak - )- n ak} rx rydr. kT p; 2 1 I 2 d d 
2 m; k=xyz 

( 17) 

If ak is independent of r, i.e., in the case of 

uniform expansion, eq 17 becomes eq 16. 

Therefore, eq 17 may be a good approximation 

for a small concentration gradient. In the 

present case of ax=ay=l, eq 17 is written as 

z)[{a;(z+r.)) 2 

-1- In {a;(z+r,)) 2]drxdrydr, (18) 

Accordingly, it follows with the aid of eq 18 
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and 5 that 

F"-F0
6 =A 

=A f dzkT L; f {a;(z)2-1- Ina;(z) 2} 

J 2 i=12 J 
X p;( r; z- r,)c;( z- r,)/m;drxdrydr, 

=A dz-L;(a;-1- na;) kT 2 I 2 

2 i=12 

X p;( -r; z+r.)c;(z+r.)jm;drxdrydr. 

=A z- L: -{(a; - 1)- n a;} d kT n; 2 I 2 

2 i=12 m; 
(19) 

The free energy F-F 0 of the non-uniform 

system considered is now expressed by eq 11 

with eq 12, 14, and 19. Therefore, if eq 5 and 

15 with eq 9 and 10 are expanded in a Taylor 

series about a position z, F-F 0 will be ex­

pressed by a local free energy depending on the 

local composition (n), expansion factor (a), and 

the gradients of n and a, as in the Cahn-Hilliard 

theory. The derivatives of higher order (third 

and more) are neglected in the present theory. 

Equation 15 is written in an expansion form as 

e;J=- s;J(r){nJ(z) +r,ni+r/iiJ/2+ · · · )drxdrydr, 

= -nj(z)W;j-iij!LW;j/6+ · · · 

where 

W;j= S;j(r)drxdrydr, 

l;/=3 r/s;j(r)drxdrydr,jW;j 

(20) 

= S;j(r)drxdrydr. (21) 

and the dots indicate the differentiation with 

respect to z. 
Substitution of eq 9 with eq 6 into eq 5 

gives 

n; m; 112 f"' exp {- :·: 2} 
aia(rr J -oo ai ai 

x[c;+c;r.+ c;;.z + .. ·Jctr. (22) 

The term of exp ( -r.2 ja/a/) in eq 22 is effec­

tive in the integration only when r.2/a; 2a/ is 

almost equal to or less than unity. Using this 
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fact and eq 10, and neglecting the higher order 

terms, the exponential term in eq 22 is ap­

proximated by 

exp (-+)=={exp (- 2 rz: )} 
a; ii; a; a; (z) 

x{1+A(a, a)rz+B(a, a, a)rz4+c(a2)rz6 ) (23) 

(see Appendix 1). Substituting eq 23 into eq 22 

and performing the integration in eq 22, we 

have 

n;=m;c; +m;a; 2a; 2c;/4+ 3m;a; 2a;c;a;/4 

+m;a/c;a//4+m;a/a;c;a;/4 (24) 

or 

n;=m;c; +a; 2a;2ii;/4+ 3a;2a;li;a;/4 

+a/n;a//4+a/a;n;a;/4 (25) 

neglecting the higher order terms. 

An expression for 0 is given by substitution 

of eq 20 and 25 into 14, and 00 is derived by 

putting li;, ii;, a;, and a;=O in the expression 

of 0 as 200=-2A (n1Wu!w1+n2W22/w2)dz. 

From these expressions of 0 and 00, and eq 11, 

12, and 19, one has the following equation for 

F-F0 ; 

where 

and 

kT ¢>· 
f=!u+- L: -' {(r;-1)-ln r;) 

2 m;w; 

h=ti+ q1r1+ q2r2 

1>1 1>2 

a- 2kT 
q;=-'--

4m;w; 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

In obtaining eq 26, we used the relation 
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g;jdz=- g¢dz and gfdz=- gfdz (where 

g is a function of z) because we can chose the 

system so that ¢=f=0 at its boundary. As 

seen from the form of eq 28, eq 26 is the well­

known formula for the free energy of mixing 

in the Flory-Huggins solution theory if applied 

to a homogeneous system in which f=¢=0 and 

r=l. 

The chemical potential f.1;(e)-p; 0 in eq 3 can 

be evaluated by 

f..l;(e)- p;0=a[fu(e) V]jaN; 

= w;m;/u(e)+m;w;{1-¢>;(e))( atuf3¢>;)e (34) 

where eq l and 13 were used, and fu(e) and 

(afu!a¢>;). are the values of /u and (afula¢>;) at 

the compositions if>;(e) of homogeneous phases 

in equilibrium. Then, it follows from eq 3 and 

34 that 

F-F0=A dz[ni{p1(e)-p1°)jm1 

+n2{f.12(e)- f.12°)/m2] 

dz[fu(e)+{¢1-¢1(e))(3/u/a¢1)c] (35) 

Finally, from eq 2, 26, and 35 with eq 27 and 

28, we obtain 

(36) 

where 

ilf=ilfu+dfe 

dfu =E{¢1-¢1(e)}2 

(37) 

+kT{_!h__ In (¢d¢1(e))+___ch_ In (¢2/c?"(e)) 
m1w1 m2w2 

+(¢1-¢1(e))(-1---1-)} (38) 
m2w2 m1w1 

The equilibrium concentration cp;(e) can be 

determined by the condition that the chemical 

potentials f..l;(e) of the two demixed phases are 

equal to each other, using eq 28 and 34. That 

is, cp1(e)( = 1-¢2(e)) is given as a solution of the 

simultaneous equations 

Polymer J., Vol. 8, No. 1, 1976 



Theory of Liquid-Liquid Interface of Polymer Systems 

m1w1E{l-¢/ (e)}2 

+kr[ln ¢/(e)+{l-sz>/(e)}( 1- ::::) J 

=m1w 1E{l-rp/'(e)} 2 

+kT[ln ¢/'(e)+{l-¢111(e)}( J 

and 

m 2w 2E¢/ 2(e) 

+kr[ln {l-¢/(e)}+¢1'(e)( 1- ::::) J 

=m2w2E¢1''2(e) 

+kr[ln {1-¢/'(e)}+¢/'(e)(l- ::::) J 

(40) 

(41) 

where ¢/(e) and ¢/'(e) are the equilibrium con­

centrations ¢1(e) of the two demixed phases. 

At equilibrium, the variations of the com­

position 9 and the expansion factor a will be 

such that the integral in eq 36 is a minimum. 

Then, using the variational method, the Euler 

equations are 

cai;aifh)-!!.(ai;a¢1)=0 (42) 
dz 

where H is defined by 

H=h+:flt 1 - q2t2 

2g)1 2¢1 
(49) 

From eq 36 and 48, we have the following 

expression for the interfacial tension a 

(50) 

In principle, the simultaneous differential eq 

46, 47, or 48 afford the composition and the 

chain dimension profile, i.e., the variations of 

¢1, 71, and 72 with z, and substitution of these 

results into eq 50 gives the interfacial tension a. 

Behavior Near Critical Temperature T0 

Since !lfu given by eq 38 can be expanded in 

a Taylor series about T0 and critical concentra­

tion sb1c• we have the following expression for 

!lfu near Tc; 7 

!lfu =K{(fl¢e)2 _ (!Jg))2}2 (51) 

where 

(J¢.)2 = p( Tc- T)j2K (52) 

p=.(a 3[ufaTa¢1 2 )/2! (53) 

(43) and 

or 

d ( . ai . ai . ai ) 0 
dz I-¢1 a¢1 - 71 ar1 - 72 ar2 = 

(44) 

because the integrand I in eq 36 is a function 

of ¢H 71, 72, cft1, f 1, and f 2 , and does not ex­

plicitly depend on z, i.e., ai;az=O. Since all of 

!lf, sz>1, f1, and f 2 tend to zero as z ± oo (at 

the boundary of the system), eq 44 leads to 

(45) 

"=.(a4[u/a¢14)/4! (54) 

Here, !l¢.=¢1c-¢/ (e)=¢/' (e)-¢1c[¢/'(e) > 
¢/(e)], and !1¢=¢1-¢10. Since 7i may be very 

close to unity near Tc, !lf may be expressed 

from eq 37-39 as 

(55) 

On the other hand, eq 47 gives 

1-r;=O 2¢1 [a/· 2] 
ifJ,c 

(56) 

Substituting the explicit form of the integrand I 
and in eq 36 into eq 42, 43, and 45 gives 

and 

a!l[;a¢1 =2(h¢1 +h¢1Hqd1/2-q2h/2 

a!lJ"Ia7i= -qicfti2/9i+qJJd2 
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(46) 

(47) 

(48) 

ifJw 
(57) 

H defined by eq 49 is then expressed near Tc as 

H=hc+O[ a/kTc !l¢]+o[ a/kTc (l-7i)J 
if>icmiwi 4¢icmiwi 

(58) 
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where 

a/kTc 
4¢1cm1 w1 4( 1-¢1c)m2w2 

(59) 

From eq 55, 56, 58, and 48, we derive 

Llf=Llfu+O[ kTc a;4¢14] 
miwi if>ic 

- A'! o[(Ll/)2 ai 4] 
--'Ju+ h2 3 

c miwi if>ic 

=Llfu+O[ miwi (L1/u)2] 
kTc¢ic 

(60) 

Therefore, considering Llfu 0 when T T0 , 

and neglecting higher order terms, one has 

Llf=Llfu and H=hc near T0 • Then, finally it 

follows from eq 50 and 51 that 

When w1=w2 =w, p and K: are evaluated by 

(J 

EJ. 

or 

substituting eq 28 into eq 53 and 54 to be 

P=!5_(m1-1/2 +m2 -1/2)2 
2w 

and 

(62) 

K:= : (m1-1/2 +m2 -1/2)2(m1m2)1/2 (63) 

Tc and ¢1c are given from ap.ifa¢i=a2p.;ja¢/=0 

with eq 28 and 34, and are evaluated, using eq 

38 with w1=w2=w, to be 

T _ 2wE ( -112 + -112)-2 
c--k-m1 m2 (64) 

and 

¢1c={1+(mtfm2)1/2}-1 (65) 

Defining 

J.2=.2QjE (66) 

and 

b/=.(a/fmi)/1.2 (67) 

and substituting eq 62-65 in eq 61 gives 

(68) 

2{l+(m m )112(h 2m 112+b 2m 112)(m 112+m 1/2)-1}1/2 _ 
__!!_!!!___= 1 2 1 1 2 2 1 2 (1-T)"'2 (68)' 
kTc}. (m1m2/ 12 

where a reduced temperature t is defined by 

T= TfT0 • Since }. is the interaction length of 

the segments7 and (ai2/mi/ 12 is of the order of 

the length of a segment, bi is of the order of 

unity. When a symmetrical polymer system is 

considered, i.e., when m1=m2 =m and b1=b2 =b, 

eq 68 1 becomes 

awj(kT0 1.)=2(l +mb2/ 12m-\1- T)312 

(69) 

with 

T0 =wEmj2k 

and in the case of a polymer solution, i.e., 

when m 1=m, m2=l, b1=b, and b2=0, eq 68' 

becomes 

awf(kT0 J.) 

= 2(b2 +m-112 +m-1)1'2(1 +m1'2)-1'\l- f)"'2 

::::::.2bm-114(1-t}312 (70) 

102 

with 

2wE 

k(1+m 1/2)2 

For a regular solution, b1=b2=0 and m1=m2=1. 

Then eq 68' is 

(71) 

with 

Tc=wEj2k 

Letting the thickness L of interface be defined 

by 

L=. {¢/'(e)-¢/ (e)}/rP1 1¥=oJ (72) 

L near T0 is evaluated as 

L=2L1¢e/(Llfu/hc)112 

=2(hc/Tcp)1'2(1- t)-112 

=21.{1 +(m1m2)1'2(b12m11/2 +b22m21/2) 

X (m/'2 +m/'2)-1}1/2(1- t)-1/2 (73) 
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by using eq 48, 51-54, and 59 with eq 66 and 

67, and noticing Jf Jfu and H near T 0 • 

Corresponding to eq 69-71, L for the three 

·cases treated above are: 

A symmetrical polymer system 

L/J.=2(1 +b2m)1i2(1- t)-112 

::::2bm11\l- T)- 112 (74) 

A polymer solution (a polymer-solvent system) 

LfJ.=2{1 +mb2(1 +m1/2)-1}1/2(1- T)-1/2 

::::2bm11\l- T)- 112 

A regular solution 

LfJ.=2(1-1')112 

(75) 

(76) 

Profile of the Interface at ¢=0 in Simple Systems 

Although the simultaneous differential equa­

tions of eq 46, 47, and 48 cannot be solved 

analytically, we can derive from these equations 

the concentration gradient <fto and the expansion 

factor a 0 (and the concentration ¢ 0) at (l=O, 
i.e., at the inflection point of concentration 

profile, to see the behaviors of the profile of 

the interface and the interfacial tension as a 

function of temperature and molecular weight. 

From eq 47 with 39 and 32, we obtain 

(77) 

At ¢'=0, eq. 77 becomes 

(78) 

where the subscript 0 indicates the value at the 

inflection point of the concentration profile. 

Neglecting the higher order derivatives of ¢ than 

it follows from eq 77 with eq 78 that, at 

¢=0, 

.and 

io= -4(r;o-1)2(4r;o-l)ja/ 

-a; 4r ;o -1 )¢;o¢;o/2¢7o +a; (80) 

If can be neglected or can be estimated, r;o, 
¢;0 , ¢;0 , etc., at ¢"=0 can be obtained from eq 

46 and 48 with eq 78-80. For simplicity, we 

will deal with following two simple cases: 

·(1) A symmetrical system of two polymers 

Consider a system in which a1=a2=a, m1 = 

.m2=m, and w1=w2=w. From eq 46, 

(81) 
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is obtained without any approximation. 

Neglecting the terms of ¢ 0 and substituting eq 

78, 79, and 81 in eq 48 gives 

1'{(3-ro)(l-roH ln roJ+(mb)-\ro - 1-1) 

+(T/2) In {2¢(e)}+¢(e)2 -2¢(e)+£=0 (82) 

where 

b2=(a2jm)jJ.2 

T= TjT0 =2kTj(mwE) 

(83) 

(84) 

and the equilibrium concentration ¢(e) can be 

determined by the equation 

fin [¢(e)j{l-¢(e)}]-2{2¢(e)-1}=0 (85) 

which is derived from eq 40 or 41. The value 

of r 0 , accordingly a 0 , can be obtained from eq 

82, and the value of <fto can be calculated by eq 

78 with the ro thus obtained and ¢ 0 =! (eq 81). 

(2) A polymer solution (a polymer-solvent 

system) 

Consider a system in which m1=m, m2 =1, 

a1=a, a2=0, and w1=w2=w. In this case eq 81 

does not always hold because the system is an 

asymmetrical one. Therefore we should solve 

the simultaneous equations of eq 46 and 48 

with respect to ¢ and r· Although we used the 

approximation of in the calculation for 

the symmetrical system, it is not a good ap­

proximation in this case because the equations are 

simultaneous ones and the terms of ¢; are more 

effective in eq 46 than in eq 48. Then, we will 

estimate ;/0• in terms of ¢ 0 • Assuming a 

hyperbolic tangent function for the concentra­

tion profile near the position of ¢'=0, may 

be approximated by (see Appendix II) 

(86) 

with 

Using eq 86 we have the following simultaneous 

equations, from eq 46 and 48 with eq 78-80; 

1'* In {_h_}-t*In { l-¢o }-{¢0 -q)(e)} 
m ¢(e) 1-¢(e) 

+ 21'* {(ro-1)-ln rol+ t* (1-ro){ro2 +9ro-4 
m 2m 

--(l-ro)(4ro-3)--(l-r0) 2 =0 B B 2 
} 

2 4 
(87) 
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Zcf>o_T:_ In {_!h_}+2T*(l-¢>0) In {-l-cf>o } 
m cp(e) 1-¢(e) 

+2T*( 1-m-1 ){¢>0 -cj>(e))- {¢> 0 -cp(e) 

-(mb)-\ro-1 -l)cf>o2
- { 2-ro 

-: (1-ro)}(l-roH In ro]=o (88) 

where 

From these equations we can obtain ro and ¢0 , 

and thus tPo with the aid of eq 78, as a function 

of m, b, and f. 

NUMERICAL RESULTS AND DISCUSSIONS 

Behavior Near Tc 

The critical exponents for the interfacial 

tension and the thickness of the interface are 

and -t, as shown in eq 68 and 73, respectively. 

These values of the critical exponents are 

generally predicted by a classical theory in 

which the free energy can be expanded in a 

Taylor series as in eq 51. 13 

According to eq 69, in the case of a sym­

metrical polymer system, aj{T0(l-T) 312 ) decreases 

with molecular weight in the -t power of m, 

whereas a/(1- T) 312 increases with molecular 

weight in the t power, i.e., proportional to the 

unpertubed dimension of a polymer coil. On 

the other hand, in a polymer solution, both 

aj{T0(l-T) 312 ) and aj(l-T) 312 decreases with 

molecular weight in the -t power in the range 

of higher molecular weights (eq 70). 

The thickness L of the interface increases 

with increasing molecular weight in the cases 

of both a polymer-polymer system and a 

polymer-solvent system, but in different powers 

of m as seen in eq 74 and 75. In a symmetrical 

polymer system, L is proportional to the un­

perturbed dimension of a coil, i.e., to the t 
power of m, whereas in a polymer solution L is 

approximately proportional to the t power of m. 

Since !lf" appears in ,df as a higher order 

term and is ineffective near Tc as seen in eq 60 

and 37, the change in the chain dimension does 

not affect a and L near Tc as shown in eq 61 and 

73, where ,df--? dfu and H--? h0 • Therefore, the 

results obtained near Tc (eq 68 and 73, or 69, 
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70, 74, and 75) do not depend on whether the 

chain dimension is variable or not. This may 

generally be expected without the equation for 

r (eq 17), because r terms in f (the second 

term in eq 55) always appear as higher order 

terms because of the equilibrium condition 

aj"jar=O at r= 1. 

The equations for a polymer solution (an 

asymmetrical system) near Tc are applicable only 

within the mere narrow range of T0 - T when 

m is the larger value, because the coefficient of 

the (d.fu) 2 term in eq 60 increases with increasing 

m and also because the applicability of eq 51 

becomes restricted within the more narrow range 

of T0 - T as m increases. 

Eq 69 and 74 for a symmetrical polymer 

system are rewritten as 

a=2(kT0 jw )(..12 +a2 ) 11\1- TJ 312 (69) 1 

and 

L=2(i.2 +a2) 112(1- T) 112 (74)' 

because of eq 67. The characteristic interaction 

length (A2 +a2 ) 112 consists of two terms, the 

intersegmental interaction length ..l and the 

intermolecular interaction length a, which is a 

measure of the chain dimension. When a 2 =0· 

in eq 69' and 74', these equations are reduced 

to eq 71 and 76 for a regular solution, which 

accord with the results derived by Cahn and 

Hilliard. 7 When ..1 2 is neglected compared with 

a 2 , eq 691 and 74' agree with the results of 

Vrij's theory. 6 The agreement seems quite 

reasonable, because in Vrij's theory the interac­

tion length of the intersegmental interactions 

was ignored and the chain dimension was 

assumed to be unaltered, while fe is ineffective 

near T0 as mentioned above. However, the 

present theory and Vrij's theory provide quite 

different results for a and L in a polymer 

solution, i.e., in an asymmetrical system. In 

Vrij's theory, the intermolecular correlation­

length parameter l' was evaluated on the basis 

of Debye's theory. 14 Therefore, Vrij's theory 

predicts that L is proportional to the polymer 

chain dimension, i.e., to m112 , and consequently 

a does not depend on m, i.e., acxm0 (Appendix 

III), whereas in the present theory, acxm- 114 

and Lcxm114 in a polymer-solvent system. 

The reason why the two theories yield different 
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results for an asymmetrical system may be that 

in the asymmetrical system the equation 

c1m1w1 +c2m2w 2= 1 (which was used in Vrij's 

theory) does not hold even when r= 1, whereas 

in a symmerical system the equation holds when 

r= 1. Namely, asymmetry in molecular size 

may be an essential cause for the small cor­

relation-length parameter in a polymer solution, 

as pointed out by Vrij and Esker. 11 ' 15 According 

to the recent theory of Vrij and Esker11 for the 

critical opalescence, the length parameter l' is 

(89) 

for a polymer-polymer-solvent symmetrical 

system, and 

(90) 

for a polymer-solvent asymmetrical system, 

where (rG2) is the mean square radius of gyra­

tion of the polymer coil, and r/Jc is the critical 

concentration of the polymer. That is, !' in a 

symmetrical polymer system is of the order of 

chain dimension as Debye's theory predicts, 

whereas !' in a polymer-solvent system is much 

smaller than Debye's value (because r/Jc« 1). The 

predictions of eq 89 and 90 were confirmed by 

the experimental observations of light scat­

tering. 15 The results for L of the present theory 

just coincide with these findings. Neglecting A2 

compared with a2 , i.e., b2m» 1, eq 74 or 74' 

for a symmetrical system reduces to 

(91) 

and eq 75 for an asymmetrical system reduces 

to 

(92) 

because of eq 65 and a 2 =2(ra2)/3 derived from 

eq 6. 

The result of the present theory for the 

dependence of a on m in a polymer solution 

qualitatively agree with the numerical result of 

Roe's theory10 for a of polystyrene-cyclohexane 

solutions, where a decreases with increasing m 

compared at a constant Tc- T. 

Behavior at ¢'=0 
(l) Symmetrical polymer systems 

The values of the expansion factors a 0 

calculated by eq 82 with b= 1 are shown in 

Figure 1 as a function of T. The values of the 
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Figure 1. Expansion factor a 0 as a fLmction of f· 
and m for symmetrical system: a, m=oo; b, m= 

100; c, m=50; d, m=34; e, m=20. 

40 

30 

20 

10 

0 

Figure 2. Thickness Lf .1. of interface as a function· 

of T and m for symmetrical system: a, m= 100; 

b, m=50; c, m=34; d, m=20; e, m= 1. 

interface thickness Lj A evaluated from eq 72, 78,. 

and 81 with the values of ro(=a0
2 ) obtained 

above are shown in Figure 2. * The thickness 

of the interface in a lower temperature region 

* Even if the higher order terms ;p· are taken into 

account in the derivation of eq. 82 with the aid of 

eq. 86, almost the same numerical results are 

obtained for a and L. 
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-does not largely depend on the chain length m, 

and has the limiting value of LfJ.= -VT at T=O 

independent of m (Appendix IV). L at a low 

temperature is of the order of a segment length, 

since the segment-segment interaction length J. 

may be of the order of the segment length. 

Corresponding to these properties, the expansion 

factor a 0 of a chain dimension in the lower 

temperature region is far from unity, depending 

on m, and is of the order of m-112 , which 

implies that a polymer chain at the interface 

(at ¢=maximum) is almost in a plane or a two 

dimensional coiled state parallel to the interface. 

As shown in Figures l and 2, LfJ. and a 0 have 

three values for a value of f above about T=0.5 

for longer molecules, i.e., m;;:; 34. This suggests 

an occurence of a transition from a diffuse 

interface to a sharp interface in polymer systems. 

The transition may be more clearly seen by 

considering the behavior of the free energy. 

The surface free energy a may be semiquantita­

tively represented by 2(H.J[) 0
112{rp''(e)-</J'(e)) or 

2(.Jf) 0L, because a is given by eq 50, where 

2(H.d/)0
112 and (.d/) 0 are those at ¢'=0, i.e., at 

the maximum of the concentration gradient, and 

are equivalent to their maximum values in the 

symmetrical system considered here. The 

calculated values of 2(.Jf)0Lf(EJ.) are shown in 

Figure 3. For example, comparing LfJ. with 

2(.Jf) 0Lf(EJ.) for m= 100 (curves a in Figures 2 

p 

0.5 

'f 

Figure 3. 2(Jf)oL/(EA), measure of interfacial 

tension, as a function of T and m for symmetrical 

systems: a, m=100; b, m=50; c, m=20; d, m=!. 
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and 3), the curves AP, PBO, and OCQ in 

Figure 2 correspond to the curves OAP, PBO, 

and OCQ in Figure 3, respectively. The states 

represented by the curves OAP and OCQ are 

stable or metastable, whereas the state designated 

by the curve PBO is unstable. The free energy 

curves don't show any typical features of the 

first order transition, e.g., the curves for m=lOO 

have a closed loop in a region of a higher 

energy part (near a point P), and the curves for 

m=50 do not have a closed loop or an intersec­

tion, which would be due to the insufficient 

representation of the free energy a by 

2(H .Jf)0 
112 {</1 11 (e)-</1 1 (e)). The value of a 

calculated by intergrating 2(H .J/)112 with respect 

to <P (eq 50) is expected to show the behavior 

of a typical first order transition (Appendix V). 

At the transition, the interfacial tension is 

continuous and its derivative with respect to 

temperature is discontinuous. The transition 

predicted is a first order one associated with 

the change from a diffuse interface to a sharp 

interface. The qualitative explanation of the 

transition is as follows. When the temperature 

decreases from a critical temperature, the 

thickness of the interface monotonically 

decreases at first accompanying a mild change 

in the chain dimension, and as further decreasing 

of the interface thickness occurs the free energy 

of .d[u would increase more and more if the 

chain dimension would not drastically change. 

Then, at the transition the chain shrinks, 

sacrificing the increment of the conformational 

free energy t• so as to make the total free energy 

a minimum by making the interface thickness 

smaller and by taking a lower value of .dfu· 

At the transition, the increase of .Jf" by the 

chain contraction is balanced with the decrease 

of .dfu by the decrease in L and a. 

As seen from Figure 3 the interfacial tension 

in the lower temperature region below the 

transition may be weakly dependent on the 

chain length m, having a limiting value of 

afEJ.=rr/4-VT independent of m (Appendix IV), 

whereas a increases with m in the :l- power of 

m in the vicinity of Tc as already mentioned. 

These behaviors of a just correspond to those 

of L, i.e., near Tc (above the transition tem­

perature) Lccm112 and L(l-T)112 is of the order 
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of the unperturbed chain dimension (eq 74), 

whereas in a low temperature region L is of 

the order of the segment length without greatly 

depending on m. These differences in a, L, and 

their m dependences between the high and the 

low temperature regions suggest the occurrence 

of a transition from diffuse to sharp interface in 

high molecular-weight polymer systems. 

In most cases of polymer-polymer incom­

patible systems, the temperature of a usual 

experimental condition may be much far from 

Tc (below the transition temperature) because 

of a low value of mixing entropy. Therefore, 

the thickness of interface may not be so large, 

but much less than the unperturbed chain 

dimension. 

The present theory gives a quite different 

result from Vrij's theorl in the lower tempera­

ture region. In Vrij's theory, since the chain 

dimension was assumed to be invariable, the 

interfacial tension increased monotonically with 

decreasing temperature up to a=(rrj4v2)Ea at 

T=O, and the interface thickness decreased 

continuously with decreasing temperature to be 

L= v2 a at T=O. * The limiting values of (J 

and L at T=O both increase with increasing m, 

i.e., proportional to the unperturbed chain 

dimension a( cx.m112 ). However, since the system 

should be in the lowest energy state at T=O, 
the segment-concentration profile must be a 

sharp interface, i.e., the system must be com­

pletely separated segmentally and not have a 

diffuse layer, by changing the chain conforma­

tion. Therefore, a may tend to a limiting value 

independent of m at T=O. In this sense, the 

present theory gives more reasonable results 

than Vrij's theory. The theory of Helfand, et 

a/., 8 •9 which may be applicable when the 

interface thickness L is small, i.e., in the lower 

temperature region, predicts that L is of the 

order of 1 nm in most cases and is much smaller 

than the unperturbed chain dimension, in 

qualitative accordance with the result of the 

present theory in which L at a lower tempera­

ture is predicted to be of the order of the 

segment length, as already mentioned. Roe's 

* These results are the same as the equations 

which are obtained by replacing 2 by a in the 

results of the present theory. 
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theori 0 also gives a similar result for L at a 

temperature far from Tc, i.e., the theory predicts 

L to be of the order of the lattice separation, 

which may correspond to the segment length. 

(2) Polymer solutions 

The values of a 0 , <j>0 , LjJ., and 2(J/)0L/EA* 

Figure 4. Expansion factor ao as a function of f· 
and m for polymer solutions: a, m=l04; b, m= 

lQs; c, m= 102 ; d, m=30. In the regions of the 

dotted curves connecting the calculated solid 

curves, reasonable solutions were not obtained 

probably because the approximation of eq 86 was 

not sufficient in such regions where solutions of 

the simultanious equations were very sensitive tO•· 

the equations. 

'f 
Figure 5. Equilibrium concentration ¢(e) and con-· 

centration <Po at the inflection point of the con­

centration profile as a function of T and m for 

polymer solutions. The symbols are the same as 

those in Figure 4. 

* The subscript 0 in (HI1/)o and (11/)o indicates 

again the value at ¢'=0 or at the inflection point 

of concentration profile. Though (11/)o in the 

present case of a polymer solution does not always 

exactly imply the maximum of 11/ in contrast to a 

symmetrical case, (11/)o may be very close to the 

maximum of 11f. 
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[=2(H.df) 0
112 {¢ 11(e)-¢ 1(e))jE,l] are calculated 

from the solutions of the simultaneous equations 

of eq 87 and 88 and shown as a function of 

t and m, in Figures 4, 5, 6, and 7, respectively, 
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Figure 6. Thickness Lj A of interface as a function 

of T and m for polymer solutions. The symbols 

are the same as those in Figure 4: e, m= 1. 
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'f 

Fio_;u;·e 7. 2(Jj)oL!(E2), measure of interfacial ten­

sion, as a function of T and m f,1r polymer solu­

tioas. The symbols are the same as those in 

4: e, m = 1. 
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where b=l and B [=8¢0
2 /{¢ 11(e)-¢1(e))2 ] is taken 

to be unity because B does not greatly vary 

except near Tc and does not affect the solutions 

so much. Although B becomes very large near 

Tc since Bcx(Tc- T)- 1 (from eq 52), the terms 

containing B in eq 87 and 88, which appear in 

the form of B(1-r0 ), are ineffective near Tc 

because the terms containing B(1-r0 ) are of the 

first power of T0.- T near Tc (from eq 52, 59, 

72, and 73). 

In a lower temperature region, the depen­

dences of Lj ,l and a 0m112 on m are very slight, 

whereas Lf,l near Tc increases with increasing 

m in the t power of m (eq 75). The limiting 

value of Lf,l at T=O is 2112 without depending 

on m, and that of a 0m112 is (m-1 +1)-112 :::::1. 

Therefore the chain at the interface at a low 

temperature is compressed to be two dimensional 

just as in a symmetrical system. 

The rapid decrease in the thickness of the 

interface and a drastic compression of a polymer 

coil at the interface are found as temperature 

decreases from the critical point. The reduced 

temperature at which these changes occur be­

comes higher, and the changes become steeper as 

m increases. The same transition from a diffuse 

interface to a sharp interface as in symmetrical 

systems is also found for polymer solutions of 

high molecular weight, e.g., for m=l03 and 104 , 

as shown in Figures 4, 6, and 7 for a0 , Lj,l, 

and 2(ilf)0LfE,l. The transition temperature is 

fairly close to Tc and become closer to Tc as 

m increases. 

The value of 2(ilf) 0LjE,l, a measure of inter­

facial tension, decreases slightly with m below 

the transition temperature, reflecting the change 

in the phase diagram with m, and increases 

with decreasing temperature to have limiting 

value of 1/ v'2 without depending on m, 

whereas it may vary with m and t, taking the 

form of m- 114 ( 1- T) 312 near Tc (eq 70). 

The concentration at ¢·=0, i.e., at an 

inflection point of a ¢- z curve, is not a mean 

value of the concentrations of two equilibrium 

phases except ret temperatures near Tc or near 

zero, and the concentration profile of a polymer 

solution is not always symmetrical. The 9o in 

Figure 4 suggests that the polymer rich side of 

the interface layer may be more diffuse than 
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the solvent rich side except near Tc and T=O. 

GENERAL DISCUSSION 

We will discuss here the approximations and 

model used in the present theory. 

Neglect of Higher Order Terms 

In the present treatment, segment concentra­

tion n in eq 15 and segment density p in eq 5 

are expanded in a Taylor's series, neglecting 

the terms higher than the second order. In 

general, these approximations are available only 

for a small gradient, accordingly near Tc. 

Therefore, the reliability of the theory may 

become worse as the concentration gradient 

increases with decreasing temperature. As for 

the expansion of n, however, the approximation 

gives reasonable results even at low tempera­

tures 7 and may not be so bad, probably because 

the intersegmental interactions (s;j) are short 

range ones. On the other hand, the validity of 

the approximation in the expansion of p is not 

clear. From an optimistic viewpoint, however, 

the approximation for p may also be permissible 

because the chain dimension of the z-direction 

does not exceed the interface thickness (reciprocal 

of gradient) even at low temperatures by 

shrinking of the chain dimension. 

Temperature and Concentration Dependence of E 

E, which corresponds to RTX in Flory­

Huggins solution theory, was assumed to be 

independent of T and ¢. But, this is not the 

case in real systems. The lower critical solution 

temperature has recently been observed in 

polymer-polymer mixtures16 as well as in 

polymer solutions, which indicates the existence 

of a negative entropy term in E, i.e., E 

increases with increasing temperature. Introduc­

tion of the temperature dependence of E in the 

present theory can be easily performed by 

altering the reduced temperature scale without 

any change in the formulae of the results 

obtained. Equation 64 gives the definition of 

t; 

T=}5I__(m1- 112 +m2- 112)" (93) 
2wE 

where T is not always equal to TfTc when E 

depends on T. Since a critical temperature is 
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given by putting T= 1 without depending on 

the temperature dependence of E, we have 

kTc (m1-112+m2-1;2)2=l 

2wEc 
(94) 

where Ec is E at T= Tc. Defining a new tem­

perature scale f' as f' = T/Tc, t' is written in 

terms of the old scale T by using eq 93 and 94 

if E is given as a function of temperature T. 

By the scale transformation T t' with the 

relation thus obtained any results obtained in 

the present paper are available even when E 

has entropy terms, since the temperature 

independence of E was not assumed in the 

derivations of any basic equations.* When E 

is expressed by a linear function of T, i.e., 

E=e-sT, (95) 

b 

Figure 8. Transformation of temperature scale: 

a, UCST(e>O, 2k+mws>0)(1, s<O; 2, s=O; 3, 

s>O); b, LCST(e<O, 2k-Hnws<0). 

* The temperature independence of E was used 

in evaluation of ,8 (eq 62) which was defined by 

eq 53. However, f in the expressions for the 

properties near Tc was not defined by eq 93, but as 

a temperature reduced by a true critscal tempe;·a­

ture. Consideration of the temp;:;rature dependence 

of E in evaluation of f3 implies the changing of the 

temperature scale. Therefore, by changing the 

temperature scale in the expressions of a and L 

near Tc in the same way as the others, these 

expressions also valid even wlHm E has tem­

perature dep3ndencc. 
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a new temperature scale, f' = TfTc, is written in 

terms of the old scale t as 

f' = T{k+1(m,-lt2 +m2 -112)-2ws} 

X {k+2(m,-ll2 +m2 -lt2)-2wsT) _, (96) 

using eq 93, 94, and 95. From eq 96 we have 

(1- f')=(l- T)k{k+1(m 1- 112 +m2 - 112)ws) -1 near 

Tc. Figure 8 schematically shows the scale 

transformations for two cases, i.e., systems 

having a lower and an upper critical solution 

temperatures. 

On the other hand, the concentration 

dependence of E alters the results obtained, and 

it is not easy from the present results quantita­

tively to estimate the properties for the case in 

which E depends on ¢· However, if the 

dependency of E on ¢ is mild, the qualitative 

properties may not be changed. _ 

In the present model for the free energy F, 

which is essentially based on Flory-Huggins 

solution theory, the random mixing, i.e., the 

uniformity of the segment concentration in the 

system is assumed in an equillibrium phase in 

considering the local free energy and the 

segment density of a chain, which may be 

permissible only in a concentrated solution in a 

polymer system. Hence, in a system including 

a very diluted phase the present approximation 

may not be sufficient for evaluation of the free 

energy. Although as for the free energy ilfu 

the deviation from the random mixing may 

formally be accounted for by introducing the 

concentration dependence of E, the excluded 

volume effect associated with intramolecular 

segment-segment interactions must also be 

accounted for in a dilute solution system. The 

chain dimension may be much less than the 

unperturbed one below Tc even in a bulk (but 

dilute) phase because Tc is lower than the 61 

temperature. 

Segment Density p and Conformational Free 

Energy f" 
Equation 17, which expresses the conforma­

tional entropy for a chain having a segment 

density given by eq 6, does not have any 

theoretical provision for non-Gaussian or non­

uniform expansion as in the present case, as 

already mentioned. Apart from this problem 

of non-uniform expansion, the excluded volume 

effect is not taken into account in eq 17, which 
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is important especially when a polymer coil is 

much compressed. According to eq 17 or 39, f" 
increases with decreasing a only logarithmically, 

and a can take a value much less than m-112 , 

which means the compression of segment length, 

without having so high a value of the free 

energy. But, actually, f" must increase more 

rapidly as a approaches to m-112 because of the 

excluded volume effect due to self-avoiding or 

the hard core of the segment and the short 

range (or intrasegmental) interactions. Therefore, 

an actual thickness of the interface at low tem­

peratures may be larger than the thickness 

obtained in the present theory. The excluded 

volume effect may also induce some chain ex­

pansion to the x- and y-directions accompanying 

the compression of the z-direction, which may, 

however, give no influence to the intermolecular 

interaction free energy fu because there are no 

gradients in the x- and y-directions. 

As mentioned above, there remain many 

problems to be solved. But, the author believes 

that the possibility of the transition or the drastic 

change in the interface thickness is reasonably 

predicted if the combinatorial mixing entropy 

and the magnitude of elastic free energy of a 

chain used here are available, although the 

quantitative results are much affected by the 

model and approximations adopted. Roe's 

theory, 10 however, does not give such a transi­

tion, although the distortion of polymer mole­

cules was also taken into account there. This 

inconsistency probably comes from the difference 

in evaluating the effect of conformational entropy 

at the interface on the local free energy, which 

closely relates to the combinatorial entropy of 

mixing. This is also associated with the problem 

of how to recognize polymer molecules as 

molecules in a non-uniform concentrated 

solution. 

The transition predicted here seems similar to 

the globule-coil transition which has been 

recently suggested, but not proved, to occur in 

an isolated chain molecule below the 61 tem­

perature.17 However, in the present transition 

the force compressing a coiled chain is an 

anisotropic and one-dimensional force acting so 

as to reduce the interface excess free energy, 

whereas in the latter transition the force may 

be an isotropic and three-dimensional one due 
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to the intramolecular excluded volume 

negative sign, if these transitions occur. 

of eq 72. Assuming that the concentration profile 

just near the position of ¢"=0, i.e., near z0 , is 

expressed by the form of eq A-4 in a whole 

temperature region even in an asymmetrical 

system, differentiation of eq A-4 gives the 

relation 

Finally it is noted that the present treatment 

may apply to other phenomena of non-uniform 

polymer systems, e.g., to the spinodal decom­

position in polymer systems, where fluctuations 

of both segment and molecular center composi­

tions may in general have to be considered. 

APPENDIX 

I. Approximation of eq 23 

Since an approximation of a for evaluation 

of the exponential term in eq 22 may suffice if 

it is available in the range of r/j(a2Zi)< 1, rzfa 

defined by eq 10 may be written in the expan­

sion form as 

rzfa= [rz dr/{a(z)-1+(a-1)(r/ +rz) 

+(a-1)(r/ +rz)2/2+ · · ·} 

= -rzfa+(rzfa) 2aj2+(rzfa)\aa-2a2)/6+ · · · 

(A-1) 

Here we will use the following approximation 

for x satisfying a2 x2 < 1 

exp ( -a2 x2 -bx3 -cx4) 

={exp ( -a2x2)){exp ( -bx3 -cx4 )) 

:::::::{exp ( -a2x2)}( 1 +bx3 -cx4 - x 6 + · · ·) 

(A-2) 

where [bx3 f, and [cx4 [ « 1 for a2x2 < 1. 

using eq A-1, we have 

exp (- ) ::::::: { exp (-

Then, 

3_{ a2 __ a-_}ca3a2)-lr 4+Lr 6] 
a"a' z 4a 3 z 2a6a2 z 

(A-3) 

which is eq 23. 

II. Approximation of eq 86 

The concentration profile near Tc is expressed 
byl3 

¢=!{¢"(e)+¢' (e)} 

+!{¢"(e)-¢1(e)} tanh {2(z-z0)jL) (A-4) 

in the classical theory, where z0 is z at ¢"=0, 

and L is the thickness of interface defined by 
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(A-5) 

which is equivalent to eq 86 because of eq 72. 

III. a and L near Tc based on Vrij's theory 

According to Vrij's theory, 6 he in eq 61 and 

73, which corresponds to [J[2 jl2 in Vrij's 

theory (see eq 34 in ref 6), is given by 

I 2 I I 

h _ 1 ( Wul'z + w22z'") (A-6) 
c- 12 w;z n w/ w/ 12 w/" 22 

where W 1
, !', and w1 are for a molecule, 

whereas in the present theory they (W, !, and 

w) are for a segment. When the segment 

density of a polymer coil is assumed to be 

Gaussian, we obtain he from eq A-6 as 

2W1 w') 0 

h _:!___(_I_I ___ l2_ 
c- /2 I I - e 

4 w 1 w1 w2 4 
(A-7) 

disregarding the segment interaction length as 

compared with the chain dimension. Then, 

from eq 61 and 73 with eq A-7, we derive a and 

L for a polymer solution based on Vrij's theory 

as 

and 

LIT-Tel =2a(ej2/J)ll"(l- T)-112 

IV. a and L at T=O. 

From eq 40, we obtain 

m 1w1E+kTln ¢/(e)=O 

(A-9) 

(A-10) 

when T is near to zero. Substituting eq A-10 

into eq 38 and putting T=O, i.e., T=O, yields 

(A-ll) 

Equations 31, 32, and 49 (with eq 66) give 

H(T=0)=D=Eij2 (A-12) 

Substituting eq A-ll and A-12 into eq 50, we 

can derive 

a=2 (A-13) 
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On the other hand, using eq A-11, A-12, and 

48, L defined by eq 72 is expressed by 

(A-14) 

noticing that 9o=! at T=O. 
V. Calculation of the Value of 2(Hd/)112 Near 

9=! in a symmetrical System 

The value of 2(Hdf)112 near i=O can be 

calculated as a function of 9 using a method 

which is schematically shown in Figure A-1. 

eg·sz-_/\ 
eq 4/ eq 37 

H M 

eq 48 graphically 

Figure A-1. Method of calculation of 2(H.:Jf)1/ 2 as 

a function of ¢ near .p·=O. 

:< 
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Figure A-2. 2(H.:Jf)112 j(EJ.) as a function of ¢ at 

various T for a symmetrical system of rn=50. The 

numbers in the figure indicate the values of T. 

112 

First, using the value of ro in place of r. which 

is calculated by eq 82, we compute the ap­

proximate values of H and df near 9=! as a 

function of 9 with the use of eq 49 (with eq 31 

and 79 of </=0) and eq 37 (with eq 38 and 39), 

respectively. Then, eft is evaluated as a function 

9 from eq 48 with the values of H and d/ thus 

obtained and is also given by graphically 

differentiating the vs. 9 curves just obtained. 

From those values of eft and ¢·, the value of r 
is calculated with eq 47 as a function of 9· 
Next, using this value of r. the values of H 

and df are again calculated by eq 37 and 49. 

Repeating this process, the obtained values of 

eft, ¢", and r are converged. Thus, the values 

of H and df, therefore 2(Hd/)112 , are obtained 

as a function of 9· The 1(Hdf)112 jEJ. vs. 9 
curves near 9=! obtained, for example, for 

rn=50 are shown in Figure A-2. As seen 

from the figure, a calculated by integrating 

2(Hd/)112 with respect to 9 (eq 50) is expected 

to show the typical behavior of the first order 

transition, as schematically shown at the top of 

the figure. 
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