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Abstract. When people engage in social interactions, they often rely on their theory of mind, their
ability to reason about unobservable mental content of others such as beliefs, goals, and intentions.
This ability allows them to both understand why others behave the way they do as well as predict
future behaviour. People can also make use of higher-order theory of mind by applying theory of mind
recursively, and reason about the way others make use of theory of mind such as in the sentence “Alice
believes that Bob does not know about the surprise party”. In this paper, we use agent-based models
to describe human behaviour in an n-player extension of rock-paper-scissors called the Mod game. In
previous work, we have shown how in similar competitive settings, the ability to make use of higher
orders of theory of mind can be beneficial. We find that characteristic cyclic behaviour in the choices
of participants that contradicts equilibrium predictions from classical game theory can be explained
through the application of higher orders of theory of mind. Our results suggest that participants engage
in higher orders of theory of mind reasoning in repeated play of the Mod game than previously reported
in normal-form games and in repeated rock-paper-scissors games.

1 Introduction

People often make use of theory of mind [23] to explain and predict the behaviour of others. By reasoning
explicitly about unobservable mental content such as beliefs, goals, and intentions, people are able to, for
example, distinguish accidental from intentional behaviour. People can also make use of higher-order theory
of mind, by using their own theory of mind ability to reason about the way others may use of their theory
of mind. Second-order theory of mind allows people to form nested beliefs such as “Alice believes that Bob
does not know about the surprise party”, and use these beliefs to understand and predict the behaviour of
Alice.

Empirical evidence shows that participants can make use of higher-order (i.e. at least second-order)
theory of mind in tasks that require explicit reasoning about belief attributions of others [1, 22] as well as
in strategic games [13, 18, 19]. However, there are limits to the depth of recursive theory of mind reasoning
that people use [16, 21]. In particular, people are in general unable to explicitly use the infinite recursion
needed to reason about common knowledge [11, 27]. As a result, people often fail to behave as predicted by
equilibrium predictions of classical game theory.

In previous work, we presented an agent-based model of theory of mind [32] to show that agents benefit
from the ability to make use of higher-order theory of mind in certain competitive settings. This model
is closely related to hierarchical models of iterated reasoning in behavioural game theory, such as level-k
reasoning [6, 25], cognitive hierarchies [5], quantal response equilibrium [17], and noisy introspection models
[12]. In each of these models, the level of sophistication of agents is measured by the maximum number
of steps of iterated reasoning the agent is capable of considering. In terms of theory of mind, one step of
iterated reasoning approximately corresponds to zero-order theory of mind. Camerer at al. [5] estimate the
distribution of the level of sophistication used by human participants over a range of normal-form games such
as the p-beauty contest and the traveler’s dilemma, and find an average of 1.5 steps of iterated reasoning.
Part of the participants were found to use more than two steps of iterated reasoning, which suggests these
participants may have been relying on second-order theory of mind. However, only few players were found
to be well-described as higher-level agents [33].

Our model of theory of mind agents differs from previous models in that the behaviour of our agents
changes based on the observed behaviour of others. Previous models typically assume that the most basic



Fig. 1: Histograms over 24 choices, rates, and accelerations of human behaviour in the Mod game. In each
graph, the blue curve shows the expected results from random behaviour, while the red curve shows the
participant behaviour (reconstructed from [9]).

agent responds optimally under the assumption that other agents act according to a known non-strategic
policy [5, 6, 12, 17, 25, 34]. Instead, our zero-order theory of mind agents attempt to learn the behaviour
of others in repeated games through heuristics and associative learning. Our agent model has shown that
in competitive settings such as repeated rock-paper-scissors games, second-order theory of mind can benefit
agents greatly [32], while human behaviour in normal-form games suggests lower levels of recursive reasoning
[5]. In the current paper, to determine whether human participants make use of higher-order theory of mind
in these competitive settings, we describe human behaviour in the Mod game [10], an n-player extension
of rock-paper-scissors, using our agent model. By comparing the behaviour of theory of mind agents with
participant data from the Mod game, we can determine to what extent higher orders of theory of mind can
account for the observed patterns of human behaviour.

In Section 2, we present a detailed description of the Mod game, as well as the way human participants
play the game. Section 3 shows how theory of mind agents are implemented in this setting and how these
agents play the Mod game. We simulate interactions between these theory of mind agents and compare the
results to the behaviour of human participants. The results of these experiments are outlined in Section 4.
Finally, Section 5 provides a discussion of the results as well as directions for future research.

2 Mod Game

The Mod game is an n-player generalization of rock-paper-scissors, introduced by Frey and Goldstone [10]
as a way to reveal patterns in individual iterated reasoning strategies. In the Mod game, n participants
simultaneously choose a number in the range {1, . . . ,m}, for both n and m greater than one. Participants
gain one point for every other participant that has chosen the number that is exactly one lower than their
own choice. For example, a participant that has chosen the number 4 gains a point for every participant that
has chosen number 3. The only exception to this rule is that participants that have chosen number 1 gain
one point for every participant that has chosen number m. The Mod game therefore has a structure similar
to rock-paper-scissors, in which each action is dominated by some other action. In particular, the Mod game
is a non-zero-sum version of rock-paper-scissors for n = 2 and m = 3.

The Mod game has a mixed-strategy Nash equilibrium in which each action is chosen with equal proba-
bility. When all players play according to this strategy, none of the players has an incentive to change his or
her strategy. However, if a player deviates from the randomizing strategy, other players can take advantage
from this regularity by switching their strategy as well. Interestingly, human participants are generally poor
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at generating random sequences [14, 24, 28]. This suggests that in groups of people, individuals can increase
their score if they deviate from playing the Nash equilibrium strategy.

Indeed, participant behaviour in repeated Mod games deviates from the Nash equilibrium, as shown
in Figure 1 (reconstructed from [9]). The figure shows the aggregate participant data (red curve) and the
idealized randomizing behaviour (blue curve) over 100 rounds of play and m = 24. Participant choices
appear to be approximately random, with a slight bias towards 24. However, participant rates, defined as
the difference in choice between two subsequent rounds, shows a clear deviation from the Nash equilibrium
in Figure 1. Participants are less likely to select numbers that are 7 to 21 ahead of their previous choice.
Instead, they are most likely to choose a number that is 0 to 4 higher than their previous choice. Participant
acceleration, which is defined as the change in participant rate, shows a similar effect. Figure 1 shows that
participants tend to vary little in their rate. A participant who chose a number in the last round that was 2
higher than the number in the round before that is mostly likely to choose the number that is 2 higher than
his choice in the previous round. However, Figure 1 shows that participants do vary their acceleration by a
small amount.

Interestingly, this effect is not due to participants’ poor performance on choosing random actions. When
participants are given the option to let the computer select a randomly generated action, this option is used
little [9]. This suggests that participants choose their actions based on their predictions of the behaviour of
others rather than believing that the behaviour of others is unpredictable.

3 Theory of mind agents in the Mod game

In this section, we describe theory of mind agents that are able to play the Mid game outlined in Section
2. These agents are inspired by the theory of mind agents that we introduced in [32] to investigate the
effectiveness of theory of mind in competitive settings. They engage in simulation-theory of mind [7, 20, 15]
by taking the perspective of their opponents. An agent determines what he would do himself if he were facing
the situation of his opponent, and attributes this thought process to his opponent to predict her behaviour.
Each additional order of theory of mind allows the agent to generate an additional hypothesis about the way
an opponent is playing the game. The task of a theory of mind agent is then to determine which hypothesis
most accurately predicts the behaviour of his opponent.

The following subsections describe how agents of different orders of theory of mind play the n-player Mod
Game [10].

3.1 Zero-order theory of mind

A zero-order theory of mind (ToM0) agent has no theory of mind at all, and is therefore unable to attribute
mental content to others. In particular, a ToM0 agent cannot form the belief that his opponents are trying
to obtain a high score. Instead, the ToM0 agent forms zero-order beliefs about the collective actions of the
agents playing the game. For each number, the ToM0 agent specifies what he believes to be the likelihood
that most players will select to play that number. Given these beliefs, the ToM0 agent can select the number
that he expects to maximize his score. For example, if a ToM0 agent strongly believes that number 4 will be
selected by most players, the agent should choose to play number 5 himself.

After every round, the ToM0 agent updates his zero-order beliefs to reflect the actual outcome, such
that the agent’s new beliefs are constructed through a linear combination of his original beliefs and the
newly observed situation. An agent-specific learning speed λ ∈ [0, 1] determines the relative influence of the
observation on the agent’s beliefs. A ToM0 agent with zero learning speed (λ = 0) does not update his beliefs
at all. Such an agent selects the same action in every round. A ToM1 agent with the maximal learning speed
(λ = 1), on the other hand, completely replaces his zero-order beliefs after each observation, and forgets all
information obtained from previous rounds. Such an agent considers the observed actions of the last round
as the best predictor for the future.

The ToM0 agent we describe here holds a simple model of agent behaviour. Although agents could model
the behaviour of each individual opponent separately, our ToM0 agent models the collective behaviour of
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others instead1. The ToM0 agents also do not have any explicit memory. Although information obtained in
the past is reflected in the agent’s zero-order beliefs, the agent does not have an explicit representation of
the past.

3.2 First-order theory of mind

Unlike the ToM0 agent, a first-order theory of mind (ToM1) agent reasons about the other’s goals and
therefore believes that his opponents may be trying to maximize their score as well. To predict the behaviour
of his opponents, the ToM1 agent attributes his own thought process to his opponents. Like the ToM0 agent,
the ToM1 agent models a modal opponent rather than having a separate mental model for each individual
opponent.

Following [32], the ToM1 agent does not attempt to model the learning speed λ for his first-order model of
opponent behaviour. Rather, the ToM1 agent assumes that the modal opponent has the same learning speed
as he has himself. This means that after a sufficient number of rounds, the ToM1 agent predicts that most of
the his opponents will play the action suggested by the agent’s zero-order theory of mind. For example, for
a ToM1 agent that has strong zero-order beliefs that number 4 will be selected by most players, the agent’s
zero-order response would be to play number 5. Using first-order theory of mind, the ToM1 agent attributes
this though process to his opponents, and predicts that most of them will play number 5. The ToM1 agent’s
first-order response would therefore be to play number 6.

Although the ToM1 agent models his opponents as being able to use zero-order theory of mind, agents
in our setup do not know the extent of the abilities of their opponents for certain. Rather, a ToM1 agent has
two models of opponent behaviour, one based on zero-order theory of mind and one on first-order theory of
mind. Through repeated interaction, a ToM1 agent learns which of his models best describes the behaviour
of his opponents. Based on this information, a ToM1 agent may therefore choose to play as if he were a ToM0

agent, and ignore the predictions of his first-order theory of mind.

3.3 Higher orders of theory of mind

For each additional order of theory of mind k, an agent generates an additional prediction of opponent
behaviour by attributing his own (k − 1)st-order theory of mind thought process to his opponents. For
example, a ToM2 agent models the modal opponent as a ToM1 agent, in addition to his zero-order and
first-order theory of mind models of the modal opponent. As a result, a ToMk agent has k + 1 hypotheses
for the action that will be chosen by most of his opponents with corresponding predictions. Based on the
accuracy of these predictions, the ToMk agent can therefore choose to behave according to k+ 1 patterns of
behaviour.

Our agent model shows that in competitive settings such as repeated rock-paper-scissors games, second-
order theory of mind can benefit agents greatly [32], while the additional benefit for fourth-order and even
higher orders of theory of mind is limited [32]. In this paper, we therefore do not consider agents that are
capable of theory of mind orders beyond the third.

4 Simulation results

We simulate interactions of groups of the theory of mind agents of Section 3 in the Mod Game described in
Section 2. To recreate the setting in [9, 10], agents repeatedly played the Mod Game for 100 rounds. In each
condition, all agents had the same order of theory of mind, and were assigned randomized learning speeds.
In [9], participants had the option to let the computer generate a random choice rather than to choose
themselves, which was used in 9% of all choices. To simulate this, each action was assigned a 9% probability
of being replaced with a randomly chosen action. That is, each agent had a 9% probability of selecting a
random action rather than the one he believes to be the best action.
1 Empirical evidence from weak-link coordination games suggests that participants only consider part of the data

[8, 26]. However, evidence to the contrary also exists (see for example [3, 4]).
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(a) Participant data (reconstructed from [10])

(b) Group of five ToM0 agents

(c) Group of five ToM1 agents

Fig. 2: Histograms over 24 choices, rates, and accelerations. In each graph, the blue curve shows the expected
results from random behaviour, while the red curve shows the agent or participant behaviour.
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(a) Group of five ToM2 agents

(b) Group of five ToM3 agents

Fig. 3: Histograms over 24 choices, rates, and accelerations. In each graph, the blue curve shows the expected
results from random behaviour, while the red curve shows the agent or participant behaviour.

Figures 2 and 3 show histograms of the simulations that we have run with groups of agents that share
the same ability to make use of theory of mind, as well as data from human participants reported in [9].
In each panel, the red curve shows the data obtained from participants or agent simulations, while the blue
curve shows the histogram corresponding to the unique Nash equilibrium.

The first panel of each triple shows a histogram over the possible choices, aggregated over 100 rounds of
play. Even though the theory of mind agents only have a 9% probability of choosing randomly, their choices
superficially appear to resemble a random distribution, irrespective of the order of theory of mind of the
agents.

The second panel of each triple shows the rate at which agents and participants change their choice. That
is, these panels show the first difference in the choice of the participants and agents. The third panel shows
the acceleration of agents and participants, which is the first difference in the rate of change of the choice of
agents and participants.

Figure 2 shows that although ToM0 and ToM1 agents superficially appear to make random choices, these
agents select their choices in a predictable pattern. Figure 2b shows that ToM0 agents typically select the
number that is one higher than the number that was chosen the most often in the previous round. That is,
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they select the number that would have won in the previous game. Since each ToM0 agent acts the same
way, ToM0 agents typically have a rate of 1 and an acceleration of 0.

Figure 2c shows that ToM1 agents display more variation in their behaviour. A ToM1 agent typically
selects the number that is either one or two higher than the number that was chosen most often in the
previous round. The third panel of Figure 2c shows that, unlike ToM0 agents, ToM1 agents do not have
zero acceleration. Rather, ToM1 agents switch between choosing the number that would have won in the
previous game and the number that is one higher. Although the rate data of ToM1 agents fit participant
data in Figure 2a better than ToM0 agent data, acceleration data from ToM1 agents differ from participant
data. Whereas participants are most likely to keep their rate constant, ToM1 agents are less likely to do so.
Instead, ToM1 agents are more likely to alternate between increasing and decreasing their rate.

For increasingly higher orders of theory of mind, agent behaviour shows increasingly more variation.
Although the simplified agent architecture does not reach the variability seen in participant data, results
from the higher-order theory of mind agent simulations show some interesting similarities to participant
data. Similar to participants, higher-order theory of mind agents typically select numbers that are a little
higher than the one they chose in the previous round. More precisely, ToM2 agents tend to select a number
that is up to 3 higher than their previous choice, while ToM3 agents are also likely to select a number that
is 4 higher than their previous choice. Note that this is true even though agents cannot remember their
previous choices. Also, acceleration data from participants more closely resembles the acceleration data from
higher-order theory of mind agents than that of ToM0 and ToM1 agents. Like participants, ToM2 agents
and ToM3 agents display variation in their acceleration, but they are most likely to keep their rate constant.
Interestingly, the higher-order agents also show the average negative acceleration reported in [9].

Our results show that the behaviour of theory of mind agents displays some interesting similarities to the
behaviour of human participants in repeated Mod games. Moreover, human behaviour in the Mod game is
closer to the behaviour of agents that make use of higher-order theory of mind than that of agents that are
limited to zero-order or first-order theory of mind.

5 Discussion

Experimental studies show that people make use of higher-order theory of mind. In previous work, we have
shown that in certain settings, agents can benefit from using higher orders of theory of mind. In cooperative
settings, for example, first-order and second-order theory of mind can help to establish cooperation faster [30]
even when a cooperative solution can be maintained without the use of theory of mind, while higher-order
theory of mind can also provide an agent with a competitive advantage over others [32]. In this paper, we
have compared these theory of mind agents with human behaviour in repeated play of the Mod game [10].

The Mod game has a mixed-strategy Nash equilibrium in which each action is played with equal probabil-
ity. Contrary to predictions of classical game theory, participants do not appear to randomize their decision
in every game. Rather, participant choices show cycles of varying speed [10]. Interestingly, our simulations
with groups of theory of mind agents show that this kind of behaviour is a closer match to the behaviour of
a group of agents capable of at least second-order theory of mind than to the behaviour of a group of agents
that is more limited in their theory of mind abilities.

In previous work, the average depth of reasoning used by humans over a range of games was determined
to be 1.5 steps [5], which corresponds approximately to first-order theory of mind. A recent study into
human behaviour in repeated rock-paper-scissors games suggests that people similarly reason at low orders
of theory of mind [2]. However, whereas participants in previous studies played unrepeated games or games
that were repeated three times, participants played more repetitions in the Mod game. Our results suggest
that over repeated plays of competitive games such as the Mod game, participants may increase their depth
of reasoning and make use of higher orders of theory of mind.

For competitive settings such as the Mod game, our agent model suggests that reasoning at higher orders
of theory of mind can benefit agents up to a certain point [32]. In particular, we found no advantage for
the use of fourth-order theory of mind. Simulations in mixed-motive settings, in which both cooperative
and competitive goals play a role, suggest that theory of mind also helps to stabilize mutually beneficial

7



interactions [31]. In contrast to strictly competitive settings, reasoning using fourth-order theory of mind
may be beneficial in negotiations [29]. It would be interesting to investigate whether human participants are
capable of taking advantage of this benefit.
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