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Theory of magnetotransport in inhomogeneous magnetic structures 
Horatio E. Camblong,a) Shufeng Zhang, and Peter M. Levy 
Department of Physics, New York University, New York, New York 10003 

The origin of the giant magnetoresistance of magnetic multilayers and magnetic granular solids is 
investigated through a unified spin-dependent linear transport theory, in which the primary source of 
electrical resistivity is short-range scattering by impurities in the different magnetic or nonmagnetic 
regions and at the interfaces. Our theory predicts that magnetotransport in granular solids is similar 
to that for currents perpendicular to the plane of the layers in multilayers in that their 
magnetoresistance is independent of the average distance between adjacent magnetic regions. 

Magnetotransport in inhomogeneous magnetic structures 
has been experimentally studied in both multilayers’ and 
granular solids.’ The main focus of these investigations has 
been the phenomenon of giant magnetoresistance, which 
holds promise for technological breakthroughs. 

The theory of magnetotransport in multilayers with col- 
linear magnetizations has been discussed in Refs. 3-8. In- 
stead, magnetotransport through noncollinear magnetizations 
is not so well understood, either for multilayers or for granu- 
lar solids. 

In this paper we consider the problem of magnetotrans- 
port in inhomogeneous magnetic structures with arbitrary 
magnetization configurations via the introduction of a linear 
transport theory in the presence of effective spin-dependent 
fields, and we apply the formalism to three cases of experi- 
mental relevance: multilayers with currents in the plane of 
the layers (CIP), multilayers with currents perpendicular to 
the plane of the layers (CPP), and granular solids. Our model 
is based on scattering by impurities in the different regions of 
the system (layers for multilayers and granules or matrix for 
granular solids) as well as at the interfaces, rather than on 
scattering by entire regions of the inhomogeneous structure 
(multilayer or granular solid). We find that the characteristic 
exponential dependence of the magnetoresistance of CIP 
with respect to the thickness of the nonmagnetic spacer layer 
has no counterpart in either CPP or granular solids, a behav- 
ior that places them in a new class of magnetically self- 
averaging systems. 

Our theory generalizes the real space Kubo approach of 
Ref. 4 and it starts from the model Hamiltonian 

H=He+C (V,+jatia.&)S(r-r,), 
a 

(1) 

where Ha describes free electrons, & is the one-electron spin 
vector operator, r, is the position vector of a particular im- 
purity, M, represents the direction of magnetization of a 
magnetic region, and u, and j, are phenomenological con- 
stants. As in Ref. 4, when the reduced Fermi wavelength 
jyk,lw 1 A is much smaller than the other length scales 
(mean-free paths and inhomogeneity lengths), the one- 
particle propagator satisfies the Dyson’s equation, which in 
real space reads 

‘)Present address: Department of Physics, University of San Francisco, San 
Francisco, CA 94117. 

?i2 
eF+g VF--C(r) Gret(r,r’)= @r-r’), 

I 
c-3 

where C(r) is the local self-energy due to scattering in the 
bulk and at the interfaces. In order to analyze transport prop- 
erties we look at the imaginary part 

A(r)= -Im[S(r)], (3) 

which we will refer to as the scattering strength. 
The main difficulty posed by the existence of noncol- 

linear magnetization is that the independence of physical 
properties with respect to arbitrary choices of the quantiza- 
tion axis requires a theory that is covariant under changes of 
that axis. The ensuing implication is that if the current is to 
be viewed as arising from different channels (two-current 
model), the only possible description is one in terms of the 
spin-dependent current densities, j&r) = (&( r)), defined as 
the expectation values of the spinor current operators 

i+(r) =z Yt,(r)ffi(r), (4) 

.+ + c 
where V,= (V,- V,.)/2 is the antisymmetric gradient opera- 
tor, *Jr) is the real space one-electron field operator, and 
greek indicates label the two spin channels. Similarly, the 
spin-dependent constitutive relation 

j,,(r) = F6 1 d3r’a,p,ys(r,r’).E,s0, (5) 

follows by absorbing the vertex corrections via a redefinition 
of the internal fields E&r’). As a result, the fourth-rank 
spinor two-point conductivity ua,&r,r’), which contains 
only the contribution from the bubble diagram in the real 
space Kubo formula, 

2 e2 #L’ ’ 
4-F ,p,ydr,r’) = -; n z;;; 

i 1 
.-be 

XApy(r,r’)VrV,‘AS,(r’,r), (6) 

[where A,,&,r’)=(G$(r,r’)-G$‘(r,r’)/2 is the density of 
states function] is proportional to the bubble part of the 
current-current correlation of the spinor currents, i.e., 
~~~,rs(r,r')cc([3,a(r)~~~r')l). 

In the quasiclassical regime, Eq. (2) can be solved via a 
global WKl3 integration. The corresponding reduced Green’s 
function, F(r, r’)=(h2/2m)G(r,r ‘), is 
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[-&r,r’)jr-r’j]. (7) 

Equation (7) has a very simple physical interpretation: it rep- 
resents a propagating electron with a complex wave number 
k(r)=[ki+i2mA(rlh*] l/2. In Eq. (7) the two-point exponent 
fXr,r’) 

C(r,r’) = ( g) &/&W% 03) 

describes the damping of the electron’s wave function (loss 
of momentum) as it propagates along the straight path 
T[r,r’] connecting the points r and r’, and it is essentially 
the average scattering encountered by the electron between r 
and r’. In the presence of spin-dependent scattering, the one- 
particle propagator Gret(r,r’), the self-energy Z(r), the scat- 
tering matrix A(r), and the two-point exponent Kr,r’) are 
2X2 spin matrices; thus, a path-ordering operator is required 
in Eq. (7), to reorder the noncommuting 2X2 scattering ma- 
trices in the exponential series from the point r’ to the point 
r (from right to left). The corresponding WKB results for the 
two-point conductivity are [from Eq. (6)] 

u a~.rdrd=~ Ir:F,,2 {~,~-$xp[-45(r,r’)Ir 

(9) 

where CD = e2k$(6 rr’h) and n is a unit vector from r to r’. 
The computation of global or measurable transport prop- 

erties requires further work, as they do not follow straight- 
forwardly from Eq. (9). In view of this complication we will 
start by analyzing global properties in multilayers, and only 
at a later stage we will consider transport in granular solids. 

For the particular case of multilayers, which are charac- 
terized by in-plane translational invariance, a Fourier trans- 
form with respect to the in-plane relative positions yields 
two-point conductivities o-(z,z’) = a(klr=O; ZJ’), given by 

cr(z,z’,=y~dt; [; ( 1 -f) q,+&Ez] 

Xew[ -{:zg]. (10) 

where 111 is the unit tensor in the plane of the layers, the 
substitution t=Rllzl has been made, and integration with 
respect to the in-plane azimuthal angle has rendered the ten- 
sor diagonal. Equation (10) describes electrical conduction in 
multilayers For the CIP case, the internal electric field in- 
duced by an external uniform field is uniform, due to the 
in-plane symmetry of the multilayers; then the global CIP 
conductivity can be found by integrating the two-point con- 
ductivity of Eq. (10) twice, with respect to both arguments, z 
and z’ , as has been explicitly derived in Ref. 4; the ensuing 
CIP conductivity and magnetoresistance exhibit a character- 
istic exponential dependence with respect to the thicknesses 

of the different layers3T4 and the magnetoresistance vanishes 
exponentially in the local limit. On the other hand, for CPP 
the current for each spin channel is a constant7 as seen from 
Eq. (14); then, we find from Eqs. (5) and (9) that the internal 
field E(z) is proportional to the local scattering rate A(z). 
Then, for the CPP geometry, the corresponding global resis- 
tivity is proportional to the average scattering encountered in 
each spin channel; thus, the CPP geometry for multilayers 
exhibits a self-averaging behavior (all transport properties 
are determined by the average scattering) not only in the 
homogeneous limit, but for all length scales, and the magne- 
toresistance is scale independent and does not vanish in the 
local limit, a result that had been predicted in Ref. 6 and was 
later experimentally confirmed.g This result leads to a current 
line picture, according to which transport properties are de- 
termined by the scattering sampled by current lines in the 
whole system, provided that all current lines be essentially 
equivalent. 

Our analysis for multilayers suggests that there exist two 
categories of inhomogeneous magnetic structures (according 
to the behavior exhibited by their magnetoresistance): (i) 
magnetically self-averaging, when their magnetoresistance 
does not vanish exponentially and is independent of the av- 
erage distance between magnetic regions (like for the CPP 
geometry of multilayers); (ii) magnetically non-self- 
averaging, when their magnetoresistance vanishes exponen- 
tially with respect to the average distance between magnetic 
regions (like for the CIP geometry of multilayers). 

The case of granular solids requires considering limiting 
cases. We will first analyze the homogeneous limit, which is 
characterized by all mean-free paths being much larger than 
all inhomogeneity lengths. 

In the homogeneous limit the two-point function Hr,r’) 
[Eq. (8)] has a unique limit, as when R= Ir-r’l--+m, in 
particular, this is independent of r and r’, and applies to both 
granular solids and multilayers. For multilayers the caveat is 
that such a unique limit holds for almost all paths, and the 
exception are those paths in the plane of the layers for mul- 
tilayers. For magnetic systems, the function &r,r’) is a spin 
matrix and its self-averaging limit is of the form g=&,+&&. 
Thus, for both granular solids and multilayers, the “average 
scattering in the medium” 

& = qil 
I 

%d3rA( r) 01) 

is well defined and coincides with the asymptotic form (large 
R) of &r,r’), provided that the size of the region B be suf- 
ficiently large. In Eq. (11) v[.%] is the volume of the corre- 
sponding region. The size of 33 is essentially restricted by 
the condition that the function Kr,r’) become asymptotically 
a constant, i.e., R has is restricted by the linear dimensions L 
of the sample; whence, these systems have a length scale 
D,, , such that for D,,sR a, and the volume integral in Eq. 
(11) is independent of 3% We will naturally refer to D,, as 
the self-averaging length scale. Therefore, the homogeneous 
limit yields a two-point conductivity, Eq. (9) that is effec- 
tively a function of only R = [r-r’/. Then, choosing a quan- 
tization axis that diagonalizes L\ Eq. (5) is simplified to 
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j,p= &3C d3rr u 
Y 

(12) 
where 6 stands for the average field, and it follows that the 
electrical resistance in each spin channel is essentially given 
by the average scattering A sampled by the electron in the 
medium, i.e., 

2m 

i i 
-1 Pa= h2k, a~-‘la,) * (13) 

This conclusion is achieved if it is assumed that the spin 
diffusion length is much larger than both the elasticmean- 
free paths and the inhomogeneity length scales, in which 
case the continuity equation for each spin component of the 
current density, 

V-j,fi(r)=O, (14) 

is satisfied. 
On the other hand, in the local limit, defined as the lim- 

iting scenario when all local mean-free paths are much 
smaller than the inhomogeneity lengths, the constitutive re- 
lation (5) becomes local; more precisely, the local conduc- 
tivity becomes the produce of a one point conductivity func- 
tion and the delta function @r-r’). The electric field is then 
the product of the local resistivity and the current density, 
where the global resistivity is also 5, along a typical current 
line, with the current constrained via Eq. (14). 

From our analysis of limiting cases we conclude that our 
theory predicts that granular solids are magnetically self- 
averaging, due to randomness in the distribution of gran- 
ules. In effect, the current line picture suggests that the-glo- 
bal resistivity is proportional to the average scattering A, in 
each spin channel, for all length scales, like for the CPP case. 
On the other hand, in the local limit for granular solids, 
current lines do not necessarily sample all the scattering in 
the medium but they only partially sample the scattering in 
the granules. Of course, the interfaces are probed regardless 
of the relative values of the local resistivities. This shows 

that the local resistivity and the current cannot be completely 
disentangled. In conclusion, we see that the only difference 
between the two limiting cases is at most the contribution 
from the granules. Thus, the scale dependence of the magne- 
toresistance will show up exponentially with respect to the 
size of the granules but not with respect to the average dis- 
tance between adjacent granules. In this sense, granular sol- 
ids are magnetically self-averaging. It should be noticed that 
these conclusions are based on our choice of a model in 
which the electrical resistivity arises from short-range impu- 
rity scattering within each region of the system rather from 
scattering by entire regions. 

In summary, we have derived the two-point conductivity 
of inhomogeneous magnetic structures, as well as the global 
resistance and magnetoresistance of magnetically self- 
.averaging systems, for which we have shown that they are 
independent of the average distance between adjacent mag- 
netic regions. 

This work was supported in part by the Office of Naval 
Research Grant No. N00014-91-J-1695 and the New York 
University Technology Transfer Fund. 
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