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Abstract

Theory of Mind (ToM) is the ability to attribute mental states (e.g., beliefs and desires) to other people in order to
understand and predict their behaviour. If others are rewarded to compete or cooperate with you, then what they will do
depends upon what they believe about you. This is the reason why social interaction induces recursive ToM, of the sort ‘‘I
think that you think that I think, etc.’’. Critically, recursion is the common notion behind the definition of sophistication of
human language, strategic thinking in games, and, arguably, ToM. Although sophisticated ToM is believed to have high
adaptive fitness, broad experimental evidence from behavioural economics, experimental psychology and linguistics point
towards limited recursivity in representing other’s beliefs. In this work, we test whether such apparent limitation may not in
fact be proven to be adaptive, i.e. optimal in an evolutionary sense. First, we propose a meta-Bayesian approach that can
predict the behaviour of ToM sophistication phenotypes who engage in social interactions. Second, we measure their
adaptive fitness using evolutionary game theory. Our main contribution is to show that one does not have to appeal to
biological costs to explain our limited ToM sophistication. In fact, the evolutionary cost/benefit ratio of ToM sophistication is
non trivial. This is partly because an informational cost prevents highly sophisticated ToM phenotypes to fully exploit less
sophisticated ones (in a competitive context). In addition, cooperation surprisingly favours lower levels of ToM
sophistication. Taken together, these quantitative corollaries of the ‘‘social Bayesian brain’’ hypothesis provide an
evolutionary account for both the limitation of ToM sophistication in humans as well as the persistence of low ToM
sophistication levels.
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Introduction

Theory of Mind (ToM) is the ability to attribute mental states

(e.g., beliefs and desires) to other people in order to understand

and predict their behaviour [1]. This ability lies at the core of

human social cognition: it develops early in life [2], and its

impairment is associated with severe neuropsychiatric disorders

[3–4]. ToM endows us with highly adaptive social skills, such as

teaching, persuading or deceiving [5]. Thus, natural selection

should have promoted phenotypes that exhibit highly sophisticated

forms of ToM [6–10].

In fact, behavioural economics has provided undisputable

experimental evidence of people’s bounded rationality in strategic

interactions [11]. In particular, we seem to be very limited in our

ability to correctly guess the behaviour of others in games [12–14].

These results corroborate experimental psychology studies [15–

16], as well as linguistic and even literary evidence [17–18] that all

point towards a heterogeneous and limited ToM sophistication in

humans. We may thus wonder why evolution has not made all of

us smarter. In particular, what made it possible for low ToM

sophistication phenotypes to persist in socially demanding

environments? In this work, we test whether such apparent

limitations may not in fact be proven to be adaptive, i.e. optimal in

an evolutionary sense. In turn, this raises two challenging issues: (i)

how do we formally define ToM sophistication phenotypes?, and

(ii) how do we measure their adaptive fitness?

We start with the premise that if others are rewarded to

compete or cooperate with you, what they believe you will do is

relevant for you to predict their behaviour. This is the reason why

social interaction induces recursive thinking, of the sort ‘‘I think

that you think that I think, etc.’’. Critically, recursion is the

common notion behind the definition of sophistication of human

language [19–20] and strategic thinking in games [14,21]. In line

with Yoshida et al. [22], we define ToM sophistication as the

depth of recursive thinking. Here, a 0-ToM agent learns (over the

course of repeated interactions) how likely her opponent’s choices

are. In contrast, a 1-ToM agent adopts the ‘‘intentional stance’’

[23], i.e. she tries to understand how 0-ToM updates his belief,

from observing his behaviour. Hence, 1-ToM is defined in terms

of her recursive belief, i.e. her belief about 0-ToM’s belief. A 2-

ToM observer assumes she faces either a 1-ToM or a 0-ToM

agent. This means she has to both recognize the sophistication of

her opponent and understand how he learns. More generally, a k-

ToM agent tries to understand how her opponent learns, under

the assumption that he is less sophisticated than herself. In so

doing, k-ToM forms high-order recursive beliefs, which may be

highly uncertain. Thus, we model the impact of subjective

uncertainty onto the mechanism of belief update using information

theory (cf. the Bayesian brain hypothesis [24–26]).

In the context of social interaction, we are left with the question

of what prior information agents use to learn about how others

learn. Here, we simply assume that the brain’s model of other
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brains presumes they are optimal too. By this we mean that people

believe other conspecifics behave according to common sense (e.g.,

they make decisions that reveal their preferences and beliefs,

which change as learning unfolds). The key idea here is to consider

how such common sense notion impacts on the (Bayes-optimal)

learning rules of agents interacting with each other. In this context,

Bayes-optimality simply means that information processing suffers

no distortion aside from potential prior biases. Agnostic priors on

peoples’ choices (i.e. priors that do not involve the intentional

stance) would yield Bayesian agents that track the descriptive

statistics of others’ choices. This is essentially what 0-ToM learners

do. Eventually, they arrive at uncertain estimates (beliefs) of, e.g.,

others’ choice frequency. However, Bayes-optimal forecasts of 0-

ToM’s behaviour rely on the (ambiguous) identification of the

covert beliefs and preferences that determine her overt decisions.

This is the essence of 1-ToM’s learning rule, which relies on an

informative prior assumption, namely: others are (agnostic) Bayes-

optimal agents. Under this ‘‘social Bayesian brain’’ hypothesis, one

can derive the learning rule of k-ToM agents recursively, starting

with 0-ToM (see Models).

Although k-ToM learners are all Bayes-optimal, they differ in

terms of the depth of recursion of their beliefs. This difference in

ToM sophistication changes the way k-ToM agents react to a

given sequence of their opponent’s action. For example, 0-ToM

will tend to act as if her opponent was more likely to pick the

action that she had chosen most frequently in the past. In turn, 1-

ToM will anticipate this and act accordingly. Since their respective

behavioural response pattern will be different, 2-ToM is in a

position to discriminate between 0-ToM and 1-ToM (and act

accordingly). In brief, k-ToM will best-respond to her opponent’s

past choices, under the constraint of limited sophistication. Thus,

ToM sophistication phenotypes are characterized in terms of

(formal) belief update rules that (i) are specific to the depth of their

recursion, and (ii) shape their behavioural strategy over the course

of repeated social interactions.

We address the second challenge from the perspective of

evolutionary game theory (EGT). In brief, EGT states that the

reproductive and survival successes of any behavioural phenotype

is determined by how well it performs when interacting with other

alternative phenotypes [27]. Here, we extend this idea to evaluate

the adaptive fitness of ToM sophistication. Current ethological

debates highlight the importance of competitive versus cooperative

types of reciprocal social interactions in the evolution of ToM [10].

We thus focused on a pair of two-players games that capture these

two canonical forms of social interaction. In ‘‘hide and seek’’, the

gain of the winner is exactly balanced by the loss of the looser,

which is the essence of competition. In contradistinction, agents

playing ‘‘battle of the sexes’’ are most rewarded for coordinating

their behaviour (see Models and Methods). Note that both

games’ payoffs are contingent on players’ ability in predicting their

opponent’s behaviour (there is no prior good decision).

Results

On the Relative Performance of ToM Phenotypes
Engaged in Iterated Games
To assess the relative performance of ToM sophistication

phenotypes engaged in either cooperative or competitive social

interactions, we performed the following series of Monte-Carlo

simulations. We let all 565=25 combinations of pairs of ToM

agents (0ƒkƒ4) play repeatedly ‘‘hide and seek’’ and ‘‘battle of

the sexes’’ (cf. game outcomes in Table 1 below) against each

other. One simulation thus consisted of the history of beliefs,

choices and outcomes, for both agents, across trials

(1ƒtƒ512).We measured the accumulated payoff each ToM

phenotype receives as a function of trial t, when interacting with

any other ToM phenotype. We repeated each type of simulation

500 times, in order to average out variability arising from

behavioural noise (see Methods section below). Figure 1 depicts

these payoff matrices at trial t=512. Since t controls the amount

of available information, those can be understood in terms of the

relative success of ToM phenotypes after learning has occurred.

In the competitive game, the expected payoff matrix is anti-

symmetrical (this is because ‘‘hide and seek’’ is a zero-sum game).

Overall, increasing ToM sophistication improves performance: for

any ToM level, gains are systematically positive (respectively,

negative) against less (respectively, more) sophisticated ToM

agents. Interestingly, there is a systematic cost to sophistication:

the relative gains decrease as the difference in ToM levels

increases. This informational cost to sophistication essentially

limits the way one can exploit less sophisticated ToM agents.

Results in the context of the cooperative game are entirely

different. Here, pairs of agents with different ToM levels perform

much better than pairs of ‘‘twin’’ 0-ToM and 1-ToM agents, who

fail to coordinate their behaviour. Note that the best performance

level is observed for 1-ToM agents, when playing against more

sophisticated agents. In addition, behavioural performance of pairs

of k-ToM agents with k$2 neither depends upon whether agents

have similar sophistication levels (‘‘twin’’ pairs versus non ‘‘twin’’

pairs), nor on the sophistication level per se. This is surprising, since

it suggests that there is no advantage in being more sophisticated

than a 2-ToM agent when engaging in a cooperative interaction.

This means that being less sophisticated than the other player is

only detrimental (in the sense of yielding inaccurate behavioural

predictions) in a competitive setting.

The nature of the beliefs, which ToM agents develop as learning

unfolds during the iterated games, sheds some light on these

intriguing results.Recall that k-ToM selects the appropriate action

a
self
t on the basis of her prediction p a

op
t wkz1

t{1

�

�

�

� �

about her

opponent’s next move. Figure 2 compares this prediction against

the real behavioural tendency experienced by her opponent, in the

case of 0-ToM playing against 1-ToM (for both games).

One can see that when playing ‘‘hide and seek’’, 1-ToM

predicts very well the behaviour of 0-ToM, but that 0-ToM is

almost always entirely wrong about 1-ToM next move. In other

words, 0-ToM agents are fooled by 1-ToM agents in a competitive

setting.

However, this is not the case when ToM agents play ‘‘battle of

the sexes’’: both players are able to correctly predict the behaviour

of their partner. In other words, 0-ToM is not confused by 1-ToM

in a cooperative setting. We will now check whether this difference

between the prediction accuracy of less sophisticated ToM agents

in a competitive/cooperative context generalizes to any ToM

Table 1. Payoffs for each player in the ‘‘hide and seek’’ game
(left) and ‘‘battle of the sexes’’ (right).

P2: a1~1 P2: a1~0 P2: a1~1 P2: a1~0

P1: a2~1 {1,1ð Þ 1,{1ð Þ P1: a2~1 {1,{1ð Þ

P1: a2~0 1,{1ð Þ {1,1ð Þ P1: a2~0 {1,{1ð Þ

Numbers inside brackets indicate the payoffs; the number on the left (resp. on
the right) indicates the payoff player 1 (resp. player 2) gets when making
decision a1 while player 2 chooses a2 .
doi:10.1371/journal.pone.0087619.t001
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sophistication level. Figure 3 summarizes the quality of this

behavioural prediction for all pairs of ToM players.

One can see that the overall pattern is quite similar to the

behavioural performances depicted on Fig. 1. This is intuitive,

since this means that the accuracy of the prediction determines a

significant amount of the variability in behavioural performance.

This is particularly salient when ToM agents play ‘‘hide and

‘‘seek’’, which induces an almost perfect anti-symmetric pattern in

the prediction accuracy. This means that, on average, ToM agents

are fooled by more sophisticated opponent in a competitive

setting. Note that ‘‘twin’’ pairs (pairs of ToM agents with identical

sophistication levels) form behavioural predictions that are, on

average, uncorrelated with the real behavioural tendency of their

opponent. In addition, the prediction accuracy decreases with the

ToM sophistication level. This consequence of statistical com-

plexity induces the cost to sophistication that was observed on

behavioural performance or accumulated reward (cf. Fig. 1).

These results are somewhat at odds with the pattern of

prediction accuracy of ToM agents playing ‘‘battle of the sexes’’.

In brief, except for ‘‘twin’’ pairs of 0-ToM and 1-ToM agents,

behavioural predictions are quite accurate. Interestingly also,

behavioural predictions slightly improve with overall ToM

sophistication level. This means that, on average, ToM agents

are not confused by more sophisticated partners in a cooperative

setting. In fact, ToM agents even benefit from the sophistication of

their partner. This holds as well for ‘‘twin’’ pairs of k-ToM agents,

provided k§2. This is important, since this means that being less

sophisticated than the other player is only inappropriate (in the

sense of yielding inaccurate behavioural predictions) in a

competitive setting.

The case of ‘‘twin’’ pairs is interesting because it reveals a

fundamental difference between the nature of beliefs in compet-

itive and cooperative contexts. In brief, for kv2, ‘‘twin’’ pairs

form poor behavioural predictions about their opponent, whether

they are in a competitive or in a cooperative context. More

precisely, their behavioural predictions are effectively non-

informative (they are right half of the time). However, for k§2,

k-ToM agents that engage in a cooperative context can form very

accurate behavioural predictions. Recall that k~2 is a critical

ToM sophistication level, in that any k-ToM agent with k§2 has

to learn the sophistication level of the other player. It turns out this

is quite important to understand the difference in the prediction

accuracy of ‘‘twin’’ pairs of k-ToM agents (k§2) in a competitive

or a cooperative context, respectively. We will now summarize the

beliefs of ‘‘twin pairs’’ of k-ToM agents about their opponent’s

sophistication, and highlight its impact on behavioural perfor-

mance in both games. First note that k-ToM agents in a ‘‘twin

pair’’ cannot infer the correct level of their opponent. This is

because, by construction, they assume their opponent is less

sophisticated than themselves. However, we will see that the type

of game is highly predictive of the nature of their (erroneous)

inference. Figure 4 depicts the MCMC empirical histograms of

ToM sophistication levels (see Models and Methods) attributed

by ‘‘twin’’ pairs of k-ToM agents with k§2 to each other, for both

types of games.

One can see that when playing ‘‘hide and seek’’, each k-ToM

agent in the ‘‘twin’’ pairs almost always believes that her opponent

is a k{1½ �-ToM agent (cf. peak at the upper-right corner of the

histograms). In other words, the competitive setting induces a bias

in the attribution of the opponent’s ToM level towards maximal

sophistication.

Results are entirely different when ToM agents play ‘‘battle of

sexes’’. In this context, a pair of ‘‘twin’’ 2-ToM agents eventually

arrives at different beliefs: one agent believes her opponent is 0-

ToM, whereas the other systematically thinks hers is 1-ToM (cf.

peak at the upper-left corner of the histogram). This makes the

‘‘twin’’ 2-ToM behave as a pair of 1-ToM and 2-ToM agents, and

yields good coordination performance (cf. Fig. 1). This pattern

tends to be confirmed for ‘‘twin’’ pairs of 3-ToM and 4-ToM: the

agents almost never have the same belief about their opponent

sophistication (cf. empty main diagonal in the histograms). In fact,

agents have heterogeneous beliefs most of the time, which makes

them behave as a heterogeneous pair. In other words, the

cooperative setting induces a bias towards heterogeneous recipro-

cal beliefs about each other ToM sophistication. This means that

coordination is successful when there is heterogeneity in the

reciprocal beliefs about ToM sophistication levels. Ironically

speaking, successful cooperation arises when one agent is more

dismissive about her partner than her partner is about her.

To sum up, in contrast to competitive interactions, ToM agents

are not confused by more sophisticated partners in a cooperative

setting. In fact, ToM agents even benefit from the sophistication of

their partner.

Figure 1. MCMC average payoffs of all pairs of ToM agents. This figure depicts the MCMC average of the payoff matrices for both ‘‘hide and
seek’’ (left) and ‘‘battle of the sexes’’ (right) after learning has occurred. The ith line gives the accumulated payoff of the ith type of agent, when playing
against each and every other ToM phenotype. Note that the absolute payoff levels of both types of games cannot be compared.
doi:10.1371/journal.pone.0087619.g001
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Figure 2. Accuracy of behavioural predictions in competitive and cooperative contexts: example of 0-ToM playing against 1-ToM.
The behavioural prediction E p

op
t a

op
1:t

�

�

� �

of ToM players (y-axis) is plotted against her opponent’s true behavioural tendency popt (x-axis) for each trial of
a simulated repeated game with t~512 trials. The grey line indicates the best-fitting straight line in the data. Upper half: ‘‘Hide and Seek’’. Lower half:
‘‘Battle of the Sexes’’. Left: accuracy of 1-ToM predictions when playing against 0-ToM. Right: accuracy of 0-ToM predictions when playing against 1-
ToM.
doi:10.1371/journal.pone.0087619.g002

Figure 3. MCMC average prediction accuracy of all pairs of ToM agents. This figure depicts the MCMC average of the linear trend between
the behavioural prediction E p

op
t a

op
1:t

�

�

� �

of ToM players and their opponent’s true behavioural tendency p
op
t . In other words, this corresponds to the

slope of the best-fitting straight line in Figure 2. The figure uses the same format as Figure 1.
doi:10.1371/journal.pone.0087619.g003
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Evolution of ToM: Influence of Learning and Cooperative
Interactions
We then used EGT to simulate the evolution of societies

populated with heterogeneous ToM sophistication phenotypes. In

brief, we inserted the average payoff matrices into EGT replicator

dynamics, which describe the dynamics of the frequency of

competing phenotypes over evolutionary time (see Models and

Methods). These eventually converge to the evolutionary stable

states, which are a repartition of phenotypes that is restored by

selection after a disturbance [27]. Figure 5 shows examples of

replicator dynamics, with five ToM phenotypes (0ƒkƒ4), after

t~512 game iterations, and for both pure cooperative (‘‘battle of

the sexes’’) and pure competitive (‘‘hide and seek’’) social

interactions.

Different paths correspond to different initial phenotypes

frequency distributions. First, one can see that the equilibrium

points are stable, with basins of attraction spanning all sampled

initial conditions (this was always the case). Second, these

evolutionary stable states depend upon the game type (i.e.

cooperative or competitive). This is because replicator dynamics

unfold from relative performance of ToM phenotypes captured by

payoff matrices depicted on Figure 1. In a purely competitive

context, evolutionary dynamics follow a very reproducible

sequence of ToM phenotypes extinction. In brief, expected

extinction time increases with ToM sophistication levels, i.e. 0-

ToM traits disappear first, then 1-ToM, 2-ToM, etc… This

winner-take-all Darwinian competition eventually selects the most

sophisticated ToM phenotype, whose evolutionary stable frequen-

cy reaches unity.

As one would expect from behavioural performance results (cf.

Figure 1), replicator dynamics in the context of purely cooperative

interactions are qualitatively different. In brief, two time scales

seem to be at play: first, very quick selection pressure make 0-ToM

disappear and the frequency of 1-ToM phenotypes converge

towards 1=3 . Second, slower winner-take-all competition between

higher ToM sophistication phenotypes (k§2) eventually selects 2-

ToM phenotypes, whose evolutionary stable frequency approaches

2=3 .

Let us now inspect in a more systematic manner the effect of

cooperation and learning onto evolutionary stable states. In brief,

we varied the proportion v of cooperative social interactions as

well as the number of game iterations t (see Models and

Methods). Note that no oscillation or cycle in the evolutionary

dynamics was observed throughout the entire range of phase

parameters v and t. This means that selective pressure always

eventually converges toward an evolutionary stable state. Addi-

tionally, this evolutionary stable state was always unique (no

multistability). Taken together, this means evolutionary stable

states are a faithful summary of replicator dynamics. Figure 6

summarizes the dependency of evolutionary stable states w.r.t. v
and t.

First, irrespective of the proportion v of cooperative interac-

tions and the number of game iterations t (except for one-shot

Figure 4. MCMC empirical distribution of learned opponent’s sophistication level for ‘‘twin’’ pairs of ToM agents. Each bar gives the
number of MCMC simulations (z-axis) that led to each particular combination of belief k̂k1,k̂k2ð Þ, both agents had on each other’s ToM sophistication
level (x/y-plane). Histograms are truncated to the upper-left triangle for visualization purposes (they are symmetrical by construction). Upper half:
‘‘Hide and Seek’’. Lower half: ‘‘battle of the Sexes’’. Left: ‘‘twin’’ pairs of 2-ToM agents, Middle: ‘‘twin’’ pairs of 3-ToM agents, right: ‘‘twin’’ pairs of 4-
ToM agents.
doi:10.1371/journal.pone.0087619.g004
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games, i.e.: t~1), the 0-ToM phenotype is not evolutionary stable.

This means that selective pressure favours phenotypes that are

capable of taking an ‘‘intentional stance’’. In other words, natural

selection induces a lower bound on ToM phenotypes. Second,

evolutionary stable states are either dominated by the most

sophisticated ToM phenotypes (k~4) or consist of mixed

populations, most particularly when cooperative social interactions

become more likely. More precisely, when the proportion v of

cooperative social interactions reaches a critical threshold, the

population mostly consists of ToM phenotypes smaller than k~4.
This means that cooperative social interactions effectively induce

an upper bound on ToM sophistication. Note that the critical

threshold depends upon the amount t of learning: the longer the

games, the smaller the proportion of cooperative social interac-

tions is required for inducing the upper bound on ToM

sophistication. Essentially however, with enough learning experi-

ence, cooperation would in most cases yield the same evolutionary

stable state, namely a mixture of 1-ToM and 2-ToM phenotypes.

Effectively, one can thus think of k~2 as the most likely upper

bound on ToM sophistication.

One may wonder whether our main conclusion still holds if

other types of players invade the population. In fact, it may be

argued that behavioural responses in the context competitive or

cooperative games may be driven by mechanisms that are

qualitatively different from ToM. We have thus augmented the

pool of possible phenotypes within our population of agents with

objectively optimal strategies (i.e. Nash players) and adaptive

heuristic behavioural traits (i.e. reinforcement learners). The

former phenotype is motivated from game theoretic consider-

ations: playing Nash is typically understood as the average best

response (across all types of opponent’s strategies [28]. The latter

phenotype is derived from behaviouristic accounts of decision

making: in brief, animal act on the basis of learned action-outcome

contingencies. Reinforcement learning (RL) is a celebrated model

of such automatic behavioural processes [29]. Note that RL

generalizes ‘‘tit-for-tat’’ or ‘‘win-stay, loose-switch’’ heuristic

strategies, which have been suggested to be of particular

importance for explaining the emergence of altruism and

cooperation in evolving human societies [30]. Figure 7 depicts

the ensuing replicator dynamics phase diagram, having included

Nash and RL agents within the set of competing phenotypes.

One can see that including Nash and RL agents does not

fundamentally change the overall picture. Interestingly, there is no

combination of cooperation and learning that make the Nash

phenotype evolutionary stable. This is because, even though no

other phenotype performs better than Nash on average, ToM

phenotypes achieve higher performance when facing each other.

Second, only in the context of very short games can the RL

phenotype be considered evolutionary stable: RL agents effectively

disappear for game durations longer than tw8. This is actually the

only noticeable difference with Figure 6: short game durations,

which were previously dominated by the highest ToM sophisti-

Figure 5. Replicator dynamics for purely cooperative and competitive social interactions. The frequency of each ToM phenotype (y-axis)
is plotted against evolutionary time (x-axis), for 128 different simulations with different initial conditions. Different ToM traits correspond to different
colours (see legend). Pie charts depict the evolutionary stale states, i.e. the equilibrium or fixed point, replicator dynamics converge to (the colour
coding is the same). Upper half: ‘‘Hide and Seek’’. Lower half: ‘‘battle of the Sexes’’.
doi:10.1371/journal.pone.0087619.g005

Evolution of Theory of Mind
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cation level (k~4), now yield mixed populations that include RL

phenotypes. However, the critical threshold on the amount of

cooperation (above which less sophisticated ToM phenotypes

dominate) is unchanged. In addition, the nature of evolutionary

stable states above this critical threshold seems to be invariant to

the presence or absence of non-ToM phenotypes. This includes

the induced lower and upper bounds on ToM sophistication levels.

Discussion

In this work, we have proposed a quantitative evolutionary

account of ToM sophistication in humans. This relies upon a

meta-Bayesian formalism [26] for recursive ToM inferences that

arise in the context of reciprocal social interactions. The key idea

here is that meta-bayesian agents learn or recognize the subjective

(potentially high-order) beliefs of other agents in a Bayes-optimal

fashion. Here, ToM sophistication is defined as the level of

recursion of such meta-bayesian agents. We have assessed the

relative performance of ToM agents playing competitive or

coordinative games with each other. Finally, we have identified

what evolutionary forces could have led to the observed variability

of ToM sophistication in humans. More precisely, we have shown

that: (i) a non-trivial informational cost to sophistication limits the

way one can exploit less sophisticated ToM agents, and (ii) one

may benefit from engaging in a cooperative interaction with more

sophisticated ToM agents. Eventually, these properties yield an

evolutionary stable mixture of ToM phenotypes with a lower

bound at k = 1 (agents without ToM get extinct) and an upper

bound at k = 2.

Our model was largely inspired by previous work from

behavioural economics and experimental psychology on bounded

rationality. More precisely, k-ToM shares with models such as

‘‘level k’’ [13] and the ‘‘cognitive hierarchy’’ [12] the notion of

recursive thinking. These models have been typically used to

explain people’s behaviour in non-repeated games such as the

‘‘beauty contest’’ (but see [14,31–32] for nice extensions to

repeated games). They prove useful in capturing inter-individual

variability in peoples’ behaviour, in terms of the sophistication of

their strategic thinking. For example, Camerer and colleagues [21]

have reported the following distribution of levels: around 20% of

level 0 players, 33% of level 1, 25% of level 2 and then a

decreasing proportion of higher levels. Although not identical,

such results are consistent with our EGT prediction (cf. the

distribution peaks around level 1 and 2). Observed discrepancies

may have three distinct causes. First, peoples’ behaviour is not

unambiguously mapped onto levels of strategic thinking (cf. issues

with levels’ stability across games, etc…). Second, we may not

have included all the relevant evolutionary constraints on ToM

sophistication (see comment below on comparing ToM across

species). Third, there are conceptual differences between k-ToM

(which deals with the sophistication of learning rules) and the

cognitive hierarchy (which cares about the sophistication of

behavioural policies). This theoretical difference is not trivial.

On the one hand, one could argue that the basic cognitive

resource that underlies both processes is the same, namely: the

ability to form recursive beliefs. On the other hand, theory of mind

is essentially inferential (cf. the intentional stance). That is, ToM is

engaged when we identify mental states (beliefs, intentions,

emotions, etc…) from social signals (decisions, facial expressions,

etc…). In this perspective, ToM may have more to do with the

way we adapt to others (through learning) than with the evaluation

of the consequences of our actions (decision making).

We will now discuss the limitations of our model.

First, we did not account for social preferences or norms, such

as fairness or inequity aversion. These are thought to explain

people’s altruistic behaviour despite strong incentive for betrayal,

as in the ‘‘prisoner’s dilemma’’ game [33–34]. However, it turns

out that, in these games, meta-Bayesian agents choose the egoistic

(dominant) strategy, irrespective of their ToM sophistication level.

This means that ToM alone cannot explain people’s altruistic

behaviour. Interestingly, a recent study [35] has used EGT with

the iterated ‘‘prisoner’s dilemma’’ to explain the emergence of

fairness through evolution. The captivating question of whether

ToM’s adaptive fitness depends upon social preferences (and

reciprocally) is beyond the scope of the present work. Addressing

this would require modelling, e.g. inference on others’ fairness

preferences.

Second, our approach shares with similar hierarchical models

(such as the ‘‘cognitive hierarchy’’ [13,21]) the relative arbitrar-

Figure 6. Phase diagram of ToM evolution. Each pie chart depict
the evolutionary stable state that is induced by a particular combination
of amount of learning t (x-axis) and proportion v of cooperative
interactions (y-axis).
doi:10.1371/journal.pone.0087619.g006

Figure 7. Phase diagram of ToM evolution: Impact of RL and
Nash phenotypes. This figure uses the same format as Fig. 6.
doi:10.1371/journal.pone.0087619.g007
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iness of the first level. This is critical, because the behavioural

response of all subsequent levels in the hierarchy (recursively) rely

on the definition of the first level [36]. Our definition of 0-ToM

agents follows from the ‘‘Bayesian brain’’ hypothesis: there is no

reason to consider 0-ToM agents that would not learn optimally,

aside from their inability to take the ‘‘intentional stance’’. We

believe this is mandatory for evaluating ToM’s adaptive fitness.

This is because we do not want the effect of ToM sophistication on

behavioural performance to be confounded by differences in, e.g.,

the principles underlying the way agents learn and decide. Taken

together, these considerations constrain the definition of 0-ToM

agents. This deserves further comments. It seems to us that it

would not make sense to define 0-ToM agents that would be

insensitive to feedback (e.g., payoff). This is because there will

always exist a broad class of social interactions, in the context of

which any such feed-forward system would perform very poorly.

In other terms, feed-forward 0-ToM agents would have no

evolutionary adaptive fitness. Critically, the feedback’s source is

twofold: context (i.e. nature of the interaction -cf. game payoff

table-) and opponent (i.e. behavioural tendencies). This is

important, because there are not many types of agents that would

differ qualitatively in their response to such information. An

example of an agent sensitive to the context but not to her

opponent is the Nash policy. By construction however, the ensuing

k-ToM agents would be Nash players as well, and thus ToM

sophistication would have no adaptive fitness. In contradistinction,

imitative learners are sensitive to their opponent, but not to

context. However, the adaptive fitness of such agents is similar to

feed-forward agents. Yet another possibility is to consider agents

that would respond to an aggregate context-opponent feedback,

namely: reward. This is the essence of genuine reinforcement

learning (RL) agents. Note that, in terms of behavioural

performance, RL agents are comparatively closer to 0-ToM than

to any other agent type we have considered (including Nash

players; cf. Figure 7). In fact, this was expected, since there is a

linear one-to-one mapping between the value of each option and

the opponent’s choice probability. Additionally, k-ToM agents

(with k§2) have a clear tendency to identify RL players as 0-

ToM, at least in a competitive context. This means that we expect

our results to be robust to re-defining 0-ToM agents as RL agents.

Note that any agent that would be differentially sensitive to context

and opponent feedbacks would be formally very similar to our 0-

ToM. Taken together, we believe our results would be very robust

to admissible changes in the definition of 0-ToM agents.

Third, one may invoke another line of work, which consists in

considering that biological costs (such as brain size) induce

additional evolutionary forces that eventually limited our cognitive

skills [37]. The weakness of such studies is the lack of specificity:

how global features such as brain size relate to different cognitive

functions is unclear. In any case, what we have shown is that one

does not have to appeal to biological costs to explain our limited

ToM sophistication. More generally, one could challenge the very

idea that natural selection acted upon ToM sophistication. For

example, a radical non-adaptationist scenario would consider that

such cognitive phenotypes evolved from random genetic drift.

Alternatively, one could argue that ToM sophistication is a by-

product of constraints imposed by other cognitive traits (such

attention or working memory) that were under selective pressure.

Debates about whether or not a given phenotype has been shaped

by natural selection are not uncommon in evolutionary biology (cf.

e.g., [38]). In our context, we would appeal to the importance of

social cognitive skills in shaping humans’ adaptive fitness [7,8].

However, we believe that, if properly extended, our work could

provide a more satisfactory answer to this question. This is because

EGT can be used to predict a specific relationship between

features of the ecological niche (here, we considered the

proportion of cooperative interactions and the typical amount of

learning) and the distribution of ToM sophistication. The key

point is that such features can vary across different species. Thus,

provided one appropriately captures the critical differences

between ecological niches, one could then test the induced

variability in ToM sophistication (across species) against the null.

We will pursue this in subsequent publications.

Last, one could challenge the fact that we have neglected

developmental (and, to a lesser extent maybe, pathological) aspects

of ToM [39]. This is related to the notion of ‘‘proximal

constraints’’ of evolution, which relate to the ability of individuals

to gradually adopt behavioural strategies that have local adaptive

fitness, and are thus positively reinforced by their environment

[40]. Applying the principles of such reinforcement learning

theories of motivation [41] would advocate for considering agents

that could change their ToM sophistication level at will. Here, we

have rather assumed that ToM sophistication is a phenotype that

can hardly be changed or learned over the course of the agent’s life

time. However, another way of looking at ToM phenotypes is in

terms of an informative prior belief on the population profile of

ToM sophistication. Effectively, k-ToM phenotypes can be

thought of as agents with unbounded ToM sophistication, who a

priori believe that their conspecifics’ level of ToM sophistication

cannot exceed k-1. This has two implications: (i) one could relax

this prior and effectively allow agents to adapt their effective ToM

sophistication level, and (ii) one could think of evolution as

selecting a very specific form of prior that defines classes of meta-

Bayesian agents [42].

To conclude, our meta-Bayesian approach unravelled non-

trivial properties of inferential aspects of ToM. In particular, the

informational cost to sophistication is a key determinant of ToM’s

adaptive fitness. Note that this cost might in fact induce strong

evolutionary forces for most cognitive processes that can be viewed

as inferential in nature, as is the case for, e.g., learning or

perception [24,43]. This is because, as any ill-posed problem,

inference heavily relies upon some form of prior information or

belief [44]. Critically, we speculate that the sophistication of such

prior eventually matches the complexity of the agent’s ecological

niche, because of its inevitable evolutionary cost/benefit ratio.

Models and Methods

In this section, we describe our model of theory of mind in

human observers/agents. This model attempts to capture how

agents infer on others beliefs and preferences, given a series of

observed choices. In [26], we exposed a Bayesian solution to the

inverse BDT problem (where BDT stands for ‘‘Bayesian Decision

Theory’’). The inverse BDT problem relates to inferring prior

beliefs and subjective utility from observed decisions. This meta-

bayesian approach enables us to place ToM processes on a solid

quantitative footing, which obeys optimality principles. In brief,

learning rules unfold from information theory. Here, we extend

this approach to account for the fact that agents can differ in terms

of the depth of recursivity of their beliefs (cf. ‘‘cognitive hierarchy’’

[21]).

Cooperative and Competitive (Reciprocal) Social
Interaction
Note that it is the reciprocal nature of social interaction that

induces the potentially infinite recursion of ToM. This is because if

my actions cannot influence your environment, what I believe or

feel is irrelevant to you, i.e. you do not have to go beyond 0-ToM.
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Thus, ToM sophistication levels can only be assessed in the

context of reciprocal interaction, which is why we adopt a game

theoretic formulation of ToM. In its simplest form, a game is

defined in terms of a utility table U aself ,aop
� �

, which yields the

payoff one gets when making decision aself while the other player

chooses aop. Incentives can be arbitrarily chosen to capture

different forms of social exchanges or transactions, which makes

game theory a very general and powerful tool to analyze the

behaviour of people engaged in social interactions [28].

We aim at understanding the respective impact of cooperative

and competitive (reciprocal) social interactions onto the adaptive

fitness of ToM sophistication levels. We thus have to choose

appropriate game-theoretic scenarios that capture these types of

interaction. Critically however, we chose games whose computa-

tional challenge is similar, in the sense that payoff is contingent on

how well players predict their opponent’s behaviour.

An ecologically valid proxy for a competition for resources is the

game ‘‘hide and seek’’ (also named ‘‘matching pennies’’), which

has already been extensively used in experimental assessments of

animal ToM, e.g. food-caching in birds [45]. In evolutionary

terms, the average payoff of phenotypes playing ‘‘hide and seek’’

can be thought of as a proxy for survival success in the context of

competitive social interactions. The version of ‘‘hide and seek’’ we

use is a symmetric zero-sum game, whose outcome table is given in

Table 1 of the main text. For any decision pair a1,a2ð Þ, the gain of

the winner is exactly balanced by the loss of the loser, which makes

‘‘hide and seek’’ the simplest of all conflict games. Here, the

‘‘hider’’ wins when a1=a2 and the ‘‘seeker’’ wins when a1~a2. Its

Nash equilibrium is a mixed strategy with probabilities 1=2 ,1=2ð Þ
for both players. This completely random policy is the best

strategy against itself, but yields an average payoff of zero. In

contradistinction, bilateral deviation from Nash can induce strong

bias in the expected outcomes, whereby a given strategy can be

exploited by the other one.

‘‘Battle of sexes’’ is a cooperation game that emulates a

dilemma, whereby coordination is only achieved at the cost of

one’s subjective preferences [46]. Interestingly, it is known in the

animal literature as ‘‘intralocus sexual conflict’’: it arises when a

trait which is good for the breeding success of one sex is bad for the

other [47]. More generally, the average payoff of phenotypes

playing ‘‘battle of sexes’’ can be thought of as a proxy for mating

success through (costly) cooperation. We will use a symmetric

version of it, whose outcome table is also given in Table 1 of the

main text. Here, players are most rewarded for coordinated

behaviour (i.e., a1~a2), whereas they are punished when choose

different options (i.e. a1=a2). Note that, in contradistinction with

‘‘hide and seek’’, payoffs are unbalanced (chance: E U½ �~1=8 ).

Essentially, the game payoffs are such that: (i) if one knew what the

other player would do, one would choose to cooperate, and (ii) if

one had no idea what the other player would do, one would

choose the option that maximizes one’s own preferences. There

are two pure Nash equilibria, i.e. either both players choose

a1~a2~1, or both players choose a1~a2~0. However, in both

situations, one player does better than the other one (unfair

outcomes). In addition, there is one Nash mixed strategy, with

probabilities 1=3 ,2=3ð Þ for player 1 and 2=3 ,1=3ð Þ for player 2.

Meta-Bayesian Agents
According to Bayesian decision theory, agents aim at maximis-

ing expected payoff V~E U aself ,aop
� �� �

, where the expectation is

defined in relation to the agent’s uncertain predictions about his

opponent’s next move (see below). Importantly, this implies that

the form of the decision policy is the same for all agents,

irrespective of their ToM level. In this work, we consider that

agent’s choices may exhibit small deviations from the optimal

decision rule, i.e. we assume agents employ the so-called

‘‘softmax’’ probabilistic policy:

P aself~1
� �

~ s
V1{V0

b

	 


Vi ~ pop U aself ~ i,aop ~ 1
� �

z 1{ pop
� �

U aself ~ i,aop ~ 0
� �

ð1Þ

where P aself~1
� �

is the probability that the agent chooses the

action aself~1, s is the standard sigmoid function and b is the

exploration temperature that controls the magnitude of behav-

ioural noise. Equation 1 simply says that the probability of

choosing the action aself~i increases with its expected payoff Vi.

Here, the critical variable is pop: the probability that the opponent

will choose the action aop~1.

The repeated observation of his opponent’s behaviour aop gives

the agent the opportunity to learn this prediction. Theory of Mind

comes into play when agents consider that the opponent’s

behavioural tendency pop is motivated by his hidden beliefs and

desires. More precisely, our ‘‘social Bayesian brain’’ hypothesis

implies that ToM agents consider that the opponent is himself a

Bayesian agent, whose decision policy pop~P aop~1ð Þ is formally

similar to Equation 1. In this situation, one has to track one’s

opponent’s prediction pself about one’s own actions. This makes

ToM agents meta-Bayesian agents [26], i.e. Bayesian observers of

Bayesian agents. In line with the notion of cognitive hierarchy [21],

this meta-Bayesian inference is recursive (‘‘I think that you think

that I think…’’). The recursion depth induces different ToM levels,

which differ in how they update their subjective prediction pop.

In analogy to Yoshida et al. [22], we thus define ToM levels (k-

ToM agents) in terms of the way they learn from their opponent’s

behaviour, starting with 0-ToM. By convention, a 0-ToM agent

does not attribute mental states to his opponent. More precisely, 0-

ToM agents assume that their opponents choose the action aop~1

with probability pop~s x0t
� �

, where the log-odds x0t varies across

trials t with a certain volatility s0 (and s is the sigmoid function).

Observing his opponent’s choices gives 0-ToM information about

the hidden state x0, whose estimate is updated trial after trial.

Under these premises, one can derive 0-ToM’s Bayesian learning

rule, in terms of the change in his prediction about his opponent’s

next move (see Text S1):

p
op
t &s m0t

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1zS0
t 3=p

2

q

	 


m0t&m0t{1zS0
t a

op
t {s m0t{1

� �� �

S0
t&

1
1

S0
t{1

zs0
zs m0t{1

� �

1{s m0t{1

� �� �

ð2Þ

where m0t (resp. S0
t ) is the mean (resp. the variance) of 0-ToM’s

posterior distribution p x0 aopj
� �

on the log-odds x0, having

observed his opponent’s behaviour up to trial t. In other words,

m0t is 0-ToM’s estimate of the log-odds at trial t, and S0
t is his

subjective uncertainty about it. Inserting p
op
t into Equation 1 now

yields 0-ToM’s decision rule. Note that the term a
op
t {s m0t{1

� �

can

be thought of as a prediction error, whose impact on learning

accounts for changes in the subjective uncertainty S0. Here, the
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effective learning rate is controlled by the volatility s0, which

captures 0-ToM’s priors (see [48] for a hierarchical generalization,

where s0 is learned as well). At the limit s0?0, Equation 2

converges towards the opponent’s choice frequency and Equations

1–2 essentially reproduce ‘‘fictitious play’’ strategies [49].

Taken together, Equations 1–2 describe how 0-ToM agents

learn and decide, trial by trial. This is the starting point for a 1-

ToM agent, who considers that she is facing a 0-ToM agent. This

means that 1-ToM has to predict 0-ToM’s next move, given his

beliefs and the choices’ payoffs. The issue here is that 0-ToM’s

priors (as well as his exploration temperature) are unknown to 1-

ToM and have to be learned, through their non-trivial effect on 0-

ToM’s choices. More precisely, 1-ToM agents assume that 0-ToM

chooses the action aop~1 with probability pop~s0v1 x1
� �

, where

the hidden states x1 lumps s0 and b together and the mapping v1

is derived from inserting Equation 2 into Equation 1. Similarly to

0-ToM agents, 1-ToM assume that the hidden states x1t vary

across trials with a certain volatility s1, which yields a meta-

Bayesian learning rule similar in form to Equation 2 (see below).

More generally, k-ToM agents (k§2) consider that their

opponent is a k-ToM agent with a lower ToM sophistication

level (i.e.: kvk). Importantly, the sophistication level k of k-

ToM’s opponent has to be learned, in addition to the hidden states

xkt that control the opponent’s learning and decision making. The

difficulty for a k-ToM agent is that she needs to consider different

scenarios: each of her opponent’s possible sophistication level k

yields a specific probability pop,k~s0vk xk
� �

that she will choose

action aop~1.

We will now show how to derive the learning rule of a k-ToM

(meta-Bayesian) observer, who takes the intentional stance when

interpreting the behaviour of his k-ToM opponent. Below, aself

(resp. aop) denotes k-ToM’s action (resp. his k-ToM opponent’s

action). Let wkt be the set of sufficient statistics that parameterize

the (probabilistic) belief of a k-ToM observer at trial t of the

repeated game. Typically, the states wkt include the first- and

second-order moments of the conditional probability density on

the uncertain (hidden) state of his opponent (e.g., w0t~ m0t ,S
0
t


 �

in

Equation 2 above). As k-ToM learns, her belief evolves from trial

to trial according to Bayes’ rule, which can be summarized as the

change in the states wkt [26]:

wkt~f k wkt{1,at,x
k

� �

ð3Þ

where at are the players’ action at trial t and xk is a set of

parameters that encode k-ToM’s priors. For example, the belief

evolution function f 0 of 0-ToM is given in Equation 2. Both the

derivation and the explicit form of the belief evolution function f

will become clearer below. At this point, suffices to say that the

dynamics of belief sufficient statistics wkt is controlled by k-ToM’s

priors xk. Recall that k-ToM’s belief serves to make a prediction

pself~P aself~1 wkt
�

�

� �

about her own move a
self
tz1 at the next trial.

This then enters Equation 1 to yield k-ToM’s softmax decision

policy pop,k xk
� �

~P aop~1 wkt xk
� ��

�

� �

, where pop,k xk
� �

depends

upon k-ToM’s priors xk through her posterior belief’s sufficient

statistics wkt . Let us first assume that k-ToM knows his opponent’s

sophistication level k, e.g. k~lvk. Taken together, Equations 1

and 3 then induce the following (Bernouilli) likelihood function for

k-ToM’s actions sequence, from the perspective of k-ToM:

p a
op
1?t k~l,xl

�

�

� �

~P
t0~1

t
pop,l xlt

� �a
op
t 1{pop,l xlt

� �� �1{a
op
t ð4Þ

where where a1?t stands for all actions up to trial t, and pop,l xl
� �

is

derives from inserting Equation 3 into Equation 1. Equation 4

measures how likely is any particular history of choices up to trial

t, given k-ToM’s (unknown) properties xk, having fixed her

sophistication level to k~l. In fact, k-ToM does not know the

level k of her opponent. Without loss of generality, the complete

likelihood of the actions sequence of k-ToM’s opponent can thus

be written as the following mixture:

p a
op
1?t x

0:k{1,k,mk

�

�

� �

~P
l~1

k

p a
op
1?t x

l ,k~l
�

�

� �fl kð Þ
~

Pk
l~0P

t0~1

t

pop,l xlt
� �a

op
t 1{ pop,l xk

0

t

� �� �1{a
op
t

� �fl kð Þ
ð5Þ

where x0:k{1 lumps the volatility and temperature of all possible

sophistication levels of k-ToM’s opponent, and f kð Þ is the

indicator vector of the opponent’s ToM level k (i.e. f kð Þ is a

k|1 null vector, except fl kð Þ~1iifk~l). Note that k-ToM’s

generative model mk includes the above likelihood function, as

well as priors p x0:k{1,k mkj
� �

on his opponent’s ToM sophistica-

tion level k and the observation/evolution parameters x0:k{1 for

all levels kvk. At each trial t, these likelihood and priors induce a

free energy bound Fk
t on k-ToM’s (log-) evidence ln p a

op
1:t mkj

� �

of

his opponent’s behaviour:

Fk
t ~Sln p a

op
1?t x

0:k{1,k,mk

�

�

� �

p x0:k{1,k mkj
� �

qt x0:k{1,kð Þ
T

~Sln p a
op
t x0:k{1,k,mk

�

�

� �

qt{1 x0:k{1,k
� �

qt x0:k{1,kð Þ
T zcst

ð6Þ

where the expectation is taken under qt h0:k{1,k
� �

, the conditional

density on k and x0:k{1 at trial t, which captures k-ToM’s

posterior belief on her opponent’s properties. The second line of

Equation 6 derives from the factorization of the likelihood across

time or trials (cf. Equation 4). Variational Bayesian update rules

follow from optimizing the free energy with respect to the

conditional density qt [50]. Without any additional constraint, this

yields Bayes rule, i.e.:

d

dqt
Fk
t ~0 [

qt x0:k{1,k
� �

~p x0:k{1,k a
op
1?t,mk

�

�

� �

!P
l~1

k
p a

op
1?t x

l ,k~l
�

�

� �fl kð Þ
qt{1 x0:k{1,k

� �

ð7Þ

Equation 7 describes Bayesian (on line) recognition or learning, i.e.

how the previous belief qt{1 x0:k{1,k
� �

at trial t{1 is updated to

yield qt x0:k{1,k
� �

, after having observed the opponent’s choice

a
op
t at trial t. Equation 7 obtains because maximizing the free

energy with respect to qt indirectly minimizes the Kullback-Leibler

divergence between qt and the posterior density. This means that,

without loss of generality, we can rewrite Bayes’ rule in terms of

the trial-to-trial evolution of the sufficient statistics wkt of the time-

dependent conditional density qt [26]:

Evolution of Theory of Mind

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e87619



wkt~f k qkt{1,a
op
t ,xk

� �

f k : wkt{1? argmax
qkt

Fk
t

ð8Þ

where we have introduced xk, the set of variables that

parameterize e.g., k-ToM’s prior belief p x0:k{1,k mkj
� �

on his

opponent (see Appendix 1). In Equation 8, the form of the

evolution function f k is determined by the Free Energy Fk
t , which

derives from k-ToM’s generative model mk. The appeal of this

variational formulation is that, under some simplifying assumption

about the form of the approximate posterior [51], Bayesian

learning becomes analytic. In brief, we have shown how to derive

the learning rule of any ToM sophistication level recursively, i.e.

from that of the level above. Except for 0-ToM agents, the belief

evolution function has the following form (Text S1 for derivation):

f k wkt ,a
op
t ,hk1

� �

~

mktz1

Vec Sk
tz1

� �

lktz1

2

6

6

4

3

7

7

5

Sk
tz1~ WT

t Lt I{C tð ÞC tWtz Sk
tzxk1I

� �{1
h i

{1

mktz1~mktzSk
tz1 WtLt a

op
t {G mkt

� �� �

lktz1~
1

~EET
tz1l

k
t

Diag ~EEtz1

� �

lkt

ð9Þ

where mkt ,S
k
t ,l

k
t


 �

~wkt are the sufficient statistics of the time-

dependent conditional density qt,

G x0:k{1
� �

~ s0v0 x0
� �

� � � s0vk{1 xk{1
� �� �T

is a k|1 vector

composed of the sigmoid observation mappings for each potential

ToM sophistication level of k-ToM’s opponent (cf. Equation 3),

C ~Diag Gð Þ, L~Diag lð Þ, W and ~EE are analytic (matrix and

vector) functions of the two moments mk and Sk. More precisely,

mkt and Sk
t are the first- and second-order moments of the

probabilistic belief on x0:k{1, whereas lkt is the first-order moment

of the probabilistic belief on k (i.e.: lk,lt ~P k~l a
op
1?t,mk

�

�

� �

).

Although Equation 9 is slightly more complex than Equation 2,

note that learning is still driven by a simple prediction error term.

More precisely, one can see that k-ToM’s prediction error

a
op
t {G mkt

� �

drives the change in her belief sufficient statistics

wkt . Critically however, this prediction error is weighted by her

current belief about her opponent’s sophistication level. Equation

9 is but a compact formulation of how the summary statistics (mk,

Sk and lk) of k-ToM’s posterior distribution p xk,k aopj
� �

evolve

from trial to trial. Both Equations 2 and 9 have been derived using

a variational approach to approximate Bayesian inference [51–

52]. We refer the interested reader to the Text S1.

Equation 3 concludes the exposition of our meta-bayesian

model of ToM agents. In brief, we have defined ToM

sophistication levels recursively, in terms of their respective (social)

learning rule. A critical feature of this meta-Bayesian model is that

the complexity of the scenarios that a k-ToM agent uses to learn

increases with k. This means that the relative performance of

different ToM sophistication levels playing against each other is

non-trivial and cannot be evaluated without resorting to compu-

tational simulations.

The Adaptive Fitness of ToM Sophistication Levels
Recall that the adaptive fitness results from the relative

behavioural performance of competing phenotypes, which proxies

their ability to survive and reproduce [53]. Critically, we view

ToM levels as social learning phenotypes that compete with each

other (in a Darwinian sense). This differs from standard EGT

models, in which phenotypes are defined in terms of their decision

policy or strategy (e.g. playing ‘‘tit for tat’’ in the prisoner’s

dilemma, [30,54]. However, this does not invalidate the use of

standard EGT replicator dynamics. These describe the evolution

of the frequency distribution of competing phenotypes over

evolutionary time, given how well they perform when interacting

with each other [55]. Let Qcomp=coop tð Þ be the K|K game-

dependent expected payoff matrix after t repetitions, where K is

the maximum ToM sophistication level within the (human)

population. The matrix element Q
comp=coop
k,k0 tð Þ is the expected

payoff of a k-ToM agent playing against a k0-ToM agent. It is

obtained by first integrating the system of coupled ToM agents, i.e.

iterating forward in time the learning (Equation 2 or 3) and

decision (Equation 1) rules up to trial t, and then measuring the

accumulated payoff for each player. The expected payoff is then

defined as the Monte-Carlo average of the accumulated payoff

over multiple repetitions of the iterated game, where games may

yield different outcomes due to the probabilistic nature of the

decision policy. On average (across games), the payoff matrix that

summarizes the pairwise interaction of individuals is:
�QQ t,vð Þ~v Qcoop tð Þz 1{vð Þ Qcomp tð Þ, where t is the number

of game repetitions and v is the probability, for any pair of agents,

to engage in a cooperative social interaction. We inserted this

average payoff matrix in replicator dynamics to derive the ToM

evolutionary stable states. We refer the interested reader to Text

S1 for details regarding our implementation of EGT.

Supporting Information

Text S1 This note provides technical details about the derivation

of the learning rule of ToM agents and our application of

Evolutionary Game Theory (EGT) to ToM sophistication

phenotypes.
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