R. B. White, R. J. Goldston, K. McGuire

$$
\begin{gathered}
\text { A. H. Bonzer, D. A. Monticello, and w. Park } \\
\text { Plasma Physics Lahoratory, Princeton University } \\
\text { P+O, Boy } 451 \text {, Princeton, New Jersey n8544 } \\
\text { Afril, } 1983
\end{gathered}
$$

ABSTRACT

Large-amplitude rotating maqnetohydrodynamic modes have been ohserved to
induce significant hiqh-energ-beam particle loss during hiqh-power
perpendicular neutral-beam injection on PDX. A Hamiltonian formalism for
drift-orbit trajectories in the presence of such modes is used to study
induced particle loss analytically and numerically. Results are in qood
aqreement with experiment.

DISCLAIMER

This report was prepared as an account of work sponsered by an agency of the United Statos Goverament. Neither the United States Govermment nor any agency therenf, nor any of their employees, makes any warranty, express of implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefu!ness of any information, apparatus, product, or process discleser, or represents that its use would ast infringe privatcly ownod rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not aecessarily constitute or imply its endorsement, recommendation, or favoring by the United Stater Government or any ageney thereol. The views and epinions of authors expressad hercin do nol necessarily state or relect these of the United States Government or any agency therea?,

I. INTRODICTION

Recent results from pDX with near perpenilicular high power neutral beam injection ${ }^{\prime}$ indicate that a loss of fast ions takes place when large amplitude hiqh β maqnetohydrodynamic (MHD) activity is observed. The MHD activity observed is a more with poloidal and toroidal mote numbers $m / n=1 / 1$ in the plasma core with $m \geq 2$ sbserver on Mirnov coils inside the vacuum vessel. The Mirnov coils exhihit series of oscillations referred to as "fishhones." These modes are observed to rotate toqether toroidally at a rate approximately equal to the toroidal precession rate of the injected beam particles. Moderatp amplitude fishbone oscillations cause bursts of greatly ennancen, near perpendicular, beam-charqe exchanqe loss in the enerqy ranqe from half the injection energy up to the injection value. At higher ascillation amplitudes losses of both low energy thermal ions and heam particles with enprifes well $a \quad \therefore$ the infection energy are observed.

In this paper we examine mechanisms for induces particie lnss due to rotating MHD modes. In Sec. II the properties and simulation of the fishbone are discussed, and the means by which particles can be ejected is descrined qualitatively. In Sec, III we review the Mamiltonian formalation of cuidint center drifts which we use in our analysis. In Sec. IV the Hamiltonian formalism and Monte Carlo simulations are used to illustrate analytically and numerically the induced particle loss and mode-particle energy transfer durinq moderate amplitude fishbone oscillations.

Results and implications are summarized in the concluding Sec. V.

II. FISHBONES

The MHD activity of $P D X$ high β discharqes $(\beta$ is the ratio of plasma pressure to magnetic pressure) has been studied using a three-dimensional,
high β resistive code HIB. 2.3 This is an initial value code, finite differencer in minor radius and Fourier decomposed in poloidal angle and toroidal angle ϕ. The code models PDX as a large aspect ratio device with fir O(a/R) or smaller. The plasma is assumed to be an incompressible maqnetohydrodynamic fluid with scalar resistivity. Diaqnostics simulated in the code include magnetic loop siqnals and soft x-ray siqnals. The vacuum is modeled by using a highly resistive zero heta plasma.

An initial equilibrium with pressure and current density proficos rorresponding to those prevailing during a discharge is used, along with ir linearly unstahle eiqenmode which is predominantly $m=1$, $n=1$. Nonliqear development of this eiqenmode is follawed until the calculater amplitude of the Mirnov coil (maqnetic loop) simnals reaches the same level as is found in the experiment. The numerically qenerater wave forms of the Mirnov lonp signals and soft. x-ray siqnals aqree well with the experimental measurements. Mode frequency is not predicted hy this code; end the phase relations of the various modes are only approximate. piasma rotition, if present, can induce a coupling which would modify the phase relations of the modes from those preficted by our analysis. However, the shape of the simulated Mirnov and scft x-ray siqnals agrees well with experiment, indicating correct phase :e.stions $a=$ least for the lnrge amplitute modes. Typically, it is found that the mode amplitudes decrease rapidly witt toroifal mode number n.

Previous work with finite B MHD codes ${ }^{4}$ and comparison of the MHD aralysis with experiment indicates that the mode, identified as an internal kink, is very near marqinal stability. In fact, within the accuracy of the determinations of the pressure and current profiles, it is not known whether the mode is unstable. Thus neither the qrowth rate of the mone nor its

5. The particles are ejected in a coroidally narrow beacon having a definite phase relation with respect to the rotating mode.
6. At high amplitudes losses of low enerqy thermal ions are also observer, as well as particies with enerqies well above the beam injection enerqy.

All of these points are quantitatively described by our analysis. Here we qive a qualitative description of the mechanisms responsible for each of them.

There are three distinct particle loss processes induced by the presence of field perturbations. The first, which we will refer to as more particle pumpina, is a resonance phenomenon, and has no threshold amplitude. As we will see in Sec. IV, siqnificant beam loss is induced only by low mones whi:': extend to the plasma edqe. Analysis with resistive MHD equilibrium colles and the initial value core indicates that the fishbone is primarily a $\mathrm{m=1}, \mathrm{n}=1$ internal kink, and modes with $m>1$ are driven by couplinq produced by the outward shift of the maqnetic axis, proportional to $E \beta_{n}$, where β_{p} is the polnidal theta. Thus $\varepsilon_{p} p_{p}$ must be sufficientiy large to produce larqe amplitude low modes extenting to the plasma edqe. The amount of particle loss is guantitatively described by ratating low modes of the amplitude observed with the Mirnov loops.
fis will. be shown in Sec. IV, the pump mechanism is most effective for near perpendicular beam injection. Only particles with small $V_{\text {, }}$ but with high enerqy are affected. Thus a loss cone is produced.

It is a property of the pump mechanism that motion of beam particles away from the magnetic axis is correlated with enerqy decrease. Beam particies are also pumped to higher enerqies, and radially inward. In the presence of plasma rotation, particles are also ejected with enerqies siqnificantly hiqher
than the beam injection energy, The pump mechanism has no effect on low enerqy thermal particles.

Particles are pumped outward only in a narrow toroidal rande, producing a beacon of ejected particles correlated with the rotatinq mode.

The second and third ejection mechanisms are both threshold phenomena and are not related to mode particle pumping. The secone? mechanism results from the fact that particle orbits are easily modified by maqnetic field perturhations in the vicinity of banana tips and, for harely passing particles, near the inside of the torus where the parallel velocity is very small. For hanana particles these orbit perturbations can proruce stochastic diffusion. ${ }^{5}$ For barely passing particies they can produce a transition irto the loss cone and immediate loss. The third mechanism involves even higher perturbation amplitudes, where the fleld itself, and trapped and passincy particle orbits, become stochastic. At this point general loss can occur, less correlated wi.th the mode rotation, including loss of thermal particles. In addition, particles previously pumped to hiqher than injection energies and radially inward by the rotating modes can be lost. profucing an efflux of particles with enerqy siqnificantly higher than tha beani injection enerqy. These latter two processes, which depend critically on a thresholit ampliture for the modes, will not be examined quantitatively. If they play a role in particle loss due to fishbones, it can be only for very larqe amplitudes. Mode particle pumping, however, appears to play an important role in all fishbone oscillations, and to be responsible for the observer saturation of plasma heating. This mechanism will be discussed quantitatively using a moderate amplitude fishbone obtained from the MYD analysis.
III. DRIFT ORBIT HAMILTONIAN

In a recent series of papers a Hamiltonian formalism for quiding center motion in nonaxisymetric fields has been developer. ${ }^{6-8}$ The exact field is assumed to be a perturbation of a nearby field $\overrightarrow{\mathrm{F}}$, for which exact magnetic surfaces exist. The canonical Hamiltoniar variahles are closely related to the magnetic coordinates describing this field. Describe \vec{B}, in terms of a Clebsch and a covariant representation

$$
\begin{equation*}
\stackrel{\rightharpoonup}{B}=\stackrel{t}{\nabla} \psi \times \stackrel{\rightharpoonup}{\nabla} \theta_{0}=\vec{\nabla} X+\beta^{*} \vec{\nabla} \psi . \tag{1}
\end{equation*}
$$

Here ψ is a magnetic flux coordinate, θ_{0} measures the angle across the field, and χ the distance along the field. The quantity β^{*} is related to the plasma current and pressure.

Choose for $\stackrel{+}{B}$ an axisymmetric equilihrium field in a torus of aspect ratio $F^{-1}=D_{0} f a$. The maqnetic coordinates car be expressed in terms of the toroidal coordinates r, θ, and ϕ by equating an expression for \vec{B} in these variables to Eq.(1). In this work we will make use of a pressureless, lowest order in ε equilibrium field,

$$
\begin{equation*}
\vec{R}=\frac{r}{q(r)} \vec{\nabla}_{\phi} \times \vec{\nabla}_{r}+R_{0} \vec{\nabla}_{\phi}, \tag{2}
\end{equation*}
$$

where we have normalized \vec{B} to its value on axis. The magnetic coordinates are readily evaluated to any order in E using higher order expressions for $\vec{B} .9$ However, in this application finite β plays an important role only in the determination of the modes which are present in the plasma, for which a finite B analysis was used. The beam particle precession frequency is decreased by finite β and predictions of resonant frequencies must take into account this
effect, which for PDX is typically a 30 s correction. otherwise plasma pressure is not relevant for a description of the particle motion.

Perturbations of the axisymmetric field due to MHD modes can be representen through $\stackrel{\delta}{B}^{\delta_{B}}=\vec{\nabla} \times \vec{\theta}_{\vec{B}}$ with α a general function of position. This single scalar function is sufficient to represent exactly the radial field perturbation, which dominates the structure of the perturbed maqnetic surfaces and is the most important component for the modification of partirle orbits. If a is represented through its Fourier series

$$
\begin{equation*}
\alpha=\sum_{m, n} \alpha_{n m}(\psi) \sin \left(n \phi-m \theta-\omega_{n m} t-\delta_{n m}\right) . \tag{3}
\end{equation*}
$$

the topology of the flux surfaces is changed in the vicinity of a rational surface $q=m / n$ by a magnetic island of width

The variable ψ of course does not describe the flux surfaces of the perturbed field, but of the axisymmetric field \vec{B}. The Hamiltonian for the quiding center motion is

$$
\begin{equation*}
H=\frac{1}{2} B^{2} \rho_{\|}^{2}+\mu \mathrm{B}+\Phi \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{1}=\frac{v_{1}}{\omega_{c}}=\left(2 E-2 \mu B-2^{\Phi}\right)^{1 / 2} / B \tag{6}
\end{equation*}
$$

is the "parallel qyro radius," E is the kinetic energy, Φ the electrostatic
potential, and μ the magnetic moment, $\mu=1 / 2 v_{1}{ }^{2} / B$, Here and in the following we use units with lengths given in terms of the minor radius and time in terms of the on-axis gyro frequency, $\omega_{0}=e_{0} / m c$. The energy is then given by $E=1 / 2(\rho / a)^{2}$ where ρ is the on-axis qyro radius. Here a refers to the tokamak wall, not the plasma edge. In accordance with the M\&D simulations the plasma radius was taken to be $a / 2$, leaving a large vacuum reqion. The Hamiltonian is a function only of the ragnitude of \vec{B}. In keeping with the approximate equilibrium used we truncate B to lowest order in ε

$$
\begin{equation*}
\mathrm{A}=1-\epsilon_{\mathbf{r}} \cos \theta \tag{7}
\end{equation*}
$$

Consistent with this truncation, the canonical variables hecome

$$
\begin{align*}
& \chi=\phi / E, \quad \rho_{c}=\rho_{\|}+\alpha, \tag{8}\\
& \theta_{0}=\theta-\phi / q, \quad \psi=\frac{r^{2}}{2}, \tag{9}
\end{align*}
$$

and the quiding center drift equations are

$$
\begin{align*}
& \dot{x}=\frac{3_{H}}{\partial \rho_{c}}, \quad \dot{\rho}_{c}=-\frac{3_{H}}{\partial \chi}, \tag{10}\\
& \dot{\theta}_{0}=\frac{\partial H}{\partial \psi}, \quad \dot{\phi}=-\frac{\partial H}{\partial \theta_{0}},
\end{align*}
$$

Note that

$$
\begin{equation*}
\dot{\rho}_{\|}=\dot{\rho}_{c}-\frac{\partial \alpha}{\partial \theta_{0}} \dot{\theta}_{o}-\frac{\hat{\lambda} \alpha}{\partial \alpha} \dot{\psi}-\frac{\partial a}{\partial x} \dot{x}-\frac{\partial c}{\partial t} \tag{11}
\end{equation*}
$$

The last term, which appears when $\delta_{\dot{B}}^{*}$ ts explicitly time dependent, represents the forces due to the induced electric field.

The total electric field in the plasma ig qiven by

$$
\begin{equation*}
\vec{E}=-\frac{\partial}{\lambda_{t}} a \vec{B}-\vec{\nabla} \phi_{+} \tag{12}
\end{equation*}
$$

The larae value of the electron parallel conductivity ensures that the electric field is perpendicular to the magnetic field,

$$
\begin{equation*}
(\vec{B}+\dot{B}) \cdot \vec{E}=0 \tag{13}
\end{equation*}
$$

 givinq

$$
\begin{equation*}
\phi_{1}=\sum_{m, n} \frac{\alpha_{n m}\left[m_{0} \Phi_{0}^{\prime}+\omega_{n m}\right]}{E(n-m / q)} \sin \left(n \phi-m^{\ni}-\omega_{t}-\delta_{n m}\right) \tag{14}
\end{equation*}
$$

where the prime refers to differentiation with respect to ψ.
This perturbation solution is sinqular at the mode rational surfaces, and is incorect inside the magnetic islands found there A modification of ${ }^{5}$, which avoids these sinqularities can be introduced through the substitution $(n-m / q)^{-1}+(n-m / q)\left((n-m / q)^{2}+\delta^{2}\right)^{-1}$ with δ chosen to give the island width, i.e., $\delta^{2}=4 q^{\prime}\left|\alpha_{n m}\right| / E$. This ensures approximately correct treatment of the potential within the islands. In addition we have verified, by approaching the ideal limit of zero amplitude at the rational surfaces, that the islands have nothing to do with particle loss. Fishbone oscillations involve only $n=1$ and tyoically only the $q=1$ and $q=2$ surfaces lie within th: plasma, so these island domains represent only small fraction of the plasma.

Now consider plasma rotation. Particles moving in a potential of the form $\Phi_{o}(\psi)$ with

$$
\begin{equation*}
\phi_{0}=-\frac{Q}{q} \tag{15}
\end{equation*}
$$

move as a riqid rotator in the frame moving coroldally witn angular rate Q, The total velocity $\vec{v}=v_{\phi} \vec{B}+\vec{v}_{A}$, with \vec{B} qiven by $E q$. (2) and $\vec{v}_{d}=(\vec{E} \times \vec{B}) / B^{2}$, $15 \vec{v}=v_{\phi} \dot{\phi}+\left(v_{\phi} / R-Q\right)(r / q) \hat{\theta}$ givinq rigid rotation tor a particle with velocity $v_{0}=R^{\text {Q }}$.

Having chosen the model, i.e., the truncatod form of B, the electric Fotential, and the canonical variables, no appuximatisna may be marie in subsequent calculations or energy conservation and the Liouville theorem will not hold. The pomer of the Hamiltundar formalisw consists in the ability to use an approximate model without sacrificing the physically desirable attributes associated with Hamiltonian dynamics.

Energy conserving pitch angle scattering is introduced by chanqinq the pitch $\lambda=v_{\|} / v$ throuqh

$$
\begin{equation*}
A^{2}=\lambda(1-v \tau) \pm\left[\left(1-\lambda^{2}\right) v \tau\right] 1 / 2 \tag{16}
\end{equation*}
$$

where v is the collision frequency, $\tau i s$ the time step with $v \tau \ll 1$, and the \pm implies a random sign. This can be shown to give an equivalant Lorentz zallision operator. ${ }^{10}$
IV. MODE PARTICLE PUMPING

The guiding center drift equations (10), for $a=0$, descrihe the trajectories oi banana and passing particle orbits in the axisymmetric field
${ }^{+}$. The modes $\alpha_{n m}$ produce perturbations of these orbits which can have periodic and secular parts. We are interested in tha latter and in particular in secular modificat.lons of the radial position and of the eneray, Consider first the radial position. The radial motion $\dot{\psi}$ is given by

$$
\begin{aligned}
& \dot{\psi}=-\left(\rho_{\|}^{2} R+\mu\right) \varepsilon \operatorname{rsi} \cdot \theta \\
& +\sum_{m, n} \frac{m^{\alpha} n m}{\varepsilon}\left[\frac{\left(\omega_{n m}+m_{0}^{\Phi}{ }_{0}^{\prime}!\right.}{(n-m / q)}-\dot{\phi}\right]_{\cos \left(n \phi-m^{\theta}-\omega_{n m} t+\delta_{n m}\right)}
\end{aligned}
$$

Where Eq . (10) has been used to substitute $\dot{\phi}$ for $E p_{\|} B^{2}$.
The radial motion due to $\alpha_{n m}$ can be secular for particies with finite drift excu:sions, and for trapped particles. The sine term in Eq. (17) is proportional to the square of the gyro radius. It averages to zero when $\alpha=0$ because of the symmetry of the orbit in θ. For finite perturbation the averaqe of $\sin ^{\theta}$ is proportional to $\alpha_{n m}$. The ratio of the first and second terms is small for typical beam injection parameters and mode frequencies and the $\sin ^{0}$ term is negligible. The contribution of the cosine term can be obtained by inteqrating $\}$. (17) in time. The only potential considered is that associated with plasma rotation, Eq , (15). In addition, fishbone oscillations consist of co-rotating modes, all with $n=1$. So, for simplicity, we restrict the modes to $n=1$ and drop the subscripts on $\omega_{n m}$.

First consider trapped particles. The unperturbed orbit can be approximated by uniform precession in $\phi_{1} \phi=\Delta t+\omega_{p}(\psi) t$, and periodic bounce motion in $\theta, \theta=-\theta_{b} \sin \omega_{b} t$. For trapped particles the average toroidal precession rate is ouven by

$$
\begin{equation*}
\omega_{\mathrm{p}}=\varepsilon \rho^{2}{ }_{\mathrm{q} / 2 \mathrm{r}} \tag{18}
\end{equation*}
$$

and the bounce frequency by

$$
\begin{equation*}
\omega_{b} \approx \varepsilon \rho \sqrt{\varepsilon_{Y}} / \mathrm{Q} . \tag{19}
\end{equation*}
$$

The variation of ψ in the orbit is an unessential complication and can be neglected, Integrating $8 q$. (17) over $2 k$ bounces, the ayerage radial motion due to one mode is given by

$$
\begin{equation*}
\langle\dot{\psi}\rangle=\frac{A}{4 \pi k} \int_{-2 \pi k}^{2 \pi k} d x \cos \left(\delta_{n \pi}+b x+z \sin x\right) \tag{20}
\end{equation*}
$$

with $b=\left(\Omega+\omega_{p}=(\omega) / \omega_{b}, z=m \theta_{b}\right.$, and

$$
\begin{equation*}
A=\frac{m^{\alpha} n m}{\varepsilon}\left(\frac{\left(\omega_{-m Q / q)}\right.}{[1-m / q]}-\omega_{p}-Q\right) \quad . \tag{21}
\end{equation*}
$$

Using the identity

$$
\begin{equation*}
e^{i z \sin x}=\sum_{-\infty}^{\infty} J_{N}(z) e^{i \operatorname{kix} x} \tag{22}
\end{equation*}
$$

we then find

$$
\langle\dot{\psi}\rangle=\frac{A}{2 \pi_{k}} \cos \left(\delta_{n m}\right) \sin \left(2 \pi_{k b}\right) \sum_{-\infty}^{\infty} \frac{J_{N}(z)}{\dot{b}+N} \quad \text { b } \neq \text { inteqer }
$$

$$
\langle\dot{\psi}\rangle=A \cos \left(\delta_{n \mathrm{~m}}\right) J_{N}(2)
$$

$\mathrm{b}=-\mathrm{N} \quad$.

Secular radial motion occurs only if $b=-N$, integer or equivalently $\omega=\Omega+\omega_{p}+H_{b} \omega_{b}$ since typically $\omega_{b}>?+\omega_{p}$, the resonance of lowest
frequency is the precession Erequency resonance, $\omega=0+\omega$. The trapped particle precession rate $\omega_{p} \sim q / r$ is very nearly independent of position for a large range of r. so this condition can be satisfied in much of the plasma. We then find

$$
\begin{equation*}
\langle\dot{\psi}\rangle=-\sum_{m} \cos \left(\delta_{n m}\right) \frac{m \alpha_{n m}^{\omega} p}{\varepsilon(1-n q / m)} J_{0}\left(m \theta_{b}\right) \tag{24}
\end{equation*}
$$

The secular motion will be largest for low m and small θ_{b}. Because of the factor ω_{p}, the secular motion is proportional to ρ^{2} and vanishes in the limit of zero gyra radius.

The particle energy can be treated in a similar manner, static magnetic and electric fields exactly conserve H, so the change in energy is diven by

$$
\begin{equation*}
\frac{\partial_{H}}{\partial t}=-\left[\frac{\omega \alpha}{n_{n m}}\left[\frac{\left(\omega+m \Phi_{0}^{\prime}\right)}{(n-m / \eta)}-\dot{\phi}\right]_{\cos \left(n \phi-m \theta-\omega_{t}+\delta_{n m}\right) .}\right. \tag{25}
\end{equation*}
$$

This expression is similar to that obtained for radial motion, giving for a particle in resonance with the node

$$
\begin{equation*}
\frac{\partial H}{\partial t}=\sum \cos \left(\delta_{n m}\right) \frac{\alpha_{n m} \omega^{2}}{\varepsilon_{n}}\left(1-\frac{n q}{m}\right)^{-1} J_{0}\left(m \theta_{b}\right) \tag{26}
\end{equation*}
$$

Notice that for a sinqle mode $\partial_{H} / \partial_{t}=-(\omega / m) \dot{\phi}$. We thus conclude that particies precessing with the mode in a toroiual position to give outward motion have their energy decreased.

Note that the condition of small m_{b} implies that significant mode particle pumping occurs only for low q and near perpendicular injection. This is because mode amplitucies are smald beyond their associated rational surfaces; and to achieve particle loss, low m modes must extend to the plasma
edqe. Similerly if the beam injection is not near perpendicular, the particles hare larqe θ_{b}, so again no pumping occurs. Tris restriction on θ_{b}, and hence on parailel velocity, means that ejected particles fill a loss cone with $v_{\|} \ll V_{1}$. Those modes extending to the plasma edge have mode rational surfaces outside the plasma, and thus $q<m / n$. Eq. (24) then implies that particle mode pumping at the precession frequency will produce beacon of exiting particles with $|\theta|<O_{b}$ and toraidal ejection point

$$
\begin{equation*}
\phi \approx\left(\omega_{t}-\delta_{n m}+\pi\right) / n . \tag{27}
\end{equation*}
$$

Note that although it is a resonalice phenomenon, and thus requires frequency matching, there is no threshold amplitude for the irduced loss.

Now consider passing particles. The averaqe radial motion can again be estimated by substituting the unperturbed orbit ir, Eq. (17). The relevant drift excursions a re those due to θ and ψ. Write $=\Omega_{t}+\omega_{p} t$ and $\theta \approx x-z$ $\sin x$, with $x=\omega_{p} t / q$, and $z=m \rho / 2 \psi$, where $\mu=(2 E)^{1 / 2}$ is the qyro radius. The initial pitch, $\lambda=\rho_{\mathrm{f}} / \rho$ is given by

$$
\begin{equation*}
\lambda=R_{T} / r^{\prime \prime} \tag{28}
\end{equation*}
$$

where the geomet, for the beam injection is showm in fig. 1, and for particles well into the passing regime, i.e., $R_{T} / R \gg\left(2 E_{r}\right)^{1 / 2}$, the average toroidal precession is given by

$$
\begin{equation*}
\omega_{p}=\varepsilon \rho \frac{R_{T}}{R}\left[1-\frac{\varepsilon_{r-p}^{2}}{2 R_{T}^{2}}\right] \tag{29}
\end{equation*}
$$

The excursion in ψ is $\psi=\Psi_{0}+\rho \cos x$. The radial motion again takes the
form

$$
\dot{\psi}=A \cos \left(\delta_{n m}+b x+z \sin x\right)
$$

with A given by Eq. (19) and

$$
\begin{equation*}
b=q\left(1-\frac{\omega}{\omega}+\frac{\Omega}{\omega_{p}}\right)-m \tag{31}
\end{equation*}
$$

The relevant hehavior of $\dot{\psi}$ can be understood by neqlecting the ψ dependence of A. Integrating Eq. (30) over $2 k$ poloidal periods, the average radial motion is given by Eq. (20). Again the radial motion is secular only for $b=-N$, integer, and

$$
\begin{equation*}
\langle\dot{\psi}\rangle=-\sum_{m} \cos \left(\delta_{n m}\right) \frac{N^{\omega} \alpha}{E(1-n q / m)} J_{N}\left(\frac{m p}{2 \phi}\right) . \tag{32}
\end{equation*}
$$

The vanishing of this expression for $N=0$ insures that the secular motion is again proportional to ρ^{2}, since both ω_{Γ} and the Bessel function are proportional to ρ. Again seculat motion vanishes for $P=0$. For every m there is a coniribution to $\dot{\psi}$ for

$$
\begin{equation*}
\omega=\frac{\omega}{q}(q-m+N)+Q \tag{33}
\end{equation*}
$$

for all integer $N \neq 0$. Since ω_{p} / q is a decreasing function of radius and q m - N increasing, a resonance can extend over a wide range of r. Further, since all m can contribute at the same frequency, there san be significant loss. The mides do not extend beyond their rational surfaces, so $q<m$ at positions where $\dot{\psi}$ is significant. Thus from Eq. (33) $N>0$, and from Eq. (32)
tle toroidal location of the particle loss is aqain given by Eq . (27). The loss will, in qeneral, be smaller than that in the case of trapped particles becacse of the smaller range of r whin which the resonance condition is satisfied.

Inclusion of the ψ dependence of A in these expressions slightly broadens and compilicates the form of the resonance without otherwise changing these conclusions. The resonance is also broadened by the trapping of particles moving at nearby frequencies by the mode itself.

Note that Eq. (33) predicts resonant loss at frequencies well below the transit time frequency. A beacon of exiting particles is produced, as in the case of trapped particles. As in the vase of trapped particles $\partial H / \delta t=$ $-\left(\omega_{n \pi} / m\right) \dot{\psi}$, so partjele loss is associated with a decrease in energy.

The existence of a radial electric field qiven by Eq. (15) further modifies the farticle behavior in that whereas the total energy is decreased durinq outwa-d motion, the kinetic enerqy may in fact be increased.

These results are verified by Monte Carlo simulations. To illustrate the basic effects we show results for uniform radial deposition of a monoenergetic beam of 50 keV deuterium into an equilibrium with a safety factor profile varying from 0.8 on-axis to 2.2 at the plasma edqe, and linear in ψ. The plasma edge was located at $\psi=0.125$, or $x=0.5$. The on-axis toroidal field was taken to be 9 kg , giving an on-axis syro frequency of $\omega_{0}=4.5 \times 10^{7} / \mathrm{sec}$, and an energy in our dimensionless units of $E=0.5(p / a)^{2}=9 \times 10^{-4}$. The collision frequency was taken to be of the form $u \sim u_{o}\left(1-r^{2} / r_{p}^{2}\right)$ with r_{p} the plasma radius. However, on the tima scale of the fishbone oscillations, collisions play a very small role. The static plasma potential Φ_{0} was taken to be zero except for the investigation of the effect of plasma rotation through the use of the potential given by Eq. (15). The chosen saffiy factor
profile corresponds to that of a moderate amplitude fishbone case. In Fig. 2 are shown the Mid modes users in this gimulation. modes with $m>0$ were taken to be of the form

$$
\begin{equation*}
a_{n \pi n}(\phi)=A \psi^{(m / 2)} 1 n . S-\phi \xi^{\prime} \tag{34}
\end{equation*}
$$

with h, P chosen so that both the maximum value and the value at the rational surface, $q=\pi / n$, qreed with the values given by the three-dimensional simulation code for a fishbone vage. Modes wth $n>1$ are smallet by at least an order of magnitude and were found for this case to have neqliqible effect on particle confinement and enerqotics. All low modes have the same siga, except for $m=0$, which does not contribute to ranial pumping. Thus ontward pumping is associated with energy decrease for this case.

In Fig. 3 is shown a poincaré plot, made at $\phi=0$, of the maqnetic fleld produced by these perturbations. The plot extends to the plasma edge. Some degree af stochasticity is observed, but it is not enough to influence energetic fon transport on the time scale of the fishbone oscillations (500 Hsec). A factor of 2 increase in these perturbation amplitudes, however, leads to quite a stochastic field, with a Poincaré plot eahibiting few Giscernable flux surfaces.

In the Monte Carlo simulations the modes were rotated all at the same toroidal rate, as the experiments indicate they do. Plasma rotation is taken to be zero unless otherwiae noted.

The resonant behavior of the induced particle loss and energy transfer for near perpendicular injection is clearly seen in Fig. 4. The obgerved experimental mode Erequency for $R_{T}=36 \mathrm{~cm}$ is approximately 20 kfz , corresponding to $\omega / \omega_{0}=2.8 \times 10^{-3}$, which is also the precession frequency of
particles near the beam injection energy. The effectiveness of this process in expeliing a significant fraction of a beam with an energy spread would depend on the ability of the mode to synchronize itself with the bulk of the beam population. In this way, as particles wore lost, the mode would shift its frequency to continue work on the remaining heam particles. There is some evidence of frequency modulation of this nature occurring in the experiments.

This fiqure also shows the effect of variation in the beam injection angle. As R_{T} is increased, the increased value of θ_{b} makes the ejection mechanism less efrective. As lonq as the beam consists of trapped particles, the resonant frequency is independent of R_{T}. The resonance is hroadiar and the -osses smaller when the beam consists of passing particles, $R_{T}>100 \mathrm{~cm}$. Particles are lost only from the outer half of the plasma due to the position-dependent resonance condition, Eq. (33). In this reqion q " 1.5 and the resonance condition is $N=m-1$ or $\omega \approx \omega_{p} / 3$, which is approximately the location of the resonances for $R_{T}=120 \mathrm{~cm}$ and 140 cm . It should be remembered that ejection is also proportional to mode amplitude, so that correlation of fishbone amplitude with heam injection anqle would further affect the dependence of particle loss on ${ }^{\mathrm{R}} \mathrm{T}$.

In fiq. 5 is shown a typical orbit for a particle lost due to mode pumping for $R_{T}=36 \mathrm{~cm}$. The time for this whole process is about 100 $\mu s e c$. Note that the hanana is shifter slightly to positive 9 , so that the $\sin ^{\theta}$ term in $E q$. (17) somewhat retards the ejection.

Particle loss due to mode pumping is a linear function of mode amplitude. For near perpendicular injection the $3 / 1$ mode is responsible for 90% of the particle loss observed. kadial drift is proportional to m, which in addition to the relative smallness of the $2 / 1$ mode near the plasma houndary (see Fig. 2) makes the $3 / 1$ mode more effective. Experimenting with individual modes
shows that a $4 / 1$ mode as large as the $3 / 1$ mode is also capable of significant particle expulsion, but a $5 / 1$ mode is not.

For near perpendicular injection the radial injection point of ejected particles has a uniform distribution, i.e., particles are lost from the whole plasma, not simply from the edge. For near parallel injection the lass is more restricted to the outer part of the plasma. The toroidal location of the beacon is shown in Fig. 6, and the location agrees with Ex. (27).

For these mode amplitudes the rate of particle loss at near perpendicular injection, for fixed mode frequency, decreases rapidly with decreasing enerqy and is more than an order of maqnitude reduced at 25 keV . There is thus no appreciable loss of low energy thermal particles due to mode pumping. This is simply because the trapped particle precession frequency is proportional to the energy, so these particles do not resonate with the mode.

In Fig. 7 is shown the energy distribution of all particles averaged aver a full fishbone period, at 20 kHz mode frequency for $\mathrm{R}_{\mathrm{T}}=36 \mathrm{~cm}$. Siqnificant broarening of the energy spectrum, with a maximum of 25% energy increase, is observed, Overall the beam energy has been decreased by 5% and the average neutron production rate has been decreased by 5\%. The total neutron production rate is, of course, reduced by an amount reflecting the fraction of -he beam lost.

In Fiq. 8 is shown the overall enerqy transfer to the particles as a function of particle eneryy for Eixed frequency and $R_{T}=36 \mathrm{~cm}$. The frequency corresponds to the precession rate at $E=40 \mathrm{keV}$. Total energy transfer corresponos to approximately $\Delta E=-700 \mathrm{ev}$ per particle for particles in the range $25 \mathrm{keV}<E<50 \mathrm{keV}$. From Monte Carlo simulations in an axisymmetric plasma the number of beam particles in this range at the onset of the fishbone is $\sim 3 \times 10^{18}$ giving a total transfer of $\sim 350 \mathrm{~J}$, Total mode energy in the
form of maqnetic eneray in the rotating harmonics for this case was calculated from the MHD code to be 300 J . This beam enexgy may represent the energy necessary to drive the mode. Whether or not the mode is beam driven is a question which must await a full calculation of the coupled beam and plasma system, as well as sufficiently accurate current density and pressure profile measurements to determine how close the MHD state is to marginal stability.

In fig. 9 is shown the energy distribution of exiting particles for R $\quad=$ 36 cn , As predicted by Eq. (26), particles lost due to mode particle pumping have lost energy, amounting to as much as 20% before exiting. Including plasma rntation through the potential qiven by Eq. (15) does not produce significantly different results except in the energy distribution of the exiting particles. The total enerqy aistribution is unchanged because of the balance between particles moving inward and those movinq outward. The resonance frequency shifts an amount equal to the plasma rotation frequency. In Fig. 9 is also shown the enerqy distribution of exitint particles for $R_{T}=$ 36 cm and a plasma rotation frequency of half the mode frequency. A significant high eners? population is present, with energies up to 17 above injection energies. It is, however, not clear that this mechanisen is sufficient to explain the very high energy particles observed in some fishbone events. 1
v. CONCLIISION

A mode particle resonance capable of ejecting near perpendicularly injected beam particles has been examined with a Monte Carlo drift orbit code. The mechanism produces a beacon of exiting beam particies correlated with the mode rotation. It appears to be effective enough to explain the loss of heam ions and the saturation of plasma heating observed in pDX during

Abstract

injection because it strongly affects trapped particles with enall bounce angle. For fiaed node amplitude the particle loss is not negligible even for parallel injsction. How effective the loss mechanism is for nonperpendicular injection therefore depends on whether the fishbone amplitude ls large for these cases. The loss mechanign ejects particles with energies lower than the injection energy, except in the presence of plasma rotation, in which case a high energy tail is produced with energies significantly above the injection energy. The energy transfer observed with the drift orbit code indicates that the trapped particles could participate gignificantly in the destabilization of the mode. The MHD initial value code indicates that the plasma is marqinally stable within the accuracy of the determination of the current and pressure. It is destabilized by increase in plasma β and by changing q onaxis. Estimation of the destabilization by the trapped particle population is beyond the scope of this work, However, such a mechanism, along with the beam ejection by the large amplitude mode, could very well explain the oycle of fishbone oscillations observed during near perpendicular beam injection.

ACKNOWLEDGMENT:

This work was supported by U. S. Department of Energy Contract No. DE-ACO2-76-CHO-3073.

The authors acknowledge useful conversations with M. N. Rosenbluth, H. L. Berk, W. M. Tang, and R. W. Harvey.

REFERENCES

${ }^{1}$ K. Mçuire et al., Princeton Plasma Physics Laboratory Repurt No. PPPL-1946, 1982.
Z_{W}. Park, D. A. Monticello, and R. B. White, Bull. Am. Phys. Soc. 23, 779 (1978).

3H. Park, D. A. Monticello, R. B. White, K. McGuire, and M. F. Reusch, in rroceedings of the U.S.-Japan Workshop on 3-D Sturies, Oak Ridqe, TN, 1981,
 Chance, A. M. M. TodA, and A. H. Glasser, Nucl. Fusion 20, 638 (1990). Sh. J. Goldston, R. B. White, and A. H. Boozer, Phys. Rev. Let.t. 47, $647^{\text {P. }}$ (1981).

6R, B. White, A. H. Boozer, and R. Hay, Phys. Fluids 25, 575 (1982).
7A. H. Boozer and R. B. White, Phys. Rev. Lett. 49, 7B6 (1982).
${ }^{8}$ R. B. White, A. H. Boozer. R. J. Goldston, R. Hay, J. Alhert, and
C. F. F. Karney, in Proceedings of the Ninth International Conference on Plasma Phusics and Controlled Nuclear Fusion Res-arin, 1982, IAEA-CN-41/T-3.
${ }^{9}$ R. Hay, R. B. White, D. A. Monticello, and W. Park, Bull. Am. Phys. Soc* 27, 1126 (1982).

10 A. H. Boozer and G. Kuo-Petravic, Phys. Fluins 24, 851. 1981).

FIG. 1 The qEcrietry for beam deposition. $R_{0}=143 \mathrm{~cm}$ and $a=80 \mathrm{~cm}$. The plasme radius is 40 cm , and thus at the plasma edge $\psi=0.125$.

Abstract

FIG. 2 Analytic approximations to the $n=1$ MHD modes for a rifarate amplituip fishbone. The mode maximum and the value at the rational srface both agree with the values given by the MHD simulation. Modes with $n>1$ were appreciably smaller.

FIG. 3 The Poincaré plot of the maqnetic field using the mode amplitudes approximating those qiven by the MHO simulation for a moderate fishbone. The $n=1$ modes are shown in Fig. 2. Also included were $n=2$ and $n=3$ modes, which at this amplitude have no appreciable effect on particle loss or enerqy.

FIG, 4 The Eraction of beam lost durinq a fishbone period (500 Hec) for various values of R_{T}. The value $R_{T}=140 \mathrm{~cm}$ corresponds *parallel injection.

FIG. 5 A typical trajectory for a beam particle lost due to mode pumping. Here $R_{T}=35 \mathrm{~cm}$ and the mode frequency is 20 kHz .

FIG. 6 The toroidal distribution of exiting particles. Here the phase of all modes was $\phi_{n m}=-\pi / 2$, and thus from Eq. (27) the ejection should occur at $\phi-\omega_{t}=3 \pi / 2$. Note that since particle ejection is almost entirely due to the $3 / 1$ mode, the location of the beacon with respect to the $1 / 1$ mode can be tuned by adjusting the relative phase of thesa modes.

FIG. 7 The particle energy distribution averaged over a full fishbone period. The mode frequency is $20 \mathrm{kHz}, \mathrm{R}_{\mathrm{T}}=35 \mathrm{~cm}$, and $\mathrm{E}_{\mathrm{O}}=50 \mathrm{keV}$. The maximum particle energy amounts to a 164 increase over the injection energy.

FIG. 8 The total energy transfer to a mono-enerqetic beam from the mode as a function of particle eneray. The made frequency corresponds to the precession rate at 3 B keV. Here $\mathrm{R}_{\mathrm{T}}=35 \mathrm{c} .1$.

FIG. 9 The enerqy iistribution of the ejected particles. The mode frequency is $20 \mathrm{kHz}, R_{T}=35 \mathrm{~cm}$, and the injection energy is $\mathrm{E}_{0}=9 \times 10^{-4}$, which corresponds to 50 keV . Also shown is a case with a plasma rota'ion of half the mode frequency.

* 82 T 0249

Fig. 1

Fig. 2

Fig. 3
fraction of beam particles lost

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

EXTERNAL DISTRIEUTION IN ADDITION TO TIC UC- 20

Plasma Res Lah, nustra Netil Univ, AUSMALIA Dr. Frafk J., Poolani, Univ of Wollongong, AUSTRM, in
Prof. I.R. Jones, Filnders Univ., ALSTRALIA
Prol. M. H. Brannan, Unive Sydnev, Australia
Prot. F. Cap, Inst Theo Phys, AlSTRIA
Prol. Fronk Verhesst, Inst thaorstlscho, BELGIUM Dr. D. Folumbo, Do Xil fusion Prog, 日ELGiUN Ecole Koyble Militalis, Lab de Phys Plasmas, gelgilm
Dr. P. K. Sakenake. Uniy Estadul, BRazll
Dr. C.R. James, Unty of Albarta, CANADA
Prof. J. Talemmant, unlv of montreet, Canada Dr. H. M, Skarsgard, Unlv of Saskatchaman, Gained Prof. C.R. Srsemivesen, University of Calgary, CANADA Prot. Tudor W. Johnston, JNRS-Energle, CANADA Or. Hannes Barnard, Univ Brifish Columbla, Canada Dr. M.f. Bachynskl, neg Technologias, Ifc., CANADA Inengev L1, 5w Inst Physics, CHINA
Librery, Tsing Hus University, CHINA Literarian, Institute of Physlcs. CHINA
Inst Flasma Phys, Sm inst Physles, CHINM
Dr. Peter Lunac, Komenskeno Ualy, CZECHOSLOYAKIA
The LIbrarlan, Culham Laboratory, ENGLAND
Prot. 5 chatzman, Doservatolirg de Nice, FRAMCE J. Radet, CEN-EPt, FRANCE
k Dupes iloraty, am Oupas Liorory. france
Dr. Tom Musl, Achdemy Blbllographic, HONG KONG
Preorint Librory, Cent Res Imst Fhys, hungary
Dr. A.k. Sunderam. Physical Research Lab, INDIA
Dr, S.k. Yrehan, Panjab Unlversity, iNDiA
Dr. Indra, Mahor Lol Dos, Bonoros Hindu Untv, indta
Dr. L.K, Cr.avda, South Gujarat Unlv, INDIA
Dr. R,k. Chnajlanl, Yor Ruchi Mprq, INDIA
B. Ext 1, Physics! Research Lab, woin

Or. Phililo Rosenau, lsrofl Inst Tech, IgraEl
Prof. S. Cupermen, Tel Aviv University. ISRAEL
Prot. G, Rosteonl, Unlv Di Fadove, ITALY
LIbrarion, intiq Cft Theo Phys, Itaby
Mfss Clelia De Fsio. Assoc EURATOM-GNEN, ITALY
BIbIIOTecB, GeI CNR ELRATOM, ITALY
Gr. h. Yamato. Tosmide Res o Dev, Japhas
Prof. M, Yoshlkame, Jhert, Takel Res Est, JAPAN
Frof. T. Uehloa, University of Tokyo, JAPAN
Researen info Conter. Nagoya University, JAPAN
Prof. Kyojl Nistikaw, Univ of Hilposhlmb, JAPAN
Sigery Mori, MAER; JAPKN
Library, Kyoto University, JAPAN
Prof. Ieniro Kavakaml, Nihon Univ, JAPhN
Prof, 5aroshl iton, Kyusnu University, JAPAN
Tech info Division, Korea Atomie Energy, KDREA
Dr. R, Engiand, CIvdad Universiterio, MExico
Blbllotheak, Fomilnst Voor Plasma, NETHERLANOS
Prof. B.S. Lliop, Unlverglty of walkato, NEW ZEALAND

Or. Suresh C. Sharme. Univ of Calebar, NIGERIA Prof. J.A.C. Cobral. Inst Superlor Tech, PDRTUGAL Or. Oetavion Petrus, ALI CUZA UntiversIty, RCMANIA Dr. R. Jonas, Natil Univ singapore, 5 INGAPORE Prot, M+A. Heliferg, Unlversity of Natal, SO afRica Dr. Johan de Villiers, Atomic Energy Bd, 50 AFRiCA Dr. J.A. Tegle, JEN. SPAIN
Prof, Hant Withelpagn, Chalmers Univ TBen, SwEDEN Dr. Lennert Stenflo, Unlversity af UEA, SWEOEN Llbrary, Reyal Inst Teah, SWEDEN
Dr. Erih T. Karison, Uppsole Universitet, SWEDEN Contre de Recherchasen, Ecoie Polytech Fed, SWI TZERLAND
Dr. W.L. Walse, Natri Bur Stand, USA
Dr. W.M. Stacey, Georg Inst Tech, LSA
Or. S.T. Wu, Unlv Alabame, USA
Mr. Normen L. Oimson, Unit 5 fiorida, usA
Or. Benjamin Ma, lama State Univ, USA
Megne Kristionsen, ticus Tech Univ, uSA
Dr. Raymond Askaw, Auburn Univ, USA
Dr. V.T. Tolok, Kharkov Phys Tach ins, iESR
Or. D.D. Ryutov, Slbarlan Acsa Sci, USSR
Dr. M.S. Rabinaulch, Lebedev Physicai inst, LSSR
Or. G.A. Elfseev, Kurehatov Institute, USSR
Or. V, A, Glukhlinh, inst EfectrePnysleal, USSR
Prot. T. J. Boyd. Unlv College n Weies, wales
Or. K. Sehinder. Rutir Univarsltat, W. Gemany
Nuclear Res Estab, Jullen Ltd. W. GERMANY
LIbratian, MayPlanck institut, W, GENANY
Or. M. J_{+}Kabpocer, University Stutqart, W, GERmANY
Glbliothek, inst Pigenaforschung. W. GERMANY

