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ABSTRACT: A theory for the interfacial tension and interfacs thickness of demixed
polymer mixtures and polymer solutions is presented on the basis of the theory of Cahn
and Hilliard, taking into account the change in the dimension of polymer coil at the
interface. The following results arc obtained from the theory: (l) Near critical tem-
perature T in a polymer mixture with the same chain length m (a symmetrical system),
interfajcal tension o increases with m in the § power of mr, whereas in a polymer
solution, ¢ decreases with m in the—} powcr, compared at the same reduced tempera-
ture 7/T.. On the other hand, the thickness of the interface near T, incrcases with
increasing m, proportional to the unperturbed chain dimension, ie, to ml/2 in a
symmstrical polymer system, and to the } power in a polymer solution. (2) In high
pelymer systems, a first order transition from a diffuse interface to a sharp inierface is
predicted. The transition temperature reduced by T increase with increasing m. The
thickness of the interface at a low temperature does not greatly depend on w2 and is of

the order of a segment length.
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Phenomena |

Studies on the interface profile and the
interfacial tension between demixed liquid phases
containing polymers have not been performed
extensively. Langhammer and Nestler' measured
the interfacial tension of demixed polymer
solutions of polymer—polymer—solvent systems,
and found very low wvalues of interfacial
tension, in the range of 107*—-10 *dyn/em.
Morozova and Krotova,” Gromav and Chalykh,*
Voyutskii, Kamenskii, and Fodiman,* Letz, ez
al.,” measured the thickness of the interfacial
layer of polymer—polymer systems with phasc-
contrast microscopss or electronmicroscopes,
and found very large values of the interface
thickness, in the range of 10°—10° nm depending
on the combination of polymers. It is not
clear, however, whether the diffused interfaces
measured were truly equilibrium interfaces or
not. On the other hand, Vrij* derived the
equation for the interfacial tension batweer
demixed polymer solutions of symmeirical
systems on the basis of the theory of Cahn and
Hilliard,” and found qualitative agresment with
the experiments of Langhammer and Nesiler.

G0

Helfand and Tagami® presented the theory of
interfaces of immiscible symmetrical polymer
mixtures employing a mean field theory which
involved a selfconsistent field calculation, and
Helfand and Sapse® extended it to be applicable
to asymmetrical systems. They predicted the
thickness of a polymer—polymer interface to be
of the order of 1nm in most cases, depending
on the interaction parameter y. Recently, Roe'
presented the theory for the interface between
polymers and polymer solutions based on his
own theory for non-uniform systems, which was
derived by modifying the Flory—Huggins solu-
tion theory. The interfacial tension and interface
thickness were evaluated as 2 function of y-—j,
and the chain length, where y, was the value
of ¥ at the critical temperature.
Generally speaking, the thickness of the
interface strongly depends on the temperature
T, especially near the critical temperature T,.
Therefore, the ihickness of the interface layer
should be discussed as a function of tempera-
ture or of T/T. Previous works except the
recent theory of Roe,'" however, did not treat
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the temperature dependence sufficiently. In a
polymer system, the conformation or dimension
of polymer coils at the interface may also be
an essentially important problem, which may
affect the interface profile and interfacial tension.
In Roe's theory, the entropy arising from a
distortion of polymer molecules from their
equilibrium phase was taken into account by
evaluating the possible difference in the distribu-
tion of chain ends in the interface from that
of interior segments. Ia Vrij's theory, how-
ever, the segment distribution of a polymer
chain is assumed to be invariable even at the
interface.

In this paper, equations will be derived for
the interfacial tension and the quantities con-
cerned with the interface profile, such as the
concentration gradient and the dimension of
chain molecules at the interface, on the basis
of the theory of Cahn and Hilliard, taking into
account the change in the dimension of polymer
coils at the interface. Interactions between
polymers (or a polymer and solvents) are
attributed to segment—segment (or segment—
solvent) interactions, and the large interaction
range of a polymer molecule is due to the large
dimension of a chain coil. In other words,
polymer meoleculss can interpenetrate and have
no hard core at the center of a molecule but
each segment has a hard core and occupies the
volume of a system. In the present theory,
therefore, the local number density of segments
(or local volume fraction of segments) and the
local number density of molecules are distinc-
tively defined and are rclated to each other
through the concentration gradient in a non-
uniform system. This idea was first introduced
by Vrij and Bsker’ in their recent theory for
critical opalescence of polymer solutions. The
present theory is for binary systems including
asymmetrical systems. The main aims of the
paper are to ses what are expected for the
changes in the concentration gradieni and the
dimension of a chain at the interface upon
decreasing temperature from a critical {empera-
ture, and to evaluate the molecular weight
dependence of the interfacial tension and the
interface thickness in polymer—solvent binary
systemms and symmetrical polymer mixtures.
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THEORETICAL

Consider a mixture of %, polymer molecules
of species 1, each consisting of m, segments,
and N, polymer molecules of species 2, each
consisting of m, segments, in a total volume V.
Thus, we can write

(L)

where w; is the volume of a segment of species i.
We assume o; t0 be constant by neglecting the
volume change on mixing. The system is
demixed into two liquid phases, having a
concentration gradient in the z-direction. The
interface, which is perpendicular to the z-direc-
tion, has an area A. The interfacial tension &
is given as the surface excess free energy per
unit surface area

o=(F—Fid
={(F—F)—(F'—F}4

Ve N+ aight, Ny

(2)

where F is the Helmholtz free energy of the
mixture, £’ is that of a fictitious system without
interface centaining two homogeneous phases
with the same composition as in the two
homogeneous phases of the real system, and F,
is the free energy of the pure compenents
before mixing. F'—F, is expressed by

F —Fo=No{m(e)— i} Nolpale)— '} (3)
where pfe) is the chemical potential of species
i in phase equilibrium, and ‘ua” is that of a
pure component 7.

As pointed out in the introduction, we define
the local number density of segments and the
local number density of molecules, and relate
them to each other. Let the numbers of
segments and meoleciles of species / per unit
volume be denoted by n; and c¢; respectively,
which are both given as a function of the
coordinate z along which the concentration
gradient exists, Le., n{z) and ¢y(z). Since a
segment with a hard core occupies the volume
of the system, we have

(4)

in general, the relation™ of ¢mm, +comyw;=1

#yw, Ry, =1

# In Vrij's theory® for interfacial tension this
relation was used, although in the recent theory
of Vrij and Eskert! for critical opelescence eq 4 was
adopted.
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does not always hold, because n;=mc; is not
always satisfied under the existence of a con-
centration gradient. Designating the segment
density of a molecule of species / whose center
is located at a position z by p;(r; 2) as a func-
tion of the distance ¢ from the center of the
molecule, n; is expressed in terms of ¢; by the
equalion
ni{z)= Sm

c{z4+r)od—r z+r)drdrdr, (55

where r,, #,, and 7, are the x, y, and z com-
ponents of r, respectively, and the center of a
molecule is defined by

Sm r drdr, rpdrz: Sm Sm dr,dr, rpdrx
—w J—ca 1] —o J—ee ]

= Sm Sm drdr, Smpdry: Sm odrdr,dr.i2
— J—m o} o —

The segment density p;, in a uniform system
may be reasonably assumed to be Gaussian;
. 12
ie.,

Piﬂ(rzs ?'.y, rz): (m'i."llagxwz) exp {_ (r£2+ry2 4_ rzz)."faf}

(6)

The parameler a; is a measure of the dimension
of a polymer coil. In a non-uniform system or
in a liquid--liquid interface, however, it is a
very difficult problem to determine the segment
density rigorously, although many theoretical
treatments have been presented for an isolated
polymer chain on a rigid sutface. Thus, in the
present theory we introduce the local expansion
coeffecient « of a chain as a function of the
position and assume that when a part of a chain
is at a position {x,y, z), its dimension is ex-
panded by a,(x, ¥, 2), a,(x, y, 2), and ax, y, 2)
times of that of unperturbed state in the direc-
tions of x, yp, and z, respeclively. Then it
follows that

oi(F x, ¥, ndrdrdr,
(7)

=P£o(rm“'&x.- r?;.-"l&ws rs.-’lﬁz)drxdrydrz."f(awayaz)

where
?': 'ry
§— r i - I
Tl @p= S drx ,r’rﬂl':g ’ ry.-"a'r!: S dr%f -"ray
L] o
and
b
Fle,= S dr, jeeg (8)
1
o3

and @, a, and @, in eq 8 are expansion
factors at ¢. In the present case, since the
system has no concentration gradient in the x-
and y-directions, @, and a, are both unity.*
Therefore, eq 7 and 8 are written as

gilr: Ddrdrdr,= g5, 1, Rlaxdrdrdrio (9}

&:rz/{ S:g dr, ja(z+ rz’)}

where «, is a function of z and is replaced by
o for simplicity. Now, assuming that F is
separalely expressed by the sum of the free
energy F associated with intermolecular and
intersegmental interactions or liquidlike proper-
ties, and the free energy F” associated with
chain conformation or elasticity of a polymer
coil, one may write

(10)

FeFym(F— ) (F°—F%)
=(0—0) T8~ 8)+~(F°—F) (11)

where U is the internal energy arising from the
potential energy of the intersegmental interac-
tions and § is the entropy in F (excluding the
entropy associated with chain conformation).

For §—8, the following expression is
assumed™*

O | S dzic, In g +e. Ingy)  (12)

where k& is the Boltzmann constant, and ¢
denotes the concentration of species i in volume
fraction at a posilion z

R
I e

ity = ; =H;w;
P00y = iy

(13)

because of eq 4. The integration in eq 12 is.
taken across the whole system. Equation ]2

* The following derivation can a be performed
generally by putting «. and a; as a function of
{x, v, z); thus we can obtain a:—ay—=1 and find that
@ depends only on z but not on x and y. How-
ever, we pui ax=ny=1 at the first stage (here) for
more simplicity in the derivation.

*% Vrij and Esker!! used a different expression:

S—Si=—kd S dz{ey In (eimien) +co 1o (eomses)} instead'

of eq 12. The two expressions, however, are easily
proved to be equivalent to cach other in the present
theory, using eq 25 and neglecting the higher (more:
than second) order derivatives.

Polymer J., Vol. 8, No. 1, 1976
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is.a well-known approximate formula for the
entropy of mixing if applied to a homogeneous
mixture. It is assumed that §—8§, can be ap-
proximated by the same formula as that of a
homogeneous mixture without depending on the
concentration gradient explicitly.

For the evaluation of U, the potential energy
of the system is assumed to be the sum of the
pairwise potential energy between segments.
Then, T is expressed by

2=A S dz{m e, 1 €12+ M€z + M2€a5) (14

where e;; is the potential energy of a central
segment of species { at a position z due to the
surrounding segments of species j, and is written
as

e;;(2)=— Esu(r)rz_f(Z—}- r)drdrdr, {15)

Here, —g;(r} is the potential energy between
segments of species i and ;j separated by .

In order to evaluate F®, we must know the
conformational free energy f° for a polymer
molecule having the segment density represented
by eq 7 or 9, but we don’t have a conventional
way to evaluate it. When a chain molecule is
uniformly expanded, i.e., when a,, a,, and a,
are independent of the position ¢ in eq 8 or
10, f,°—f5, for a uniform expansion may be
reasonably given by

AN L N G | Py

2 kcawe

(16)

Then, it is assumed here that f°—f7, of species
i is approximated by

fie_}(gn
kT 24
=T S nz (a2 —1)— In &, 3dr,dr,dr,  (17)

If @ is independent of r, f.e., in the case of
uniform expansion, eq 17 becomes eq 16.
Therefore, eq 17 may be a good approximation
for a small concentration gradient. In the
present case of a,—a,=1, eq 17 is wrillen as

L] ] k1
in f;'u“ 2 - S
1 In {(X,'(Z } "s)}sz"zd"ydrz

pir 2

i

ﬂfs(z—,‘-rz)}g

(18)
Accordingly, it follows with the aid of eq 18
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and 5 that .
PrFrma|dz 3 (=)

"y S dz%zliég S (@D —1— In ay(2)?)

X 0585 z— e z—r)mdrdr,dr,

kT
= A —
Sdz 5 ‘_Z

(ot —1— In &>
=18

x S pil — 1 2+ r)e(z 4 r)mdrdr,dr,

=4 § dzkz—T 7 Zai—D—Ina (19)

i=13 11,

The free energy F—F, of the non-uniform
system considered is now expressed by eq 11
with eq 12, 14, and 18. Therefore, if eq 5 and
15 with eq 9 and 10 are expanded in a Taylor
series about a position z, F—F, will be ex-
pressed by a local free energy depending on the
local composition (#), expansion factor {a), and
the gradients of # and «, as in the Cahn-Hilliard
theory. The derivatives of higher order (third
and more) are neglected in the present theory.
Equation 15 is writlen in an expansion form as

&= — S 25N {n2) -k-rzrij+rzz}ij,a'2--|- e ldrdr,dr,

=R D)W=l W64 - (20}
where
W= S ggsindrdrdr,
Li=3 S rlefndrdrdr W,
= S rzeij(r)dr:drydr,/s e (Ndrdrdr,  (21)
and the dots indicate the differentiation with

respect to .
Substitution of eq 9 with eq 6 into eq 5

gives
1
m; i r, ]_
ny= T expi{——, 5
+ a‘;ﬂg‘ﬁ”zs_m P‘{ a‘v"a:,:z
. é.r”
x [c,;+ et -}drz 22)

The term of exp (—r ja;*@;") In eq 22 is effec-
tive in the integration only when rlietal is
almost equal to or less than unity. Using this
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fact and eq 10, and neglecting the higher order
terms, the expomential term in eq 22 is ap-
proximated by

ip{ — r ~lexp( — r.
°*P ( a'a;’ ) _"{ P ( aﬁzads(z))}
L4 Ale, @)r, = Ble, d, &), +-e(d®)r.®)

(see Appendix I). Substituting eq 23 into eq 22
and performing the integration in eq 22, we
have

(23)

Ho=HC; - e e A dma e b 4

+mateqtidtmatoenid {24)
or
2 ey L
ny=mCstag oy A 3a a4
-{—aigngdf;ﬁ—:—ﬂ‘;zf,t“;}.i‘:&ﬁ_;".‘l (25)

neglecting the higher order terms.

An expression for U js given by substitution
of eq 20 and 25 into 14, and U, is derived by
putting #;, #;, &; and a;=0 in the expression
of ﬁasza:mbﬂ(mWﬂ%+mWﬁ%m;

From these expressions of ¥/ and &, and eq 11,
12, and 19, one has the following equation for
F—Fg

F—Fy=A S(Hﬁqﬁn + L4422 s:»zrz)dz (26)

where
= fy A — —D—1Iny; 27
ff+2i__}_3’mui{r J—lay) @27
=BG — ¢ AT ¥ T tng  (28)
i—1,% Mg,
Wn 2, Wgz\
29
2( Wi, a)z") 29)
j’;;:ﬁ'gﬁ (30:1
h= (o Qaity Gel's 31
o L2
al’kT
= 32
4150, ¢2)
and
o=t (Pye -2 Pup) )
12\ w, Wy W
In obtaining eq 26, we used the relation

100

S ggﬁdz:—g ggdz and S gj‘dz:—s grdz (where
g is a function of z) because we can chose the
system so that ¢—j7—0 at its boundary. As
seen from the form of eq 28, eq 26 is the well-
known formula for the free energy of mixing
in the Flory—Huggins solution theory if applied
to a homogeneous system in which 7=¢=-0 and
r=1

The chemical potential p;(e)—
be evaluated by

ie) = p" =B fule)V 11N,
=ty fule) -+ miy [ 1—$(€))0f u/66:)e

where eq 1 and 13 were used, and fyle) and
(0f4/8¢;). are the values of f, and (8f,/5g;) at
the compositions ¢;(e) of homogenecus phases
in equilibrium. Then, it follews from eq 3 and
34 that

" in eq 3 can

(34)

F_F,—4 S dz[ny (@) — g im
+ ”2{.”2(‘3)—.320].-"'?”2]
=A S dz{fule) + (6@ @fuidd)] (35

Finally, from eq 2, 26, and 35 with eq 27 and
28, we obtain

o= Sdz(df—i ng it T g4 L ;é»rg) (36)
where
A= Af 5 A
fi—dnle))”
—I—KT{ P In (i) I Guigite))

(37)
Af = E

+(¢l—gs1<e))( L1 )} (38)
Mlgtg 00,
KT (&
; {': H Fi " _1_]
V=2 a1
2 (7,—1—1In rz)} (39)
gtera

The equilibrium concentration ¢,{e) can be
determined by the condition that the chemical
potentials g(e) of the two demixed phases are
equal to each other, using eq 28 and 34, That
is, ¢,(e)}{=1—g,(e)) is given as a solutien of the
simultaneous equations

Polymer J., Yol. 8, No. 1, 1576
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my E{1—g/(e)}*

+kT[ln ¢l’(e>+{1—¢ﬁ(en(1—%)]
= nh flJLE{l _?51”(8}}2

+AT I g @)1 _¢1”(f>}(1_ﬂﬁl')i
L. Myig

(40)
and
myw, B, *(e)
R In (L= (@) e 1)
o,
:mzmsEgﬂlng(e)
kT In {1—g,"” 6. (e 1Tz |
] 1= ) @ 1= ) |
(41)

where ¢,’(e) and gﬁl”(e} are the equilibrium con-
centrations ¢;(e) of the two demixed phases.

At equilibrium, the variations of the com-
position ¢ and the expansion factor a will be
such that the integral in eq 36 is a minimum.
Then, using the variational method, the Euler
equations are

(0136, —S-(311,)=0 (42)
dz
(0’..-'076)*——(1';(5'1,-'02’:?)20 (43)
or
d . of af af
Sy N Y LU 44
dz( 9‘5139)1 ”a?'l :26.2 (44)

because the integrand [ in eq 36 is a function
of &1, y1s Fae 1, 7o and 7, and does not ex-
plicitly depcnd on z, i.e., 8fjdz=0. Since all of

df, ¢y, 1, and j, tend to zerc as z— +oo (at
the boundary of the system), eq 44 leads to
ol ol
Haa At i (45)
oF Uy

Substituting the explicit form of the integrand 7
in eq 36 into eq 42, 43, and 45 gives

E’\Aﬂaél = 2(;’ ‘?1 + A 01) +4g lj;l..-"rz —4g i;a.-"rz (46)
QAf 0= —qeBs i+ Ges/2 (47)
and
Af=hg+ ——Qm ﬁém
=Hg,* (48)
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where H is defined by

H—h N Gata
+2‘51 2§51

From eq 36 and 48, we have the following
expression for the interfacial tension o

:25 dfdz

(49)

-.u

=2{" " ag, (50)
By' e

In principle, the simultaneous differential eq
46, 47, or 48 afford the composition and the
chain dimension profile, i.e., the variations of
&1, 71» and ys with z, and substitution of these
results into eq 30 gives the interfacial tension o,
Behavior Near Critical Temperature T,

Since Af, given by eq 38 can be expanded in
a Taylor series about 7, and critical concentra-
tion ¢, we have the following expression for
Af. near T;"

df =kl o) — (4gY) (1)
where
(4@0)2;\9(7*._1);2».; (52)
=(3%,/3T35,5)/2! (53)
and
K= (3%1,/06, /4! (54}
Here,  Ago=dr—'(e)=¢:"(e)—rclp () >

¢,'(e)], and dg=¢,—¢.. Since y; may be very
close to unity near T,, Jf may be expressed
from eg 37—39 as

Af:dfu|'O|:k—Tc¢{P(I—-T?)z] (55)
Mo
On the other hand, eq 47 gives
-2
I_n.:or; 'f] (56)
Die
and
L o pi] (57)

H defined by eq 49 is then expressed near T, as

T a; kT,
H=h,+0| & e 0 < (1—
et i:(ammfm J¢:i+ |:4“'af' awi(l {‘]
(58)
101
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where substituting eq 28 into eq 53 and 54 to be
-~ akT, a kT k., . -
ht‘:g it 3 [ a ° . 59 8:_ m 1/2 m 1/2,2 (62
’ +4¢J_cm1ﬁ')l T (l_ﬁf’m)mzwz e ‘ 29)( ' s ) 5%
From eq 55, 56, 58, and 48, we derive and
E =/ —1l/2
af=1f+0] e % ;al] e e mm)(63)
w'& Otc
_4fat0 C(4f) kT, a T, and &,, are given from du;/d¢;=3"u,jd¢p;" =0
T kel Mg ol with eq 28 and 34, and are evaluated, using eq
- Meo; 38 with @, =w,=w, lo be
= dfut0| g } (60) )
e 7= C;(J (m1—1;2+m2—1fz)—z (64)
Therefore, considering df, -0 when T — T,
and neglecting higher order terms, one has and
Af=4f, and H=#h, near T,. Then, finally it ey (65)
follows from eq 50 and 51 that . o
Defining
91’ (e _
a-:r~Tc.=25 U hedf ) g, ZF=20/E (66)
dy'ie)
- d
2V 2 1 a8 an
=LY 2 gy -
I 8 _(Tc n (61} b2 =(aiim) P (67)
When w,=w,=m, § and & are evaluated by and substituting eq 62—65 in eq 61 gives
{7__ 4{I+(m]m2)lf9(bl_ﬁrnllf2+? 2m ]J"BJ(m 1;’2+m 1f2)~1}l)’2 1_?)8,’2 (68}
178 18,8 178 (
B (% ey Y ()
or
ko;:)_ 2{14-(m, mz)wz____i ”(2—1-1’39 )U:;2)(m1u9_|__mzuz)ul}].;s (1T (68)
i ity

where a reduced temperature 7' is defined by
T==T/T,. Since 1 is the interaction length of
the segments” and (a.’fm;)'”" is of the order of
the length of a segment, &; is of the order of
unity. When a symmeirical polymer system is
considered, i.e., when m =m,=—m and b, =b,=b,
eq 68’ becomes

o'(u,"(kT‘._j.)zz(]_}_mba)lmm_l(luﬁsm
~=2bm™HU-TY (69)
with
Te=wEmi2k
and in the case of a polymer solution, i.e.,

when m,=m, my=1, b=5, and b,=0, ¢q 68

becomes
co/(kT.A)
:2(b2+m—1.’2‘:_m—1)1.-"2(1+m1f2)—1a’2(1__j‘—’r)8;'2
~2bm V1 — T2 (70)
102

with
_—— ZwE
&= k(l+m—1;2)2
For a regular solution, b,==b,—0 and m,=m,=1.
Then eq 68’ is
ow/(kTod)=2(1—

T (713

with
T.=wkEj2k
Letting the thickness L of interface be defined
by

L={g," ()1 (€))ibrij=0. (72)
L near T, is evaluated as
L=246. /(4 ot
=2h/T. ) (1~ T) "
'——23{1+(mlms)lm(blzmluz+bgzm2”2)
¢ (n,l]-‘l.f%n.i m 1!2)"1}14’2(1_ T)—l.-"z (73)
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by using eq 48, 51354, and 59 with eq 66 and
67, and noticing J4f — 4f, and H —k, near T..
Cerresponding to eq 69—71, L for the three
cases treated above are:
A symmetrical polymer system
L_,H/‘.:z(l+bgm)1f2(1—f')“”2
~2bm 31— Ty (74)
A polymer solution {(a polymer—solvent system)

Liz=2{14+-mb* (1 +-m* &P 1Ty

~26m' (1T (75)
A regular solution
Liz=21—Ty" (76)

Profile of the Interface at =0 in Simple Systems
Although the simultaneous differential equa-
tions of eq 46, 47, and 48 cannot be solved
analytically, we can derive from these equations
the concentration gradient ¢, and the expansion
factor @, (and the concentration ¢,) at ¢=0,
i.e., at the inflection point of concentration
profile, to see the behaviors of the profile of
the interface and the interfacial tension as a
function of temperature and molecular weight.
From eq 47 with 39 and 32, we obtain

26" (1 -7 ) —a°¢" ~dia'dij2=0  (77)
At $=0, eq. 77 becomes
é%o.-"lﬁf’énzz{?'a)l_ l)iraés (78)

where the subscript 0 indicates the value at the
inflection point of the concentration profile,
Neglecting the higher order derivatives of ¢ than
p, it follows from eq 77 with eq 78 that, at
Sb:o,
Foo=— 275 —7i0)Bs0/Pint G 1 iuBioidB00  (79)
and
To=—4(ri0— 1)2(4?'60'_ L)fa?
_aéz?’gu(q’h‘u—1)‘,‘f’iué{ofzﬁf’?n+ﬂi4}’30¢€§f‘8¢30 (80)
If ¢, can be neglected or can be estimated, yy,
bias Pion EtC., AL glﬁ':O can be obtained from eq
46 and 48 with eq 78—80. For simplicity, we
will deal with foliowing two simple cases:
(1} A symmetrical system of two polymers
Consider a system in which @,—a,—a, m,=

my=m, and @,=w,=w. From eq 46,

Po=}% (81)
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is obtained without any appreximation.
Neglecting the terms of ¢, and substituting eq
78, 79, and 81 in eq 48 gives

T3 — o)l —ro)+ In yo} -+ (mb) (7o —1)

+(T2) In {2¢(e)} + e’ —26(e)+3=0  (82)
where

B =(a"fm){ 1 (83)

F=T/T,=2kT/(muE) (84)

and the equilibrium concentration ¢(e) can be
determined by the equation

T1n [g(e)/{l —gle)}]—2{2p(e)—1}=0

which is derived from eq 40 or 41. The value

of y, accordingly a,, can be obtained from eq

82, and the value of ¢, can be calculated by eq

78 with the p, thus obtained and ¢,—% (eq 81).

(2) A polymer solution (a polymer—sclvent
system)

Consider a system in which m,=m, m,=1,
a,=a, a,=0, and o, =w;=¢. In this case eq 81
does not always hold because the system is an
asymmetrical one. Therefore we should solve
the simultaneous equations of eq 46 and 48
with respect to ¢ and y. Although we used the
approximation of ;=0 in the calculation for
the symmetrical system, il is not a good ap-
proximation in this case because the equations are
simultaneous ones and the terms of ¢, are more
effective in eq 46 than in eq 48. Then, we will
estimate ¢, in terms of ¢, Assuming a
hyperbolic tangent function for the concentra-
tion profile near the position of ¢=0, &, may
be approximated by (see Appendix II)

(83)

Uuz ‘"Béoaf'?')ug (86}

with
B=8¢," {1 (e)~p'(e})’

Using eq 86 we have the following simultaneous
equations, from eq 46 and 48 with eq 78—380;

Tk
E™ ]f?s—“}.-—’f"* ln{ 1—¢,

}—tg—ste

mo e) —ge)
+ L (= ru}+%(1—ro){rf+9n—4
~ 2= n-Za-rpl=o @
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2“0 f ¢0 C R —ay T_
I gle )} T2 =) In { 1 l—r-, (ey |
2T (L™ gy — i)} —

{H)u_‘-’(e)}

“WMQDLU%—%TH

- I_TU)IKI_TU)T 1“!0—‘ -0 (88}

4
where
T*: kT'I[ZCLiE}: ’f‘(l !_?n. B ;2)__2

From these equations we can obtain 7, and ¢,
and thus ¢, with the aid of eq 78, as a function
of m, b, and T.

NUMERICAL RESULTS AND DISCUSSIONS

Behavior Near T,

The critical exponents for the interfacial
tension and the thickness of the interface are £
and —$, as shown in eq 68 and 73, respectively.
These values of the critical exponents are
generally predicted by a classical theory in
which the free energy can be expanded in a
Taylor series as in eq 51.%°

According to eq 69, in the case of a sym-
metrical polymer system, ¢/{7.(1—T)*”} decreases
with molecular weight in the —§ power of m,
whereas «/(1—7)** increases with molecular
weight in the 4 power, i.e., proportional to the
unpertubed dimension of a polymer coil. On
the other hand, in a polymer solution, both
g/lTA1—TYV" and o/(1—T)*" decreases with
molecular weight in the —% power in the range
of higher molecular weights {(eq 70).

The thickness L of the interface increases
with increasing molecular weight in the cases
of both a polymer—polymer system and a
polymer—solvent system, but in different powers
of m as seen in eq 74 and 75. In a symmetrical
polymer system, L is proportional to the un-
perturbed dimension of a coil, ie., to the 1
power of m, whereas in a polymer solution L is
approximately proportional to the { power of m.

Since Af° appears in Af as a higher order
term and is ineffective near ', as seen in eq 60
and 37, the change in the chain dimension does
not affect ¢ and L near 1, as shown in ¢q 61 and
73, where Af — 4f, and H — &,. Therefore, the
results obtained near T, (eq 68 and 73, or 69,
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70, 74, and 75) do not depend on whether the
chain dimension is variable or not. This may
generally be expected without the equation for
f7 (ea 17), because f° terms in f (the second
term in eq 55) always appear as higher order
terms because of the equilibrium condition
6f%6y=0 at y=1.

The equations for 2 polymer solution (an
asymmetrical system) near 7, are applicable only
within the more narrow range of T,—T when
m is the larger value, because the cosfficient of
the (4/,) term in eq 60 increases with increasing
m and also because the applicability of eq 51
becomes resiricted within the more narrow range
of 7,—17 as m increases.

Eq 69 and 74 for a symmetrical polymer
system are rewritten as

a=20kTja )+ "y (1 =T" (69)"

and

L=202 a1 Ty (74"

The characteristic interaction
length (#'+a")'* consists of two terms, the
intersegmental interaction length i and the
intermolecular interaction length a, which is a
measure of the chain dimension. When &"==0-
in eq 69" and 74’, these equations are reduced
to eq 71 and 76 for a regular solution, which
accord with the resulis derived by Cahn and
Hilliard.” When 2* is neglected compared with
o', eq 69 and 74" agree with the results of’
¥rij’s theary."' The agreement seems quite
reasonable, because in Vrij’s theory the interac-
tion length of the intersegmental interactions.
was ignored and the chain dimension was
assumed to be unaltered, while f° is ineffective.
near T, as mentioned above. However, the
preseni theory and Vrij’s theory provide quite
different results for ¢ and L in a polymer
sclution, ie., in an asymmetrical system. In
Vrij’s theory, the intermolecular correlation-
length parameter {' was evaluated on the basis.
of Debye’s theory. Therefore, Vrij’s theory’
predicts that L is proportional to the polymer
chain dimension, i.e., to m'”®, and consequently
¢ does not depend on m, fe., gocm” (Appendix.
III), whereas in the present theory, gecm
and Loem'™ in a polymer—solvent system.
The reason why the two theories yield different.

because of eq 67.
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results for an asymmetrical system may be that
in the asymmetrical systemy the equation
¢, mayFesmaw,=1 {which was used in Vrij's
theery) does not hold even when y=1, whereas
in a symmerical system the equation holds when
y=1. Namely, asymmetry in molecular size
may be an essential cause for the small cor-
relation-length parameter in a polymer sclution,
as pointed out by Vrij and Esker.""** According
to the recent theory of Vrij and Esker™ for the
critical opalescence, the lengih parameter Fis

2=2¢r" (89)

for a polymer—polymer—solvent symmetrical
system, and

1 =2¢r655, (90)

for a polymer—solvent asymmetrical system,
where (ry®> is the mean square radius of gyra-
tion of the polymer coil, and ¢, is the ecritical
concentration of the pelymer. That is, ¢ in a
symmeirical polymer system is of the order of
chain dimension as Debye's theory predicts,
whereas I’ in a polymer—solvent system is much
smaller than Debye’s value (because ¢, ¢ 1). The
predictions of eq 89 and $0 were confirmed by
the experimental observations of light scat-
tering."”” The results for L of the present theory
just coincide with these findings. Neglecting i°
compared with o, ie., m>»1, eq 74 or 74’
for a symmetrical system reduces to

LP=(8{3)ry(1—T)

and eq 75 for an asymmetrical system reduces
to

81

L*=(8/3)(r®yg.(1—T) (92)

because of eq 65 and a’=2¢r,*»/3 derived from
eq 6.

The result of the present theory for the
dependence of ¢ on m in a polymer solution
qualitatively agree with the numerical result of
Roe’s theory™ for ¢ of polystyrene—cyclohexane
solutions, where ¢ decreases with increasing m
compared at a constant T,-—T.

Behavior at ¢=0
{1y Symmetrical polymer systeins

The wvalues of the expansion factors a,
calculated by eq 82 with =1 are shown in
Figure 1 as a function of 7. The values of the
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Figure 1. Expansioen factor ao as a functicen of T
and m for symmetrical system: a, m=zo] b, m=
190; ¢, m=50; d, m—34; ¢, m=—=20.
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Figure 2. Thickness L1 of interface as a function
of 1T and m for symmetrical system: a, m=100;
b, m=50; ¢, m=34; d, m=20; e, m-- L.

interface thickness L/ evaluated from eq 72, 78,
and 81 with the values of 7,(=a,”) obtained
above are shown in Figure 2.% The thickness.
of the interface in a lower temperature region

* Bven if the higher order terms @ arc taken into
account in the derivation of eq. 82 with the aid of
eq. 86, almost the same numerical restli= are
obtained for v and L.
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does not largely depend on the chain length m,
and has the limiting value of Lii=+"2" at T=0
independent of m (Appendix V). L at a low
temperature is of the order of a segment length,
since the segment—segment interaction length 4
may be of the order of the segment length.
‘Corresponding to these properties, the expansion
factor «, of a chain dimension in the lower
temperature region is far from unity, depending
on m, and is of the order of m** which
implies that a polymer chain at the interface
(at g=maximum) is almost in a plane or a two
-dimensional coiled state parallel to the interface.

As shown in Figures | and 2, L/1 and o, have
three values for a value of 7 above about T=0.5
for longer molecules, i.e., m=34. This suggests
an occurence of a transition from a diffuse
interface to a sharp interface in polymer systems.
The transition may be more clearly seen by
considering the behavior of the free energy.
The surface free energy ¢ may be semiquantita-
tively represented by 2(HAf),"*(¢" (e)—¢'(e)} or
2(4fy,L, because ¢ is given by eq 50, where
UHANM® and (df), are those at =0, ie., at
the maximum of the concentration gradient, and
are equivalent to their maximum values in the
symmetrical system considered here.  The
calculated values of 2{4,L/(E}) are shown in
Figure 3. For example, comparing L/ with
2(4F)L{(EZ) for m=100 (curves a in Figures 2

3

Figure 3. 2(dfL/{(EX}), measure of interfacial
tension, as a function of T and = for symmetrical
systems: a, m=100; b, m=30; ¢, m=20; d, m=1.
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and 3), the curves AP, PBO, and OCQ in
Figure 2 correspond to the curves QAP, PBO,
and OCQ in Figure 3, respectively. The states
represented by the curves OAP and OCQ are
stable or metastable, whereas the state designated
by the curve PBO is unstable. The free energy
curves don’t show any typical features of the
first order transition, e.g., the curves for m=100
have a closed loop in a region of a higher
energy part (near a point P), and the curves for
m=30 do not have a closed loop or an intersec-
tion, which would be due to the insufficient
representation of the free energy « by
2HAN, * (6" (e)—@'(e)}.  The value of ¢
caleulated by intergrating Z(HAF)"'* with respect
to ¢ {eq 50) is expected to show the behavior
of a typical first order transition (Appendix V).
At the transition, the interfacial tension is
continuous and its derivative with respect to
temperature is discontinuous. The transition
predicted is a first order one associated with
the change from a diffuse interface to a sharp
interface. The qualitative explanation of the
transition is as follows. When the temperature
decreases from a critical temperature, the
thickness of the interface monotonically
decreases at first accompanying a mild change
in the chain dimension, and as further decreasing
of the interface thickness occurs the free energy
of 4f, would increase more and more if the
chain dimension would not drastically change.
Then, at the transition the chain shrinks,
sacrificing the increment of the conformational
free energy f° so as to make the total free energy
¢ minimum by making the interface thickness
smaller and by taking a lower value of Jf,.
At the transition, the increase of Jf° by the
chain contraction is balanced with the decrease
of Af, by the decrease in L and a.

As seen from Figure 3 the interfacial tension
in the lower temperature region below the
transition may be weakly dependent on the
chain length m, having a limiting value of
a{Ei=r/4+" 2 independent of m (Appendix IV),
whereas ¢ increases with m in the } power of
m in the vicinity of 7, as already mentioned.
These behaviors of o just correspond to those
of L, i.e., near T, {above the transition tem-
perature) Lecm'® and L(1—1T)'” is of the order
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of the unperturbed chain dimension (eq 74),
whereas in a low temperature region L is of
the order of the segment length without greatly
depending on m. These differences in ¢, L, and
their m dependences between the high and the
low temperature regions suggest the occurrence
of a transition from diffuse to sharp interface in
high molecular-weight polymer systems.

[n most cases of polymer---pelymer incom-
patible systems, the temperature of a wusuval
experimental condition may be much far from
T, (below the transition temperature) because
of a low value of mixing entropy. Therefore,
the thickness of interface may not be so large,
but much less than the unperturbed chain
dimension.

The present theory gives a quite different
result from Vrij’s theory® in the lower tempera-
ture region. In Vrij's theory, since the chain
dimension was assumed to be invariable, the
interfacial tension increased monotonically with
decreasing temperature up to s=(x/4+ 2 )Ea at
T=0, and the interface thickness decreased
continuously with decreasing temperature to be
L=4+'2a at T=0.* The limiting values of ¢
and L at T=0 both increase with increasing mr,
ie.. proportional to the unperturbed chain
dimension a(ecm’®), However, since the system
should be in the lowest emergy state at 7T=0,
the segment-concentration prefile must be a
sharp interface, ie., the system must be com-
pletely separated segmentally and not have a
diffuse layer, by changing the chain conforma-
tion. Therefore, & may tend to a limiting value
independent of m at T=0. 1In this sense, the
present theory gives more reascnable results
than Vrij's theory. The theory of Helfand, et
al. > which may be applicable when the
interface thickness L is small, i.e., in the lower
temperature region, predicts that L is of the
order of 1 nm in most cases and s much smaller
than the unperturbed chain dimension, in
qualitative accordance with the result of the
present theory in which 7. at a lower tempera-
ture is predicted to be of the order of the
segment length, as already mentioned. Roe’s

* These results are the same as the equations
which are obtained by replacing i by a in the
results of the present theory.
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theory' also gives a similar result for L at a
temperature far from T, i.e., the theory predicts.
L 1o be of the order of the lattice separation,
which may correspond to the segment length.
(2} Polymer solutions

The values of @y, @y L{i, and 2(df),L/EX*

10 Ar——————0
L Al ;/_

R

0_ —t T 14 £l 0

0 0.5 1086 9B 100
T i

Figure 4. Expansion factor a; as a function of 7"
and # for polymer solutions: a, m=10% b, m=
108; ¢, m=10% d, m=30. In the regions of the
dotted curves connecting the calculated solid
curves, reasonable solutions were not obtained
probably because the approximation of eq 86 was
not sufficient in such regions where solutions of
the simultanious equations were very sensilive to-
the equations.

Figure 5. Equilibrium concentration ¢{e) and con--
centration ¢ at the inflection point of the con-
centration profile as a function of T and m for
polymer solutions. The symbols are the same as
those in Figure 4.

* The subscript 0 in (Hdf) and (4fh indicates:
again the valuc at #=0 or at the inflection point
of concentration profile. Though (4f) in the
present case of a polymer solution does not always
exactly imply the maximum of Af in contrast to a
symmetrical case, ({f)y may be very close to the
maximum of Af.
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{=2HA' %6 (e)— ¢ (e)}/EX] are calculated
from the selutions of the simultaneous equations
of eq 87 and 88 and shown as a function of
T and m, in Figures 4, 5, 6, and 7, respectively,
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Figure 6. Thickness Li2 of interface as a function
of T and m for polymer solutions. The symbols
e, m—1,

arc the same as thosc in Figure 4:
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where d—=1 and B [=8s,%/[¢' te)— ¢ (e)}*] is taken
to be unity because B does not greatly vary
except near T, and does not affect the solutions
so much. Although # becomes very large near
T, since Boc{(T.—T)™' (from eq 52), the terms
containing B in eq 87 and 88, which appear in
the form of B{l—y,), are ineffective near T,
because the terms containing B(l—y,) are of the
first power of T,—7 near T, (from eq 52, 59,
72, and 733,

In a lower temperature region, the depen-
dences of Lii avd ayn'™ on m are very slight,
whereas L/} near T, increases with increasing
m in the 1 power of m (eq 75). The limiting
value of L1 at =0 is 2! without depending
on m, and that of wym'™ is (m'41)7*=1.
Therefore the chain at the interface at a low
temperature is compressed to be two dimensional
just as in a symmetrical system.

The rapid decrease in the thickness of the
interface and a drastic compression of a polymer
coil at the interface are found as temperature
decreases from the critical point. The reduced
temperature at which these changes occur be-
comes higher, and the changes become steeper as
m increases. The same transition from a diffuse
interface to a sharp interface as in symmetrical
systems is alse found for polymer solutions of
high molecular weight, e.g., for m=10° and 10,
es shown in Figures 4, 6, and 7 for a,, L/4,
and 2(df),L/Ei. The transition temperature is
fairly close to T, and become closer to 7, as
m increases.

The value of 2(df)L/EA, a measure of inter-
facial temsion, decreases siightly with m below
the transition temperature, reflecting the change
in the phase diagram with m, and increases
with decrsasing temperature to have limiting
value of 1;+' 2 without depending on m,
whereas it may vary with m and 7, taking the
forma of m YYI—T9"" near T, (eq 70}

The concentration at ¢—0 ie., at an
infleclion peint of a ¢—z curve, is nol a mean
value of the concsntrations of two equilibrium
phases sxcept at lemaperatures near 7, or near
zere, and the concentration profile of a polymer
solution is not always symmetrical. The &, in
Figure 4 suggests that the polymer vich side of
the intzrface layer may bes more diffuse than
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the solvent rich side except near T, and F=0.

GENERAL DISCUSSION

We will discuss here the approximations and
model used in the present theory.

Negleet of Higher Order Terms

In the present treatment, segment concentra-
tion » in eq 15 and segment density o in eq 5
are expanded in a Taylor’s series, neglecting
the terms higher than the second order. (n
general, these approximations are available only
for a small gradient, accordingly near T,.
Therefore, the reliability of the theory may
become worse as the concentration gradient
Increases with decreasing temperature. As for
the expansion of n, however, the approximation
gives reasonable results even at low tempera-
tures’ and may not be so bad, probably because
the intersegmental interactions (s;;) are short
range ones. On the other hand, the validity of
the approximation in the expansion of g is not
clear. From an optimistic viewpoint, however,
the approximation for o may also be permissible
because the chain dimension of the z-direction
does not exceed the interface thickness (reciprocal
of gradient) even at low temperatures by
shrinking of the chain dimension.

Temperature and Concentration Dependence of E

£, which corresponds te RTX in Flory—
Huggins solution theory, was assumed to be
independent of T and ¢. But, this is not the
case in real systems. The lower critical solution
temperature has recently boen observed in
polymer—polymer mixtures’™ as well as in
polymer solutions, which indicates the existence
of a negative eniropy term in £, ie., K
increases with increasing temperature. Introduc-
tion of the temperature dependence of E in the
present theory can be easily performed by
altering the reduced temperaiure scale without
any change in the formulse of the results
obtained. Equation 604 gives the definition of
7

(™ Y (93)

-

where 7 is not always equal to 7i7, when £
depends on I. Since a critical temperature is
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given by putting 7=1 without depending on
the temperature dependence of E, we have

kT,
20E,

where £, is E at T=T,. Defining a new tem-
perature scale 7' as T'=7/T,, T’ is written in
terms of the old scale 7' by using eq 93 and 94
if E is given as a function of temperature 7.
By the scale transformation T —» 7 with the
relation thus obtained any results obtained in
the present paper are available even when E
has entropy terms, since the temperature
independence of £ was not assumed in the
derivations of any basic equations.* When E
is expressed by a linear function of T, ie.,

(m -1/,

m2—1_12)2:I {94)

E—=e—sT, (95)

0 i T

Figare 8. Transformation of tocmperature scale:
g, UCST{2:0, 2k mwms-0)1, s<0; 2, 5=0; 3,
g0 b, LC8T(e 0, 2k +rws-<0)..

* The temperaturs independence of £ was used
in evaluation of 5 (zq 62) which was defined by
eq 33, However, T in the cxpressions for the
properlies ncar T, wis not defined by eq 93, bul as
rature reduced by a truc critscal iempera-
ture,  Censideration of lhe temperature dependence
of £ in cvaluation of § implics the changing of the
temperature sczle.  Therefore, by changing the
temperature scals in the expressions of ¢ and L
near 7 in the sume way us the olhers, these
expressions also valid even when E has soms tem-
perature depandzanee.

a fomy
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a new temperature scale, = TiT,, is wrillen in
terms of the old scale T as
T =Tk+20m, ™ 2 m, V5 P ws)

X (k4 20m, 4 my ) PwsTY T (96)

using eq 93, 94, and 95. From eq 96 we have
(1—=TY=(1— Dkl +2(m, " "+ m, s} ™" near
T,. Figure 8 schematically shows the scale
transformations for two cases, i.e., systems
having a lower and an upper critical solution
temperatures.

On the other hand, the concentration
dependence of E alters the results obtained, and
it is not easy from the present results quantita-
tively to estimate the properties for the case in
which E depends on . However, if the
dependency of E on ¢ is mild. the qualitative
properties may not be changed.

In the present model for the free energy F,
which is essentially based on Flory—Huggins
solution theory, the random mixing, /.e., the
uniformity of the segment conceatration in the
system is assumed in an equillibrium phase in
considering the local free energy and the
segment density of a chain, which may be
permissible only in a concentrated solution in a
polymer system. Hence, in a system including
a very diluted phase the present approximation
may not be sufficient for evaluation of the free
energy. Although as for the free energy 4f,
the deviation from the random mixing may
formally be accounted for by introducing the
concentration dependence of E, the excluded
volume effect associated with intramolecular
segment-—segment interactions must alse be
accounted for in a dilute solution system. The
chain dimension may be much less than the
unperturbed one below T, even in a bulk (but
dilute) phase because 7, is lower than the &
temperature.

Segment Density o and Conformational Free

Energy f°

Equation 17, which expresses the conforma-
tional entropy for a chain having a segment
density given by eq 6, does not have any
theoretical provision for non-Gaussian or non-
uniform expansion as in the present case, as
already mentioned. Apart from this problem
of non-uniform expansion, the excluded volume
effect is not taken into account in eq 17, which
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is important especially when a polymer coil is
much compressed. According to eq 17 or 39, f°
increases with decreasing « only logarithmically,
and a can take a value much less than m %,
which means the compression of segment length,
without having so high a value of the free
energy. But, actually, f° must increase more
rapidly as « approaches to m~''* because of the
excluded volume effect due to self-avoiding or
the hard core of the segment and the short
range (or intrasegmental) interactions. Therefore,
an actual thickness of the interface at low tem-
peratures may be larger than the thickness
obtained in the present theory. The excluded
volume effect may also induce some chain ex-
pansion to the x- and p-direclions accompanying
the compression of the z-direction, which may,
however, give no influence to the intermolecular
interaction free emergy f, because there are no
gradients in the x- and p-directions.

As mentioned above, there remain many
problems to be solved. But, the author believes
that the possibiiity of the transition or the drastic
change in the interface thickness is reasonably
predicted if the combinatorial mixing entropy
and the magnitude of elastic free energy of a
chain used here are available, although the
quantitative results are much affected by the
model and approximations adopted. Roe’s
theory," however, does not give such a transi-
tion, although the distortion of polymer mole-
cules was also taken into account there. This
inconsistency probably comes from the difference
in evaluating the effect of conformational entropy
at the interface on the local free energy, which
closely relates to the combinatorial entropy of
mixing. This is also associated with the problem
of how to recognize polymer molecules as
molecules in a non-uniferm concentrated
solution.

The transition predicted here seems similar to
the globule-coil transition which has been
recentiy suggested, but not proved, to occur in
an isolated chain molecule below the © tem-
I:)erau.lre.17 However, in the present transition
the force compressing a coiled chain is an
anisotropic and one-dimensional force acting so
as to reduce the interface excess free energy,
whereas in the latter transition the force may
be an isotropic and three-dimensional cne due

Polymer J., Vol. §, No. 1, 1976



Theory of Liquid—Liquid Interface of Polymer Systems

to the intramolecular excluded volume of
negative sign, if these transitions occur.
Finally it is noted that the present treatment
may apply to other phenomena of non-uniform
polymer systems, e.g., to the spinodal decom-
position in polymer systems, where fluctuations
of both segment and molecular center composi-
tions may in general have to be considered.

APPENDIX

1. Approximation of eq 23

Since an appreximation of & for evaluation
of the exponential term in eq 22 may suffice if
it is available in the tange of r’/(d’a’) <1, rja
defined by eg 10 may be written in the expan-
sion form as

reia= S-rzdr;{atz)"l-Hd“‘)(r:ﬁ}

b
+(@ W 2 )
= e+ (nia) d/2+ () (ad—2a") 6+ - - -
(A-1)
Here we will use the following approximation
for x satisfying &’x” <1
exp (—a*x® —bx*—cx?)
={exp (—a’x")}{exp (—bx*—cx")]
2
~{exp (—agxz)}(l +bx3—c‘x4—%x6,— .- )
(A-2)
where ‘bx", and jex'|«l for a®x*<1. Then,
using eq A-1, we have

rl rt
exp (_ ';32&2_) = {exp (_azau)}
a -

. -2 - .
P PPN e
| 1= =1 —- a’ ) 7,

[ "a'at 140 3 }(“ ) +2asa‘ F J

(A-3)

which is eq 23.
II. Approximation of eq 86

The concentration profile near T, is expressed
byls

P=3{5""(&)-+(e)}
+1{¢""(e)—¢'(e)} tanh [2(z—z,)/L}

in the classical theory, where z, is z at 55':0,
and I is the thickness of interface defined by

(A-4)
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eq 72. Assuming that the concentration profile
just near the position of =0, i.e., near z, is
expressed by the form of eq A-4 in a whole
temperature region even in an asymmetrical
system, differentiation of eq A-4 gives the
relation

8 .

$l20)=— 759(%) (A-5)
which is equivalent to ¢q 86 because of eq 72.
III. o and L near T, based on Vrij’s theory

According to Vrij’s theory,® %, in eq 61 and

73, which corresponds to QF/12 in Vrij's
theory (see eq 34 in ref 6), is given by

1 /Wi e 2Wi, 0 Wi
hc:--l-i(—,‘;!;z— ,1~,f1§+—;;fn) (A6)

Wy my Wy
where W', I', and «' are for a molecule,
whereas in the present theory they (W, I, and
@) are for a segment. When the segment
density of a polymer coil is assumed to be
Gaussian, we obtain &, from eq A-6 as

! - =

at /Wy, Wi N _ a

o= T e 7 1= €
4\ @ o, 4

(A7)

disregarding the segment interaction length as
compared with the chain dimension. Then,
from eq 61 and 73 with eq A-7, we derive s and
L for a polymer solution based on Vrij's theory
as

Fir~zy =2aim Ty e20y F(1-TY"  (A-8)
and
Lipg,=2a(g20)"{1-T)""  (A-9)
IV. g and L at 7=0.
From eq 40, we obtain
men E+kTIn ¢,'(@)=0 (A-10)

when T is near to zero. Substituting eq A-10
into eq 38 and putting 7=0, i.e., T=0, yields
AAT=0)= E(d— ") (A-11)
Equations 31, 32, and 49 (with eq 66) give
H(F=0)=0=Fi"j2 (A-12)
Substituting eq A-11 and A-12 into eq 50, we
can derive

o=2 Sl (DE—¢*Nde=xEi4vZ (A-13)
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On the other hand, using eq A-11, A-12, and
48, L defined by eq 72 is expressed by

Ligon= '\/21

noticing that ¢,==}% at 7'=0.
V. Calculation of the Value of 2{H4f)'? Near
¢=% in a symmetrical System
The value of 2(HAf)'® near ¢=0 can be
calculated as a function of ¢ using a method
which is schematically shown in Figure A-L.

eq ‘82 &Q 47
eq ﬁ.g/\eq 37

2 !’i
) eq 48 ¢ gl‘aphlcallj

Figure A-1, Method of calculation of Z{HAf/* as
a function of ¢ near ¢=0.

(A-14)
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Figure A-2. 2(14f)%2(EZ) as a function of ¢ at
various T for a symmetrical system of m=39, The
numbers in the figure indicate the valucs of T.
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First, using the value of y, in place of y, which
is calculated by eq 82, we compute the ap-
proximate values of H and 4f near ¢=1 as a
function of ¢ with the use of eq 49 (with eq 31
and 79 of ¢=0) and eq 37 (with eq 38 and 39),
respectively. Then, ¢ is evaluated as a function
¢ from eq 48 with the values of H and Jf thus
obtained and ¢ is also given by graphically
differentiating the ¢ vs. ¢ curves just obtained.
From those values of ¢ and (p, the value of 7
is calculated with eq 47 as a function of ¢.
Next, using this value of y, the values of H
and Jf are again calculated by eq 37 and 49.
Repeating this process, the obtained values of
d, 95, and y are converged. Thus, the values
of H and Af, therefore 2(H4f)'", are obtained
as a function of ¢. The 2(HAf)*/EL vs. ¢
curves near ¢=4 obtained, for example, for
m=350 are shown in Figure A-2. As seen
from the figure, ¢ calculated by integrating
2HAf)'® with respect to ¢ (eq 50) is expected
to show the typical behavior of the first order
transition, as schematically shown at the top of
the figure.
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