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A method for calculating the intensities of diffracted waves in low energy electron diffraction by 
crystals is proposed. The elastic multiple scattering is fully taken into account. The cellular method 
of KOHN and ROSTOKER in the band theory of metals is applied to the integral equation of the scat-
tering by two dimensional lattices, particularly by monatomic layers. The solution is expanded in 
spherical harmonics on the surface of spheres, within which the atomic potential is assumed to be 
confined. 

The dynamical theory of electron diffraction by 

B E T H E 1 is based on the representation of electron 

waves in crystals as a superposition of B L O C H waves. 

If it is applied to low-energy electrons, however, the 

strong interaction between the electrons and the 

crystal atoms causes bad convergence in the expan-

sion of the B L O C H waves in plane waves. 

In the band theory of metals, which is concerned 

also with the motion of slow electrons in a periodic 

field, the so-called cellular method (or G R E E N ' S func-

tion method) has been developed ( K O R R I N G A 2 , K O H N 

a n d R O S T O K E R 3 , M O R S E 4 , H A M a n d S E G A L L 5 ) , i n 

which the above difficulty is avoided by expanding 

the B L O C H waves in spherical harmonics instead of 

plane waves. This can be realized conveniently by 

using the so-called "muffin tin" model (HAM and 

SEGAL5). The crystal is divided into separate spheri-

cal regions, in each of which an atom is represented 

by a spherically symmetric potential. In the space 

between the spherical regions the potential is as-

sumed to be constant. The summation over the 

plane-wave components is then absorbed in the cal-

culation of the G R E E N ' S function. The difficulty of 

convergence is successfully overcome by means of 

E W A L D ' S ^-transformation method 6. The expansion 

of the wave function in spherical harmonics has 

proved to be rapidly convergent owing to the well-

known fact, that the partial-wave method for the 

scattering by single atoms is rapidly convergent for 

slow electrons. 
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In the present theory the same technique is ap-

plied to the problems of low-energy electron dif-

fraction. If we wanted, we could follow B E T H E 1 and 

calculate B L O C H functions by applying the above 

method. However, it appears to be more reasonable 

to apply the method directly to the integral equation 

of scattering by crystals This integral equation 

has a form somewhat different from that of B L O C H 

functions3. The direct application appears to be 

particularly advantageous if the atoms build up only 

one or two layers, or if the surface is not flat but 

has steps. In fact, in these cases B E T H E ' S method 1 

would be hardly applicable. 

The method is at first applied to flat monatomic 

layers as the simplest case. It will be extended in 

Part II to multi-layers. The scattering problem by 

monatomic layers has been treated by VON L A U E 8 

who has used the first B O R N approximation. M C R A E 9 

has developed a more exact calculation using the 

distorted wave method. The present calculation is 

the most exact one, as far as we admit the muffin 

tin model. Quite recently M C R A E 10 has developed a 

theory based on the multiple-scattering approach by 

LAX u . This theory is essentially equivalent to the 

present one, although the apparent formulations are 

considerably different. In fact, the two theories have 

proved to render completely identical results for 

s-wave scatterers. 
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§ 1. Scattering bj Monatomic Layers 

The atoms are assumed to be confined in spheres 

within which the spherically symmetric potential is 

given. The solution of the S C H R Ö D I N G E R equation 12 

[ V 2 + x 2 - r ( r ) j xp(r)=0 ( l ) 

within the sphere is assumed to be already obtained 

for a given value of ^ by the usual method of par-

tial waves. We put 

ip(r) = xp(r,$,<p) = ZCimRl(r) Ylm(V,<p), (2) 
lm 

where Ytm are spherical harmonics ( K O H N — R O S T O -

K E R 3 ) 

Ylm^,cp) = eimtp . 

(3) 

The radial function R/(r) should be calculated for 

each kind of atom. 

If the values of y>(r) on the surface of the 

sphere [in other words, the values of C\m in ( 2 ) ] 

were given, then, putting r = r,- (rp. radius of the 

sphere), we could obtain at once the radial gradient 

of xp on the surface as 

V dr lm 
'lm 

d Ri 

d r ]r= 
Ylm($,<p). (4) 

Since Y{m(&,cp) build up an ortho-normal system, 

it follows 

lm 
3?/' \ = V (dRi/dr) r = Ti Y/ 

, dr )r—ri 7m Rl(ri) 

� Jdtp J' sin d&' Y*m (#', cp') rp(ri, cp'). 

(5) 

Thus the solution inside the sphere determines 

the relation between xp and dip/dr on the surface. 

This relation should be regarded as the boundary 

condition for the solution outside the sphere, be-

cause the latter should have the same values of xp 

and dip/dr on the surface. 

The space outside the spheres is assumed to be 

vacuum, the potential being zero. The S C H R Ö D I N G E R 

equation reduces in this range to the H E L M H O L T Z 

equation 

W + * 2 V = 0 . ( 6 ) 

12 The symbols are, as far as possible, same as those of KOHN 
and ROSTOKER 3, with the only exception that we use for the 
reciprocal-lattice vectors the symbol B p t [see (21)] in-
stead of Kn , since the latter is reserved for wave vectors 
in vacuum. 

The spheres are considered to build up a regular 

two-dimensional array which is extended to infinity 

in two directions. We imagine two "surfaces" of 

this monatomic layer taking two planes parallel to 

the layer in such a way that they lie totally in va-

cuum (Fig. 1 ) . Then we divide the " layer" , the 

space between the surfaces, in two-dimensional 

"cel ls" putting "walls" perpendicular to the two 

surfaces in such a way that they lie just half-way 

between the nearest-neighbour atoms (Fig. 1 ) . This 

is done in a similar way as in the cellular method 

of the band theory3 , but only in two-dimensions. 

We assume that each of the equivalent cells contains 

only one atom. 

<0 primary wave 

z - ax i s (front view) 
lower surface 

walls 

(upper view) 

Fig. 1. Monatomic layer; an example of (111) surface atoms 
of a cubic crystal. 

We want now to calculate the scattering of a 

plane wave with the wave vector K 0 ( K 0 | = ?<) fal-

ling on the upper surface of the layer (Fig. 1 ) . 

Thus, the problem is only a particular case of GI 7 , 

so that we can apply the results obtained there to 

our problem. The choice of our cell instead of the 

usual two-dimensional unit cell in GI has no in-

fluence on the application. 

According to GI 7 the solution should have a peri-

odic property 

xp(r + ant) = exp { iKot ' f ln t } v(r), (7) 



where Kot is the component of K0 tangential to the 

surface, and a n t — nx a x + n2 U2 is an arbitrary twTo-

dimensional lattice vector, d x and d 2 being the basis 

vectors. The form (7) indicates that the scattered 

waves in the upper and lower vacuum are sets of 

discrete plane waves. The solution inside the layer 

must be found only in one arbitrarily chosen cell. 

The solution in other cells follows then by ( 7 ) . 

§ 2. Integral Equation 

According to GI ' the solution in the cell should 

satisfy the integral equation 

r p ( r ) =v ( 0 ) ( r ) + \G(r,rf ) V ( r ' ) xp(r') dr', (8) 
cell 

where i p ^ ( r ) is the primary wave 

y j ( ° ) ( r ) = e x p { i K 0 - r ) , ( 9 ) 

and G(r, r ' ) is GREEN'S function, which satisfies 

V?G(r,r') + x2G(r, r') =d(r-r') (10) 

and the same boundary conditions as the function 

ip(r) — xpW(r) [not ip(r)\] The explicit form of 

G{r, r ' ) will be given in § 4. 

Since we assume that V (V) = 0 outside the sphere, 

the integral range of (8) can be reduced to the vol-

ume of the sphere. If the point T lies outside the 

sphere, we obtain, on applying ( 1 ) , (10) and 

GREEN'S theorem (MORSE—FESHBACH 13, p. 8 0 3 ) 

j G(r, r) V(r') xp{r') dr ' 
sphere 

= j G ( r , r ' ) ( V ; ' + * 2 ) y ( r ) dr ' 

= J [ C ( r , r) V ^ - v C r ' ) - v ( 0 V?G(r, r ' ) ] dr ' 

ds'. = ! G(r, r') j3, ip(r') -wir') 5 ] ~ G ( r , r ' ) 
dr dr 

(ID 

The last integral should be taken on the surface of 

the sphere. We have then from (8) 

v ( r ) - v w ( r ) + J ( c ( 1 2 ) 

sphere 

if the point r lies inside the cell but outside the 

sphere. This equation should be satisfied also in the 

limit that the point r approaches the surface of the 

sphere, giving an inhomogeneous integral equation 

in two dimensions. Strictly speaking, this is a linear 

junctional equation, since 3ip/dr' is a functional of 

xp according to ( 5 ) . 

If we have found the solution of (12) on the 

sphere, the same equation gives the values of xp in 

the whole cell outside the sphere. From these values 

we can easily find the amplitudes of scattered waves 

going out from the layer. 

§ 3. Expansion in Spherical Harmonics 

Since the integral in Eq. (12) is taken on the 

sphere, it is advantageous to expand (12) in spheri-

cal harmonics. The origin of polar coordinates is 

taken at the center of the sphere and the polar axis 

(z-axis) is taken downwards perpendicular to the 

surfaces (Fig. 1 ) . 

From (9) and the well-known expansion formula 

of plane wraves [KOHN-ROSTOKER 3 Eq. ( A 2 . b ) ] we 

have 

V W ( r ) = 4 n £ i l Y ^ ( ö K . , < p K . ) j,(*r) Ylm(0,<p), 
lm 

( 1 3 ) 

where ji(xr) are spherical BESSEL functions and 

x ( = j K 0 | ) , <PKo are the polar coordinates of 

the vector K 0 . 

Following the same procedure as in KOHN and ROSTOKER 3 we find also in our case that G(r, I*') should 

have the form (note that / < r) 

G(r,r) = ZZ [*it4mm'*ni(xr) h(xr') + Alml>m-jt{xr) „(*/)] Ylm{&,<p) Yym' (#', cp), (14) 
lm I'm' 

where Aimi 'm ' are "structure constants" which will be calculated in § 4 . n\ are spherical NEUMANN functions. 

Inserting ( 2 ) , ( 1 3 ) , and (14) into ( 1 2 ) , and putting r = rt, we obtain 

ßlm — + Z! alml'm %1'm > 
I'm' 

(15) 

where Xtm = Cim Ä j ( r { ) , ß[m = 4 n il Y*m (t )K o , <pKo) jt{x r{), ( 1 6 ) , (17) 

13 P. M. MORSE and H. FESHBACH, Methods of Theoretical Physics, 2 Vols., McGraw-Hill, New York 1953. 



and almi'm- = r?[dU' ömm- x nt(x r{) jt(x rt) + Alm i'm' ji(x n) /V (x r{) ] 

1 / d ; > \ _ 1 

il'(y.n) I dr )r=ri Rl'(n) \ dr )r=ri 

(18) 

We can write, introducing the phase shift y]\ ( K O H N — R O S T O K E R 3 , M O R S E — F E S H B A C H 1 3 , p. 1068) , 

«tmfm'-l&a&mH'nAxrd+X 1 A l M h{x r4)] X j k x n ) n) tan*. ' ^ ^ ^ 

Eq. (15) is an infinite system. However, the function (dRi/dr)/Ri should approach (dji/dr)/ji rapidly, 

in other wrords, rft should decrease rapidly to zero with increasing I, if the energy of the incident electron 

is not very large and the atoms are not very heavy. Accordingly the quantity aimi',n' should approach zero 

rapidly with the increase of I . We expect then that the system (15) can be solved sufficiently accurately 

by taking only a limited number of unknowns Xjm into account. 

§ 4. Calculation of the Structure Constants 

To obtain the structure constants Aim i 'm ' according to (14) we should known the explicit form of 

G R E E N ' S function. We find in GI 7 the expression 

G{r, r') = Tf I - 1 exp {i r p\z — z' \ + i Kpt � (i*t — rt')} (20) 
A p z i l p 

where r t ( r t ' ) and z(z ) are the tangential and normal components of r ( r ' ) with respect to the surfaces, 

Kpt = Kot + Bpt where Bpt = Pl Blt +p2 B2t, ( 2 1 ) , (22) 

p representing a pair of* integers and p2 . Bn and Bot are the reciprocal basis vectors which satisfy 

Bit dj = 2ji dij (i, / = 1 , 2 ) . (23) 

T p is given by 

r v = +ys--\Kpt\2 if x->|Kpt|2, rp=+iV\Kptp-y.2 if * 2 < | K p t | 2 . (24) 

We assume that T p 4= 0 for all values of p (cf. GI ' ) . A is the area of the two-dimensional unit cell and 

equal to the area of the cross-section of our cell. 

The expression (20) is valid only for z ^ z . It can be modified, in order to include the case z = z', to 

the form 
oo exp {i <pp} 

c ( R ) - - 2 . ' , ( 2 - ) 5 7 e x p < i ' K " ' R i } l r , e x p c ) ! 
CO 

- 41,, ( f f l " f e x p { - i K 0 l - a , t } J r ' e x p [ - ( \ R + a„t\H- * * ) } d f 

i 

4 7i- \ 2 

OO 

1 [ r i e x p { - [RH- >2 ) j dC, (25) 

1 /co 

where R = r - r', R = |R|, R t = r t - r t ' , Z = z - z . (26) 

The integrals are contour integrals, co is an arbitrary complex number satisfying the condition 9ie(oj) > 0 , 

| co | < cx). We choose here co to be real ( o j > 0 ) . cpp is given by 

(pp = n — 2 arg T v (27) 

and equal to n or 0 according as T p 2 > 0 or I p 2 < 0 according to ( 2 4 ) . 

13a We assume, for all I, Ri(ri) = const (ji {x n) —ni{n r{) tan >p) 4= 0. 



It is advantageous to expand the G R E E N ' S function in the form ( K O H N - R O S T O K E R 3 ) 

G(R) = - + I DLMjL(xR) Ylm(6, 0 ) , 
4 7t R LM 

where R, 0, (P are the polar coordinates of R . The structure constants A/m i'm' can be derived from Df ^ as 

— 4 7Z I I DJj jjj — ni Cr. m - vn � lny Y m' , ( 29 ) 

where 

and 

�^Im I'm' — 4 71 i _ i DL, m - m' Cl, rn - m \ lm: I'm' ? 
L 

2.7 .-T 

ClM; I'm = J J sin # d # YLM ( # , <p) Y\m (#, <p) Ytm' (#> <P) . 
0 0 

11 -1' I < L < i+r. 

(30) 

(31 ) 

The two series appearing in (25) are uniformly convergent with respect to R so that they can be term-

wise integrated when we calculate D / ^ from [ H A M and SEGALL5 , Eqs. ( 7 . 7 ) — ( 7 . 1 0 ) ] 

Dlm= l i m , 1 f d 0 f s i n @ d 6 Y l M { 6 , ® ) [C(R) + CmA{y-^ 
R-*O ]L{X R) J J A 7i R 

0 0 

,vhere 

and 

we write Dim 

D% = 
_ l t*\\ 

D% = 
2 71 A \ 2 / 

II 

(M
^ 

II 

(M
^ 4 7l

2

 \ ,2 

>u) 

i2L ( Ä ) , 

(32) 

(33) 

(34 ) 

e x p { - j K o t - 0 B t } l i m T - ^ - = r - ( /? ) , (35) 
UM*) 

lim cos (x R) _ 1 ( 71 \h 

4 jrTT" 4 .t:2 I 2 
S J t - i e x p j - i - ( f f f - £ ) } d < 

II CO 

(36) 

Here we have introduced the expressions 

2.T n oc exp{jyp} 

[ sin e d<9 YIm ( e x p K „ t - R t } J exp { J ( j y f - Z ; ) | d £ (37 ) 

o o 

and 
zn a oc 

Ä „ ( * ) = J d < Z > J s i n 0 d 0 F l w ( 0 , 0 ) j V » e x p { - J - R + « „ t |2 C - y ) j d ? . ( 3 8 ) 

0 0 1/w 

In (37) and (38) the exponential decrease of the integrand for the integration over 'Q guarantees that 

the order of integration can be inverted. 

In the Appendix 1 it is shown that if L—\M\ is odd 

D ( l h = 0 , 

and if L — ' M ' is even 

D% = - ; - i ^ 1 ^ l ^ [ ( 2 L + l ) ( L + |M!)! (L-|M|)!]i 
Ax 2L 

(Kpt/x) L—2n (Fplx) 
(L-\M\)/2 

X V e X p (~iM<pKp) J o n\[\{L-\M\-2n)V.[HL + \M\-2n)V. 

x T ( ( l - 2 n ) / 2 , e - a r / / ^ ) , 

(39) 

(40) 

where Kpt and are the polar coordinates of K p t , which is always perpendicular to the z-axis, and 

a = *2 co/2 . (41) 

Examples of Dl!m given by (40) for L = 0, 1, 2 are tabulated at the end of the paper. 



The incomplete gamma functions -T((l — 2 n)j2, e Ti a T p2j>i2) can be derived successively for n= 1 , 2 , . . . 

by the recurrence formula ( E R D E L Y I 14 Vol. 2 , p. 1 3 4 ) 

br(b,x) =r(b+l,x)-xbe~x (42) 
from the value for n = 0 , 

\Tx 

r(\,x)= [Vn-2 ] e-t'dt) if arg.r = 0 (43) 
o 

V-x 

or r{\,x) = (\/Ji + 2ifett dt) if a r g x = - 7 i . (44) 
o 

The error integrals can be taken from tables or evaluated directly by numerical quadrature (cf. Appendix 2). 

In (38) we apply the expansions formula of plane waves [cf. Eq. ( 1 3 ) ] 

exp { - C ant� R } = exp {i(i C a„t) � R } = 4 ^ 2 iL h(i C a„t R) Y*LM (&ant, <pant) YLM(0,0), (45) 
LM 

where a,lt, f)„nt (=ji/2), 99a,itare the polar coordinates of a „ t . 

We obtain from (38) and ( 3 5 ) , if L-\M\ is odd, 

D% =0, (46 a) 

and if L — M is even 

M — Z ^ u - m r j m ^ ^ L ^ i L - m ^ m ^ 

I a nt I 10 C I . 2 2 I 

x y exp { - 1 (Kot � aHt + M cpant)} (x a„t)L \u~*~L exp j u - j du . (46 b) 

n o 

The integral can be evaluated without difficulty by numerical quadrature (cf. Appendix 2 ) . 

To calculate D^* we expand the integral of (36) in a series of incomplete gamma functions as ( A l ) . 

These can be expressed as a sum of a gamma function and a power series of their argument [ E R D E L Y I 

et al .1 4 Vo l . 2 , p. 135, Eq. ( 5 ) ] . We find that the first gamma function cancels — cos (x R) / (4 ti R) in 

( 36 ) . The first terms of the power series are independent of R and give (cf. M O R S E 4 and H A M and S E G A L L 5 ) 

a s - - L I Ä � ( 4 7 ) 

This can be modified to the form ( E R D E L Y I et al . 1 4 , Vol. 2, p. 133 ff.) 

m = -

v* 
eJ 

(48) = - * [2 [e*dt-
4 .t 2 rr J ya 

0 

(cf. Appendix 2) . 

§ 5. Amplitudes of Scattered Waves 

To obtain the amplitudes of the waves coming out from the layer we need the values of the solution on 

the surfaces. These are given by (12) where the point T lies either on the upper surface or on the lower 

surface. Since always j z — z 4=0 in these cases, the expression (20) becomes significant (cf. GI ')� It can 

be put in (12) and termwise integrated. We obtain on the upper surface z = z\ 

V(ft»2i) = V(0)(ft»2i) + ] — o-V exp{-irpzi + iKpt-rt} A p Z I 1 p 

x J exp {i rpz' -iKpt-rt'} -y> ^ exp { iTp z - i Kpt- rt'} di ' , 

14 A. ERDELYI et al., Higher Transcendental Functions, 3 Vols., McGraw-Hill, New York 1953. 



and on the lower surface z = zr 

v(rt,zu) =yi0){rt,zn) + \ Z n, j, exp {iFpz\\ + 1 K p t � r t } 

f 

2 i rp 

exp { - i rp z - i Kpt � r t ' } ° \ - xp 3 , exp { - i Fp z - i Kpt � r t ' } 
or 

It follows obviously that, if T p is real, 

R p = o r * f [exp ( i Tp z — i Kpt � r t ' } ^ -rp A exp l i / V - i K ^ - r / } Z 11 p A J L dr or 

are the amplitudes of the "reflected" waves coming out from the upper surface, and 

ds (51) 

Tp = dpo + 2 . * ^ j" exp { — t 2' - i Kpt � r t ' } xp ^ exp { — i Tp z'— i Kpt-rt'} ds' (52) 
or 

are the amplitudes of the "transmitted" waves coming out from the lower surface. On expanding again 

the plane waves in spherical harmonics we obtain 

exp{±;rp2'-iK7,t-i\'} =4* y { - i ) l j , ( * r ) Ylm( + oKp,<pKp) Y;m{&,<p'), (53) 
lm 

where x( = \KP\), fix? , <Pkp are the polar coordinates of the vector Kp , which has the tangential com-

ponent Kpt and the normal component T p . From (24) Kp has always the magnitude x. Putting (53) into 

(51) and (52) we get 

R, 
i I PA i 

1 dRi _ 1 dji 

Rl dr ji dr 
i Yjm ( - $I\p , (PKP) X-lm 

r=ri m 

and 

Tp = dp0+ -p-Xi-iVhixrd 
l L p A I 

1 dRi 

Rl dr 

1 dh 

jl dr 
ZYlm(dKp,<pKp)X lm 

(54) 

(55) 

We note that the exact positions of the surfaces and the walls do not influence these results at all. We note 

also that we need here, as for ( 1 5 ) , only those Xj^s for which the difference between (dRjdr)//?; and 

(dj/fdr)/)/ is appreciable. 

§ 6. s-Wave Scatterers or in accordance with Eq. (19) 

c _ 1 tan rj0 

As a particular case we consider s-wave scatterers. 

This case has been investigated in detail by Mc T h e r e i a t i o n ( 5 6 ) g i v e s particularly 

RAE 1 0 ' 1 5 . For s-wave scatterers all phase shifts r]i 

vanish except . This can be realized if the atom 

potential is a delta function. The choice of the atom W e o b t a i n f r o m E cI s- ( 2 9 ) ~ ( 3 1 > 

radius rt is then quite arbitrary so long as the atom-

ic spheres do not overlap. 

The coefficients aimi 'm ' given by (18) reduce to 

alm I'm = rf <Vo d/n'O [̂ 20 X Tl0 j0 + A/m00 jl jo] £() J 

xr?j0 j0-n0tanr)0 

gives particularly 

a0000 = ri2 j0 £0 (y* n0 + ^0000 jo) ' 

29) - ( 3 1 ) 

^0000 = V4 71 Doo , 

from (15) 

from (17) 

y _ P oo 
0 0 _ I 1 „ 1 I a0000 

ßoo ="� 1 / 4 71 jo . 

(56) and from (54) and (55) 

where for brevity the argument y. r-t of spherical 

B E S S E L functions is omitted, and 
Rp=- Ytf'oioX* 

I 1 P A 

L dyo 
Jo d r 

1 d RS 

R0 dr j r = ri 
(57) 

T p — dpo 

We find easily that 

V n / i 2 

i Tp A 
f 0 jo ^D 

2 n 
15 We appreciate very much that Dr. E. G. MCRAE (Bell Tele-

phone Lab.) has given us an insight into this work before 
publication. 

n _ _ tan 
p i Tp A + ]/4 ti D00 tan >/„ ' 

Tp = dpo + Rp . 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 



We see that these quantities are independent of the 

choice of the atom radius r , . The equality of Rp and 

Tp for p 4 = 0 follows from the isotropy of 5-wave 

scattering. 

A comparison of the above formulae with Mc 

R A E ' S ones 10 shows that both are completely identi-

cal. The quantity 5 ' ( 0 , 0 ) in his theory corresponds 

to — (ix+ ] /4 n D00) in our expression. 

§ 7. Discussion 

We see that most part of the numerical work will 

be required for the calculation of the structure con-

stants. We expect however that the series (40) and 

(46) can be made satisfactorily rapidly convergent 

by choosing a suitable value of ot, and that only a 

small number of constants ciimi'm' needs to be cal-

culated owing to the rapid approach of (dR//dr) /R/ 

to (dji/dr)/ji as mentioned in § 3. 

It is to be noted that the system (15) is inhomo-

geneous, so that solution of this system causes no 

essential difficulty once we have the values o f / 2 ; ( r , ) , 

(dRi/dr) r=n , and Aimi'm'. 

The author wishes to thank Prof. Dr. K . M O L I E R E 

for his encouragement to this work. 

Appendix 1. Calculation of the Integral (37) 

The ^-integration in (37) can be expanded into a power series of Z 2 as 

* T » « p (4 ( w - T ) i ( - i n - r i p r ( i - - - -? <ai> 
CO 

We put ( A l ) into (37) and express Rt and Z by the polar coordinates. Then integration by <P gives 

( M O R S E - F E S H B A C H 1 3 , V o l . 2 , p . 1 3 7 1 ) 
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J d 0 exp{ —iM + i Kpt R sin 0 cos ( (pn p - 0 ) } = 2 n i M exp { - i M <pKp] Jm ( - Kpt R sin 0). (A 2) 
6 

Integration by 0 has then the form 

J sin 0 d0 Pl\m\ (cos 0) J\m\ ( - Kpt R sin 0) (cos 0)2n, ( A 3) 
o 

where the factor (cos 0)2n comes from Z2n of (A 1 ) . We find at once that the integral vanishes if L — j M J 

is odd. Thus 

I%P (R) = 0 for all p if L - | M \ is odd. ( A 4 ) 

If L— \M\ is even we expand the B E S S E L function in ( A 3 ) into a power series of its argument and find, 

after termwise integration, that the lowest power of R is RL~2n. Hence the lowest power of R in 

is RL. The summation over n coming from ( A l ) must be taken only from 0 to (L—\M\)/2 because the 

higher terms give higher powers of R than RL. Observing that ( M O R S E - F E S H B A C H 1 3 , Vol . 2 , p. 1 5 7 3 ) 

( A 5 ) 

R-+0 (2 L + 2) ! 

we find that, for L—\M\ even, 

N % N \ \ 2 ; I 2 ) \2 2 ) ( A 6 ) 

*L-\M\-2n) (KptRY-Zn 
K ' \ 9 1 2l Ll(L — \ M |)! ( 1 

L— \M\-2n\, I L + \M | - 2 n\, ' (2 L) ! " 2tiNLM2 ' 

2 

n j , / L + | M | - 2 n j I 



where N m is the normalizing factor of spherical harmonics (3) 

2L + 1 (L-\M\) ! 

4 n (L + \M !) ! 

It follows then ( 4 0 ) . 

NLm = (A 7) 

Appendix 2. Evaluation of the Integrals 

The integrals in Eqs. ( 4 3 ) , ( 44 ) , (46 b) and (48) can be derived from the complex error function 

with a complex argument 

w(z) = e x p { — 2 2 } [ 1 + (2 i/Vn) f exp {t2} d*] , (A 8) 
o 

which is tabulated 16. 

We find at once from Eqs. (43) and (44) 

r( 1/2, x) = l / 7 r e - ; r u ; ( V / M e x p { l , ( a r g a ; + ^ ) / 2 } ) , (A 9) 

and from (48) 

The integral in Eq. (46 b ) , 

ö o o \ i [ e - < - w { V a n - - — . (A 10) 2 yti | y ti a ) 

IL= f exp {u. — [x2 an2/ (4 a ) ] } du ( A l l ) 
o 

satisfies a recurrence formula 

(x a j2)21L + ! = [ (2 L + l ) / 2 ] IL - 1L_, + a " * - * exp { a - [x2 ani2/(4 a ) ] } (A 12) 

which can be derived easily by partial integration. One starts from L = 0, where I0 and / _ i can be ex-

pressed by means of w(z) as 

h = V * ( * 2 a n t ) _ 1 exp { a - [x2 ant2/( 4 a) ] } die {w( Yä+ i[x a j (2 ^ a ) ] ) } (A 13) 

and 

/ _ ! = V* exp { a - [x2 an2/(4 a) ] } 3 m {w(Ya + i[x anXJ (2 ] /a) ] ) } . (A 14) 

We can derive these formulae from Eq. ( A l l ) following E W A L D ' S analysis ( E W A L D 6 , Anhang) and using 

the properties of w{z) 16. 

A x p 1 p 

= 0 

= - � 1 Z exp {+ i qPKp} ]/6 ^ T(h e~*i a rp2/x2) 
A x p 1 p 

Dil 

D<2% = 0 

D^U = -

- J - Z i ^ -
A x p 2 

Kpt2 r / i . r p 2 

- j r - r , e *<<z—f-
x 1 v \ 2 x-

+ - * r ( - I , a -v 
x \ 2 x2 

1 . r % 

2 

Table. Structure constants D^Im for L = 0, 1, 2 

z 
16 V. N . FADDEEVA and N . M . TERENT'EV, Tables of Values of the Function iv{z) = e x p { — Z 2 } [ L + ( 2 ij\/ti) f exp { I 2 } DI] for 

0 
Complex Argument, Pergamon Press, New York 1961. — B. D. FRIED and S D. CONTE, The Plasma Dispersion Function, 
Academic Press, New York 1961. — M. ABRAMOWITZ and I. E. STEGUN, Handbook of Mathematical Functions, Dover Publi-
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